Prepared by Prof. Hui Jiang

(COSC6328)

C0SC6328.3 YORK R coctine e vossioie

\\\\\\\\\\
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HTK and the Project

Prof. Hui Jiang
Department of Computer Science
York University

HTK: A Toolkit for
HMM-based Speech Recognition

» HTK: software toolkit for HMM-based speech recognit  ion

 Originally built in Cambridge Univ. (UK); Acquired and released by
Microsoft Inc..

» HTK provides a set of tools to process speech data, transcription,

grammar network, HMM training, HMM decoding, ASR ev  aluation, ...

* Unix-style of command-line:
tool-name [options] mandatory_arguments
» Easy to write shell scripts to perform large-scale experiments.
» A Linux version of HTK is available at:
[cs/course/6328/.../HTK
» Also sample and tutorial directories:
[cs/course/6328/.../HTK-samples/HTKDemo
[cs/course/6328/.../HTK-samples/HTKTutorial

* Use Linux machines: indigo, cherry, hickory, hemlock, willow ,etc..
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HTK Tools Overview

HLED HSIAB
. HCory
HLSTATS HIIST
HQUANT

[Transcriptions] [ Speech]

HCoMpV, HNIT , HREST, HEREST
HSMoOTH, HHED . HEADAPT

)

HVITE

t
HBUILD
HPARSE

Transcriptions

HMM Training in HTK

Labelled Utterances

th thsihspiytsh

dmtiyszihsizm

HInit

HEest

FE

Transcriptions

th hsihspiytsh
shtivszihsihth

Unlabelled Utterances

HCompV

3/6/2008



Prepared by Prof. Hui Jiang 3/6/2008
(COSC6328)

HMM Training in HTK

*  HMM Training in HTK:

1. Getinitial segmentation of data (uniform, hand |  abels, or
forced alignment)

Train monophone HMMs on segments ( Hinit, HRest,
HCompV)

Train monophone HMMs using embedded training (  HERest)
Create triphones from monophones by cloning (HHEd)
Train triphone HMMs using embedded training ( HERest)

Create context clustering for tying parameters us ing
decision tree (HHEd)

7. Tie all logical states in triphones to form state-  tied triphone
HMMs (HHEd)

8. Run embedded training (HERest); split mixtures (H  HEd);
repeat.

n

S

Important Tools for the project

* HSLab: view and play voice data.

» HCopy: feature extraction

» HList: list data files

e HCompV: flat initialization of HMMs

e Hinit: initialize HMMs from uniform segmentation

* HRest: training HMMs based on the Baum-Welch algorithm.

» HParse/HBuild : building recognition network.

» HVite: Viterbi decoding with 2-gram LM.

» HDecode: Viterbi decoding (more efficient) with 2- or 3-gram LM.

* HHEd: change HMM model structure, decision tree based
parameter tying

» HResults : measure recognition performance.

Dept. of CS, York Univ. 3
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Do

General Info of the project (1)

Use HTK to build an ASR system from training data.

experiments to improve your system.

Evaluate your systems on test data and reportthe b est.
Requirements:

Use mixture Gaussian CDHMM.
Use mono-phone and state-tied tri-phone models

— Can’t use any test data in HMM training.
Progressive model training procedure:

— Simple models -> complex models

— Single Gaussian ->» more mixtures

Mono-phone -> tri-phone

Dept. of CS, York Univ.

General Info of the project (2)

* Project key issues: be careful on data formats

Use a given 3-gram LM

Acoustic modeling: speech unit selection ->
model estimation (initialization, refining, etc.)

Dictionary is provided

No need to record data (use the provided
database)
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General Info of the project (3)

The expected strategy:

1) Properly initialize HMM's from scratch.

2) Evaluate HMM’s on test set.

3) Think about ideas to improve models.

4) Retrain/update/enhance HMM's.

5) Evaluate the enhanced HMM'’s again.

6) Goto 3) to repeat until find your best HMM setting
You need to hand in the following electronic files:

— Avreport (max 8 pages), report_X.xxx , to describe all conducted
experiments; why you did them; your methods to impr ove the
system; your best system setting and the best perfo rmance you
achieved; others.

