
1

CSE2301

Unix/Linux
Introduction

Warning: These notes are not complete, it
is a Skelton that will be modified/add-to in
the class. If you want to us them for
studying, either attend the class or get the
completed notes from someone who did

These slides are based on slides by Prof. Wolfgang Stuerzlinger
at York University

Introduction

• In this part, we introduce
– OS (Linux)
– File system
– Shell commands
– Pattern matching
– Shell programming

2

Unix

• What does an OS do?
– File management
– Scheduling
– Memory management
– I/O management

• Examples

Unix

• OS includes
• Kernel: Performs key OS functions
• System programs: various tools
• Shell: Interface to the user

3

Processes

• Each program running is called a process
• Each process has its own identification

PID
• If the program is running twice, even by

the same user, these are 2 different
processes.

File System

• In Unix, the files are organized into a tree
structure with a root named by the
character ’/’.

• Everything in the file system is a file or
subdirectory

4

Our File System

/

bin boot cs home

awk
include cs…

…

aio.h

File System

• File names could be relative (with respect
to the current directory) or using full path
name (relative to /) for example aio.h or
/cs/include/aio.h

• Your home directory is ~username, so in
my case ~aboelaze/test.c is equivalent to
/cs/home/aboelaze/test.c

5

Devices

• /dev contains devices, just like any other
file (fopen, fread, fwrite, ..) but it
communicate with a device.

• /dev/tty
• /dev/null
• /dev/zero

Unix Commands

• ls cp mv rm mkdir cd pwd cat less more
head tail ….

• bg, fg, CTRL-C, CTRL-Z
• kill ps od diff ln echo …
• Redirection and pipes Examples

6

• tigger 215 % ls –las
• total 44
• 4 drwx------ 2 aboelaze faculty 4096 Nov 29 13:44 ./
• 4 drwx------ 9 aboelaze faculty 4096 Nov 29 14:47 ../
• 4 -rw------- 1 aboelaze faculty 184 Nov 18 13:30 data
• 4 -rw------- 1 aboelaze faculty 23 Nov 28 19:52 file1
• 4 -rw------- 1 aboelaze faculty 24 Nov 28 19:52 file2
• 4 -rw------- 1 aboelaze faculty 481 Nov 29 12:27 mergefiles.awk
• 4 -rw------- 1 aboelaze faculty 178 Nov 28 19:32 p1
• 4 -rw------- 1 aboelaze faculty 1245 Nov 18 13:29 prchecks.awk
• 4 -rw------- 1 aboelaze faculty 83 Nov 14 17:46 t
• 4 -rwx------ 1 aboelaze faculty 35 Nov 21 13:08 test.sh*
• 4 -rw------- 1 aboelaze faculty 50 Nov 1 18:31 unmatched
• chmod 744 file What does it mean?
• chmod [ugo][+-][rwx] chmod ug+rw p1

Shell Pattern Matching--Wild Cards

• The character * matches any string of
characters

• ? Matches a single character
• [0-9] matches any digit
• [a-z] matches any small case letter
• \c matches c only
• a|b matches a or b in case expression onlyin case expression only

7

Shell Variables

• set x = 3 -- csh
• x=3 -- sh
• echo x
• echo $x what is the difference

PATH path

• The shell searches in PATH looking for the
command you typed

• echo $PATH .:/usr/local/bin:/usr/ucb:
/usr/bin /usr/etc:/etc:/bin:/usr/bin/X11

• set path = ($path /a/b/c) --csh
• PATH=$PATH:/a/b/c --sh
• Aliases and startup files

8

Shell scripting

#!/cs/local/bin/sh
echo “Hello World”

tigger 397 % script1
Hello World
tigger 398 %

echo -n “Hello
World”

tigger 393 % script1
Hello Worldtigger 394 %

#!/cs/local/bin/sh
echo "Now I will guess your OS"
echo -n "Your OS is : "
uname

tigger 399 % script1
Now I will guess your OS
Your OS is : Linux
tigger 400 %

Shell Scripting

#!/cs/local/bin/sh
echo -n "Please enter your first name : "
read FNAME
echo -n "Last name pelase : "
read LNAME
MESSAGE=" Your name is : $LNAME , $FNAME"
echo "$MESSAGE"

tigger 439 % script3
Please enter your first name : Mokhtar
Last name pelase : Aboelaze
Your name is : Aboelaze , Mokhtar

