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Model Parameter Estimation

• Maximum Likelihood (ML) Estimation:
– ML method: most popular model estimation
– EM (Expected-Maximization) algorithm
– Examples:

• Univariate Gaussian distribution
• Multivariate Gaussian distribution
• Multinomial distribution
• Gaussian Mixture model
• Markov chain model: n-gram for language modeling
• Hidden Markov Model (HMM)

• Discriminative Training
– Maximum Mutual Information (MMI) 
– Minimum Classification Error (MCE) 

• Bayesian Model Estimation: Bayesian theory
• MDI (Minimum Discrimination Information) 

alternative model estimation method
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Discriminative Training(I): Maximum Mutual Information Estimation (1)
• The model is viewed as a noisy data generation chan nel

class id ω� observation feature X.
• Determine model parameters to maximize mutual inform ation 

between ω and X. (close relation between ω and X)λ1λ2λN

noisy data  generation channel
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Discriminative Training(I): Maximum Mutual Information Estimation (2)
• Difficulty: joint distribution p(ω,X) is unknown.
• Solution: collect a representative training set (X1, ω1), (X2, ω2), …, 

(XT, ωT) to approximate the joint distribution.

• Optimization: 
– Iterative gradient-ascent method
– Growth-transformation method
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Discriminative Training(II): MinimumClassification Error Estimation (1)
• In a N-class pattern classification problem, given a set of training 

data, D={ (X1, ω1), (X2, ω2), …, (XT, ωT)}, estimate model parameters 
for all class to minimize total classification error s in D.

– MCE: minimize empirical classification errors
• Objective function � total classification errors in D

– For each training data, (Xt, ωt), define misclassification 
measure:

or

if d(X t, ωt)>0, incorrect classification for X t� 1 error
if d(X t, ωt)<=0, correct classification for X t� 0 error
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Discriminative Training(II): MinimumClassification Error Estimation (2)
• Approximate d(Xt, ωt) by a differentiable function:

or
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Discriminative Training(II): MinimumClassification Error Estimation (3)
• Error count for one data, (Xt, ωt),  is 

H(d(X t, ωt)), where H(.) is step function.

• Total errors in training set:

• Step function is not differentiable, approximated b y a sigmoid 
function � smoothed total errors in training set.
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a>0 is a parameter to control its shape.Discriminative Training(II): MinimumClassification Error Estimation (3)
• MCE estimation of model parameters for all classes:

• Optimization: no simple solution is available
– Iterative gradient descent method.

– GPD (generalized probabilistic descent) method.
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The MCE/GPD Method
• Find initial model parameters, e.g., ML estimates

• Calculate gradient of the objective function

• Calculate the value of the gradient based on the 
current model parameters

• Update model parameters

• Iterate until convergence 
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How to calculate gradient?
• The key issue in MCE/GPD is how to set a proper 

step size experimentally.
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Overtraining (Overfitting)
• Low classification error rate in training set does not always 

lead to a low error rate in a new test set due to o vertraining.

Measuring Performance of MCE
• When to converge: monitor three quantities in the M CE/GPD

– The objective function
– Error rate in training set
– Error rate in test set
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Bayesian Theory
• Bayesian methods view model parameters as random va riables 

having some known prior distribution. (Prior specif ication)
– Specify prior distribution of model parameters θ as p(θ).

• Training data D allow us to convert the prior distribution into a 
posteriori distribution. (Bayesian learning)

• We infer or decide everything solely based on the p osteriori 
distribution. (Bayesian inference)

– Model estimation: the MAP (maximum a posteriori) es timation
– Pattern Classification: Bayesian classification
– Sequential (on-line, incremental) learning
– Others: prediction, model selection, etc.
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The MAP estimation of model parameters
• Do a point estimate about θ based on the posteriori distribution

• Then θMAP is treated as estimate of model parameters (just li ke ML 
estimate). Sometimes need the EM algorithm to deriv e it.

• MAP estimation optimally combine prior knowledge wi th new 
information provided by data.

• MAP estimation is used in speech recognition to ada pt speech 
models to a particular speaker to cope with various  accents

– From a generic speaker-independent speech model � prior
– Collect a small set of data from a particular speak er
– The MAP estimate give a speaker-adaptive model whic h suit 

better to this particular speaker.
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Bayesian Classification
• Assume we have N classes, ωi (i=1,2,…,N), each class has a class-

conditional pdf p(X|ωi,θi) with parameters θi. 

• The prior knowledge about θi is included in a prior p(θi).
• For each class ωi, we have a training data set Di.