— Atraining script, train_X.script , to get your best HMMs from
scratch.

— Atest script, test X.script, to evaluate your HMMs on test data.

— Areadme_X.txt file to explain how to run your scripts.

General Info of the project (3)

* My marking scheme:

— The methodology you adopt in building the
system.

— Whether you follow the project specification.

— What ideas you come up with for improving the
system.

— Afull course from scratch to your best system.
— Your best recognition performance.

— A few best systems will get bonus marks.

— How well you do in your project presentation

* Deadlines and presentation dates

Dept. of CS, York Univ.
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Hints for the Project

* Focus on:
— How to initialize models ?
* HTK provides two solutions
— How to choose modeling unit ?
* mono-phone

» Consider context-dependent phone, such as left-
and right- bi-phone and tri-phone.

— How to decide the optimal Gaussian mixture
number per HMM state?

— Other ideas you come up with ...

» Get your version 1.0 ASAP.
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Statistical Language Modeling

Prof. Hui Jiang
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Automatic Speech
Recognition (II):
Language Modeling (LM)
Prof. Hui Jiang
Department of Computer Science and Engineering

York University, Toronto, Canada
hj@cse.yorku.ca

ASR Solution
W = argmax p(W | X) =argmax P(W) [p(X |W)
= argmax P (W) [p, (X [W)

war
e PA(X|W) — Acoustic Model (AM) : gives the probability of
generating feature X when W is uttered.

— Need a model for every W to model all speech signals
(features) from W > HMM is an ideal model for speech

—  Speech unit selection: what speech unit is modeled by each
HMM? (phoneme, syllable, word, phrase, sentence, et c.)

*  Sub-word unit is more flexible (better)

« P (W) — Language Model (LM) : gives the probability of W (word,
phrase, sentence) is chosen to say.

— Need a flexible model to calculate the probability for all kinds
of W -2 Markov Chain model (n-gram)

Dept. of CS, York Univ.
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ASR Problems

» Training Stage:

— Acoustic modeling : how to select speech unit and estimate
HMMs reliably and efficiently from available trainin g data.

— Language modeling : how to estimate n-gram model from text
training data; handle data sparseness problem.

» Test Stage:

— Search: given HMM’s and n-gram model, how to efficiently
search for the optimal path from a huge grammar net  work.

» Search space is extremely large
 Call for an efficient pruning strategy

N-gram Language Model (LM)

* N-gram Language model (LM) essentially is a Markov ~ Chain model,
which is composed of a set of multinomial distribut ions.

* Given W=wi,w2,...,ww, LM probability Pr(W) is expressed as
M

PFQN) = Pr(W1’W2"”’WM) = Ijl p(Wi |h)

where ht=wtn+1,...,wt-1 is history of w.

In unigram, he=null (parameters ~|V|, |V| vocabulary size)
In bigram, ht=wt1 (parameters ~|V|*|V])

In trigram, ht=wt2wt1 (parameters ~|V|*|V|*|V])

In 4-gram, ht=wt-3wt-2wt-1 (parameters ~|V[*|V|*|V|*|V])

» How to evaluate performance of LM?

Dept. of CS, York Univ. 8
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N-gram LM: Applications

» N-gram LM has many applications in speech recogniti on, OCR,
machine translation, etc..

» N-gram LM for statistical machine translation:

saying
would
said th

saying that he has

Perplexity of LM

» Perplexity: the most widely used performance measur e for LM.

test word sequence W=w1,w2,...,Wm:
— Calculate a negative log-prob quantity per word:

1
LP = _VIOQZ Priw)

— Perplexity of LM is computed as

PP =2
guessing a word among PP equally likely words.

» Training-set perplexity: how much LM fits or explai n the data

text data.

Dept. of CS, York Univ.

» Given an LM { Pr(.) } with vocabulary size |V|, and a sufficiently long

» Perplexity: indicates the prediction of the LM is a bout as difficult as

» Perplexity: the smaller PP value, the better LM pre  diction capability.