9

Shell Scripting

#!/cs/local/bin/sh
read FNAME
echo "1-> $FNAME123"
echo "2-> ${FNAME}123"

tigger 454 % script4
abcd
1->
2-> abcd123
tigger 455 %

Shell Scripting

Set the initial value.
myvar=abc
echo "Test 1 ======"
echo $myvar # abc
echo ${myvar} # same as above, abc
echo {$myvar} # {abc}

$ sh var_refs
Test 1 ======
abc
abc
{abc}

echo "Test 2 ======"
echo myvar # Just the text myvar
echo "myvar" # Just the text myvar
echo "$myvar" # abc
echo "\$myvar" # $myvar

Test 2 ======
myvar
myvar
abc
$myvar

echo "Test 3 ======"
echo $myvardef # Empty line
echo ${myvar}def # abcdef

Test 3 ======

abcdef

10

Shell Scripting

echo "Test 4 ======"
echo $myvar$myvar # abcabc
echo ${myvar}${myvar} # abcabc
echo "Test 5 ======"
Reset variable value, with spaces
myvar=" a b c"
echo "$myvar" # a b c
echo $myvar # a b c

Test 4 ======
abcabc
abcabc
Test 5 ======
a b c
a b c

Looping

• for variable in list_of_items
• do
• command1
• command2
• ...
• last_command
• done

11

Looping

• for filename in *
• do
• echo $filename
• done
• for filename in *.doc
• do
• echo "Copying $filename to $filename.bak"
• cp $filename $filename.bak
• done

Looping

• for i in 1 2 3 4 5 6 7 8 9 10
• do
• echo -n "...$i"
• done
• echo # Clean up for next shell prompt

12

Looping

Counts by looping for a fixed number of times
Note do on same line requires semicolon.
for i in 1 2 3 4 5 6 7 8 9 10; do

echo -n "...$i"
done
echo # Output newline

Counts by looping for a fixed number of times
Note do on same line requires semicolon.
for i in 1 2 3 4 5 6 7 8 9 10; do

echo -n "...$i"
done
sleep 5
echo # Output newline

Looping

Counts backwards
for i in 10 9 8 7 6 5 4 3 2 1
do

echo -n "...$i"
done
echo # Output new line
echo "Blast off!"
$ sh counter2
...10...9...8...7...6...5...4...3...2...1
Blast off!

13

Looping

C-language-like for loop.
Must be run with bash.
max=10
for ((i=1; i <= max ; i++))
do

echo -n "$i..."
done
echo

If-then-else

if (condition_command) then
command1
command2
...
last_command

else
command1
command2
...
last_command

fi

14

• exit 0

• exit 1

• if (sh return0) then

• echo "Command returned true."

• else

• echo "Command returned false."

• fi

return0

return1

Redirection

• What is that?
• ls /fred > /dev/null 2> /dev/null

15

If elif

echo –n “checking for a C shell: “

if(which csh >/dev/null 2> /dev/null) then

echo “csh found.”

elif (which csh >/dev/null 2> /dev/null) then

echo “tcsh found, which works with csh”

else

echo “csh not found”

fi

16

17

Example

• Mycal program In class discussion

#!/cs/local/bin/sh

case $# in
0) set `date`; m=$2; y=$6;;
1) m=$1; set `date`; y=$6;;
2) m=$1; y=$2;;
esac

case $m in
jan*|Jan*) m=1;;
feb*|Feb*) m=2;;
mar*|Mar*) m=3;;
apr*|Apr*) m=4;;
may*|May*) m=5;;
jun*|Jun*) m=6;;
jul*|Jul*) m=7;;
aug*|Aug*) m=8;;
sep*|Sep*) m=9;;
oct*|Oct*) m=10;;
nov*|Nov*) m=11;;
dec*|Dec*) m=12;;
[1-9]|10|11|12) ;;
*) y=$m;m="";;
esac
/usr/bin/cal $m $y