» Test-set perplexity: generalization capability of th e LM to predict new

3/6/2008
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LM: vocabulary selection

» Large vocabulary size
=> exponential growth of various n-grams
=> exponential increasement of LM model parameters
= much more training data and computing resources
* Need to control vocabulary size in LM.
» Given the training text data,

limit vocabulary of LM to the most frequent words o cecurring in
the training corpus, e.g., the top N words.

All other words are mapped as unknown word, <  UNK>.

This gives the lowest rate of out-of-vocabulary (OO V) words
for the same vocabulary size.

» Example: English newspaper WSJ (Wall Street Journal )

Training corpus: 37 million words (full 3-year arch ive)
Vocabulary: 20,000 words

OOQV rate: 4%

2-gram PP: 114

3-gram PP: 76

Dept. of CS, York Univ.

LM Training (1)

» Collect text corpus: need > tens of millions of wor ds for 3-gram
» Corpus preprocessing: ( very time-consuming )

Text clean-up: remove punctuation and other symbols
Normalization: 0.1% -> (zero) point one percent

6:00 - six o’clock; 1/2 - one half, ...
Surrounding each sentence with TAGS <s> and </s>

Language-specific processing: e.g., for some orient  al
languages (Chinese, Japanese, etc.) do tokenization - find
word boundaries from a stream of characters.

Output: clean text

<S> W1 W2 W3 W4 W5 </s>
<s> w1l w21 w32 w4l w52 wi2 w22 w33 wa4 w54 wib w26 w36 w 43 w56 </s>
<S> w12 w23 w31 w42 w51 wil w23 w34 w44 w5 </s>

3/6/2008
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LM Training (2)

* LM parameter estimation from clean text:

— The entire training text can be mapped into an orde  red sample
of n-grams without loss of information:

S=hiwzi,hawo, ... htwTt
(assume we have T words in training corpus)
Group together all n-grams with the same history h:
Sh=hwxi, hwx, ... , hwxn

Sh can be viewed as an i.i.d. sample from  Pr(w|h).
We denote p,,,=p(w|h) for all possible w's and h’s.
So probability of  Sh follows a multinomial distribution:

Pr(S,) O[] [p(w[h)]™*™

where N(hw) is frequency of n-gram hw occurring in - Sh.

LM Training (3): ML estimation

* Maximum Likelihood (ML) estimation of multinomial d istribution is
easy to derive.

» The ML estimate of n-gram LM is:

argmax > N(hw) nh p(w|h) =argmax > N(hw)h p,,
wv

p(wih)  wov Prw

subject taconstrantsy  p,,, =1for all h.
wiv

ou — N(hw)  _ N(hw)
"™ 3 N(w)  N(h)

Dept. of CS, York Univ. 11
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LM Training (3): MAP estimation

The natural conjugate prior of multinomial distribu tion is the
Dirichlet distribution.

Choose Dirichlet distribution as priors

P{ P} O !;j [ P ] <™

— where { K(hw)} are hyper-parameters to specify the prior.
Derive posterior p.d.f. from Bayesian learning:

P P} S) O u [ p,, ] <Nt

Maximization of posteriori p.d.f. - the MAP estimate

(MAP) _ N (hw) + K (hw)
P = > IN(hw) + K (hw)]

MAP estimates of n-gram LM can be used for smoothin  g.

Data Sparseness in LM estimation

ML estimation never works due to data sparseness.

Example: in 1.2 million words English text (vocabul ary 1000 words)
— 20% bigrams and 60% trigrams occur only once.
— 85% of trigrams occur less than five times.

— After observing the whole 1.2 Mw data, the expected chance of
seeing a new bi-gram is 22%, a new tri-gram 65%.

In ML estimation: zero-frequency > zero probability

Data sparseness problem can not be solved by collec  ting more data.

— Extremely uneven distribution of n-grams in natural language.

— After amount of data reaches a certain point, the s peed of
reducing OOV rate or rate of new n-grams by adding more data
becomes extremely slow.

Call for a better estimation strategy: smoothing ML estimates
— Back-off scheme: discounting + redistributing
— Linear interpolation scheme

Dept. of CS, York Univ.
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Statistical Estimators

Example:
Corpus: five Jane Austen novels
N = 617,091 words
V = 14,585 unique words

Task: predict the next word of the trigram
“Inferior to ”

from test data: “[In person, she was] inferior toboth
[sisters.]”

Instances in the Training
Corpus:

"inferior to

”

c(w)

AL

the

her
cherries
iaria
word 5
word &
word 7

Dept. of CS, York Univ.
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Maximum Likelihood Estimate:

P{w} C{w}
.286 2
43 1
0 0

P=100%

L

P=0%

the

13

her

cherries
Idar

word 5

word &

word 7

Dept. of CS, York Univ.

Actual Probability Distribution:

ciw)

il

the

her
cherries
Maria

word 5

word 6

word 7

3
~—
o
Il S
-
-
i
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Back-off Scheme(1): discounting

How to estimate probability of an n-gram never

observed ?
Unobserved ForOset: p(w|h) = w
N-grams U N(h)

For Uset: p(w|h)=0

Observed n-grams O

Discounting is related to the zero-frequency
estimation problem

Discounting: discount probability mass in set O,
and re-distribute to set U.

¢ For set O: discounted probability

S

Q1: how much to discount ? -\) p* (wlh) (0= p* (w|h) < p(w|h))

Q2: how to distribute the * Total discounted mass: the zero-frequency
! total discounted mass among ~ § probability

Back-off Scheme(1): discounting
based on Bayesian Estimation

» Laplace’s law (Floor discounting)
— MAP estimation when setting uniform priors
N(hw) +1

N(h)+ |V |
] total number of unobserved
— Total discounted mass: n-grams with the history h

AR =1- p. (w]h) :nm

— Laplace’s law usually over-discounts in LM estimati on

Pe (Wh) =

e Lidstone’s law

_ N(hw)+¢
Pig(W[h) = W
Aig(n) =1=3 pig(wl h) :N?Si'?v[‘i@

Dept. of CS, York Univ.

3/6/2008

15



Prepared by Prof. Hui Jiang

(COSC6328)

* Good-Turing discounting: discount
n-gram counts directly.

* r: frequency (occurring r times)

* Nr: total number of distinct n-grams
occurring exactly r times.

» Good-Turing discounting rule:

r=(r +1)% (<r)

» Total probability mass reserved for
unseen n-grams:
E(N,)

A= Ny

* How to calculate expectation  E(Nr)?

Back-off Scheme(1):
Good-Turing Discounting (I)

r Nr
0 212,522,973
1 138,741
2 25,413
3 10,531
4 5,997
5 3,565
6 2,486
7 1,754
8 1,342
1366 1
1917 1
2233 1
2507 1

* How to get E(Nr)?
— Directly use N rto approximate
the expectation.

* Only adjust low frequency
words (to say, r<=10)

* No need to adjust high
frequency words (r>10)

— Fit all observed (r,Nr) to a
function S, then use the
smoothed value S(r) as the
expectation .

» Usually use hyperbolic
function

E(N,)=S(r) =ab" (withb<-1)
* Good-Turing estimate is  r*/N(h).
* Re-normalize to a proper prob dist

Dept. of CS, York Univ.

Back-off Scheme(1):
Good-Turing Discounting (II)

r r* Nr
0 0.0007 212,522,973
1 0.3663 138,741
2 1.228 25,413
3 2.122 10,531
4 3.058 5,997
5 4.015 3,565
6 4.984 2,486
7 5.96 1,754
8 6.942 1,342
1366 1365 1
1917 1916 1
2233 2232 1
2507 2506 1

3/6/2008
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Back-off Scheme(2):
Re-distributing methods

» Uniform re-distributing: the total discounted mass (a.k.a. the zero-
frequency probability)  A(h) is uniformly distributed to all unseen
ngrams.

» Katz's recursive re-distributing: the total discoun ted mass A(h) is
distributed over all unobserved events proportional ly to aless
specific distribution  p(w|h’) .

— Build unigram p(w), distribute A(h) uniformly.