tigger 212 % date
Wed Jan 28 14:38:38 EST 2009
tigger 213 %

18

Grep

• Prints out all the lines in the input that
matches an expression

• grep [options] pattern [file]
• Options let you do inverse search, ignore

case, ……
• grep exits with 0 (found) 1 (not fund) 2

(file not found)
• Regular expressions used in grep, sed, vi,

awk to match a pattern

Regular Expressions

• “foobar” matches (only) foobar
• ‘.’ Matches any single character

– f.obar matches faobar, fboar, ….
• [xyz] matches any character in the set

– fo[abo]bar matches foabar, fobbar, foobar
• [^xyz] matches any character that is not in

the set
– fo[^ab]bar matches focbar, fodbar but not

foabar

19

Regular Expressions

• ‘*’ matches 0 or more occurrence of the
last char
– fo* matches f,fo,foo,fooo,foooo

• ‘?’ matches 0 or 1 occurrence of the last
char
– fo?bar matches fbar and fobar

• ‘+’ matches one or more occurrence of the
last char
– fo+bar matches fobar foobar, fooobar, …

Regular Expressions

• ‘^’ matches the beginning of a string
• ‘$’ matches the end of a string
• [a-z] matches any character in the range
• [0-9] matches any digit in the range

– ^[ABC] matches A,B, or C at the beginning of a string
– ^[^ABC] matches any character at the beginning of a

string except A, B, and C
– ^[^a-z]$ matches any single character string except a

lower case letter

20

Regular Expressions

• “\<“ and “\>” matches the beginning and end
of a word

• \{n\} matches n occurrences of the last char
• \{n,\} at least n occurrences
• \{n,m\} between n and m occurrences
• ^(\+|-)?[0-9]+\.?[0-9]*$ what is that?

-123.24 that is a floating point number
786 that is an integer
Regular sentence
Another field
234.23
one sentence with one letter repeated twice in a row

tigger 259 % egrep 'let?er' test
tigger 260 % egrep 'let*er' test
one sentence with one letter repeated twice in a row
tigger 261 % egrep 'let+er' test
one sentence with one letter repeated twice in a row
tigger 262 % egrep 'let?er' test
tigger 263 % egrep 'one s[a-f]' test
one sentence with one letter repeated twice in a row
tigger 264 % egrep '^(\+|-)?[0-9]+\.?[0-9]*$' test
234.23
tigger 265 % egrep '^(\+|-)?[0-9]+\.?[0-9]*' test
-123.24 that is a floating point number
786 that is an integer
234.23
tigger 266 %

21

Other UNIX Utilities

• Uniq sort tr cut find awk (more later)
xargs.

• tr x y # replace every occurrence of x
by y

• tr ab cd #replace every occurrence of a by
c and b by d

• tr “[a-z]” “[A-Z]” <filename
• tr –s a <filename

Other UNIX Utlities

• cut used to split data from files
• cut [-ffields] [-ccolumn] [-dchar] filename
• cut –f3 –d, filename
• cut –c30-40 filename
• find . –type d –print
• find –type f –name “*.c” –print // or ‘ ‘
•

22

Other Unix Utilities

• xargs commands execute the given
command for each word in its stdin

• find –type f –name *.c –print |xargs wc
• which prog
• whereis prog
• bg and fg
• Command &
• Command; command;

UNIX Commands

• Grouping using () date; who >temp
• (date; who) >temp
• >> file << pattern
• Command && another command
• Command || another command

Run command, if successfule run
another command

23

Quotes

• Escape ‘\’ is used to indicate the next
character is not a special character.

• If a file name contains something like ‘*’
data*12, we can refer to it as data*12

• We can use ‘ ‘ every character between
these two single quotes is treated as non-
special except ‘ cat ‘data*12’

Quotes

• ` (back-quote) ` the contents of the quote
is treated as a shell command

• echo `cat file`
• Double-quote “ “ like single quote except

the variable substitution $ and back-
quotes ` are still treated as special
characters

24

Finally

• (command) is executed in a subshell
• B=4
• B=5
• echo $B vs.
• B=4
• (B=5)
• echo $B
• Forking

Set B=5 %% for csh