— Build bi-gram p(w|w") , distribute A(h) over all unseen w
proportionally to  p(w).

— Build tri-gram  p(w|w'w”), distribute  A(h) proportional to
p(wiw”).

— So on so forth.

Katz’'s Back-off Scheme

* Recursively build from unigram - bi-gram - tri-gram ...

» Use Good-Turing method to discount low frequency ev ents
ONLY, say r<k (k=6). No discounting for high freque  ncy events,
say, r>k.

» The total discounted probability mass is re-distrib uted to all
unseen events proportional to their probabilities ¢ alculated from
1 level lower n-gram LM.

r/N(h) if r>k,r=N(hw)
Praz (W H) =4 d, T/ N(h) if 0<r<k
a, Ch(w|h) if r=0
I _(k+DN,, 1= > Peay (W)
where ¢ _r N d q. = wr>0
kDN, "TTI- S p(wlh)
N1 wir>0

Dept. of CS, York Univ.
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Back-off Scheme(3):
Other Simple Discounting methods
» Absolute discounting: all non-zero frequencies are d iscounted by a

small constant, the total discounted mass is unifor mly distributed
over unseen events:

| (r=90)/N(h) if r>0
"1V 1-N)S/N,N(h)  otherwise

pabs

» Linear discounting: all non-zero frequencies are sca led by a

constant slightly less than one, uniformly re-distr ibute.
_|[@=a)@/N(h) if r>0
Pa =1 cr/ N N(h) otherwise

Interpolation Scheme

» Simple linear interpolation of several ML n-grams:

p(wlww') =& [p™ (W) + &, Lp" (W] w') + & ™ (W] ww')
with 0<e,,e,,e,<lande, +e, +e, =1
» General linear interpolation: weights are a functio n of history.

(I =34 (1) Cp (Wl

K
with 0< A(h)<1 and Z/ii (h)=1.
— Weights must be tied based on Ie=1c1uivalence classeso fh.
» How to estimate interpolation weights?

— Held-out method: split training data to two parts; one for LMs and
the other for weights.

— Cross-Validation: split datainto N parts; estimate LM'’s from any
(N-1) parts, estimate weight from the other; rotate N times;
average all estimates for the final results.

Dept. of CS, York Univ. 18
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Interpolation Weights Estimation

» All interpolation weights are estimated from the he Id-out training
sample Wh={w1,wz2,...,wt} by means of the EM algorithm.

» For simple interpolation:

/]_(n+l) — ii /]i(n) Epi (Wt)
| T 5 A7 o (w)
i

» For general linear interpolation:

Jon (ny = L - S0 = ) T (6) Cpy (w 1)

T = ) AP (h) Do (w, |h)

o(x) =

where 0 x#0
1 x=0

Class-based N-Gram LM

» To reduce LM parameters, group words into classes:
— Based on morphology, e.g. part-of-speech,etc.
— Based on semantic meaning: city name, time, number, etc.
— There exist many automatic word clustering algorith ms.

* In class-based n-gram LM, each Markov stateisawo  rd class,
conditional probabilities all depend on word classe s rather
than individual words.

* Greatly reduce parameter # -> require less training data.
» Class-based trigram model:

p(w [w_,W ;) =Priw |C(w)) Cp(C(w ) [C(w_,)C(W_,))

where C(wi) means the class wi belongs to.

Dept. of CS, York Univ.
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N-gram LM Toolkit

* No need to write @ |
your own program P
to do all above- P e —

mentioned n-gram k
LM computation.

* A free Statistical
Language Model
Toolkit is available:

Perplexity

http://mi.enqg.cam.ac.uk/~prc14/toolkit.html

Other Issues

* LM Interpolation
— Task-independent (TI) text data:
» Purchasing, Web Crawling, etc.
— Task-dependent (TD) text data: collecting.

* Rapid LM Adaptation
— Topic adaptation

* Discriminative Training of LM
— Convex Optimization: Linear programming (LP)
— Discriminative Adaptation:
 Constrained optimization - LP

Dept. of CS, York Univ.
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