• Problem: classify an unknown data Y into one of the classes.
• The Bayesian classification is done as:
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Recursive Bayes Learning(Sequential Bayesian Learning) 
• Bayesian theory provides a framework for on-line learning (a.k.a. 

incremental learning , adaptive learning ). 
• When we observe training data one by one, we can dy namically 

adjust the model to learn incrementally from data.
• Assume we observe training data set D={X1,X2,…,Xn} one by one,

)|(),|()|()( )(
211

21 nXX DpXXpXpp θθθθ LL→→

likelihoodpriorposteriori ×∝Learning Rule:

Knowledge about 
Model at this stage

Knowledge about 
Model at this stage

Knowledge about 
Model at this stage

Knowledge about 
Model at this stageHow to specify priors

• Noninformative priors
– In case we don’t have enough prior knowledge, just 

use a flat prior at the beginning.

• Conjugate priors : for computation convenience
– For some models, if their probability functions are  a 

reproducing density, we can choose the prior as a 
special form (called conjugate prior ), so that after 
Bayesian leaning the posterior will have the exact 
same function form as the prior except the all 
parameters are updated. 

– Not every model has conjugate prior.
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Conjugate Prior
• For a univariate Gaussian model with only unknown me an:

• If we choose the prior as a Gaussian distribution ( Gaussian’s 
conjugate prior is Gaussian)

• After observing a new data x1, the posterior will still be Gaussian:

]
2

)(
exp[

2

1
),|()|(

2

2

2

2

σ
µ

πσ
σµω −−== x

xNxp i

]
2

)(
exp[

2

1
),|()( 2

0

2
0

2
0

2
00 σ

µµ
πσ

σµµµ −−== Np

22
0

22
02

1

022
0

2

122
0

2
0

1

2
1

2
1

2
1

2
111

        where

]
2

)(
exp[

2

1
),|()|(

σσ
σσσ

µ
σσ

σ
σσ

σµ

σ
µµ

πσ
σµµµ

+
=

+
+

+
=

−−==

x

Nxp

The sequential  MAP Estimate of Gaussian
• For univariate Gaussian with unknown mean, the 

MAP estimate of its mean after observing x1:

• After observing next data x2:
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Pattern classification based onDiscriminant Functions (I)
• Instead of designing a classifier based on probabil ity distribution of 

data, we can build an ad-hoc classifier based on so me discriminant
functions to model class boundary info directly.

• Classifier based on discriminant functions:

– For N classes, we define a set of discriminant functions g i(X)
(i=1,2,…,N), one for each class.

– For an unknown pattern with feature vector Y, the classifier 
makes the decision as

– Each discriminant function g i(X) has a pre-defined function form 
and a set of unknown parameters θi, rewrite it as g i(X ; θi ).

– Similarly θi (i=1,2,…,N) need to be estimated from some training 
data.

)(maxarg Yg i
i

Y =ω

Pattern classification based onDiscriminant Functions (II)
• Some common forms for discriminant funtions:

– Linear discriminant function:

– Quadratic discrimiant function: (2 nd order)

– Polynomial discriminant function: (N-th order)
– Neural network : (arbitrary nonlinear functions)

– Optimal MAP classifier is a special case when choos ing 
discriminant functions as class posterior probabilit ies.

• Unknown parameters of discriminant functions are est imated by 
some gradient descent method to minimize an objectiv e function, 
such as empirical classification errors in training  set, etc.

0)( wXwXg t +⋅=
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Pattern Verification
• For an unknown pattern/object P, we can observe/mea sure some 

features X of the pattern P.

• Based on the features X, we need to answer a binary  question 
(Yes/No) regarding P.

• Example of pattern verification: speaker id verific ation
– A user claims its id as abc ;

– System prompts and records some voice X from the user.
– Based on the voice X, system makes a decision whether the 

user is abc or not. (voiceprints for security)
• Pattern verification can be viewed as a 2-class cla ssification 

problem; but better not to do so.
• A proper view is to cast it as a statistical hypothesis testing

problem.

Statistical Hypothesis Testing(I)
• In statistics, we normally need test a hypothesis b ased on some 

observation data. The problem is formulated as a te st between two 
complementary hypotheses:

– H0: null hypothesis
– H1: alternative hypothesis 

• Example: Given                           is a rando m sample from a Gaussian 
distribution               , where variance       i s known. We need to 
verify whether its mean is a given value or not. Th us we do 
hypothesis testing between:

– against

• In Hypothesis testing, we have two types of errors:
– Type I:  false rejection error; falsely reject H0 when H0 is true.

– Type II: false alarm error; falsely accept H0 when H1 is true.
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Statistical Hypothesis Testing(II)
• In essence, a hypothesis test will partition the ob servation space into 

two disjoined parts, CC and UU. When an observation X lies in the 
region CC, we reject H0; when X in U, we accept H0. CC is called critical 
region (or rejection region).

• So type I error probability (also called significan t level) of a test:

• Type II error probability of a test:

where                                    is defined  as the power of the test.

• At the significant level α, the most powerful test is defined as the one 
which maximizes the power γ (in turn minimizes Type II error β).

)|Pr()Pr( 01 HCXE ∈==α

γβ −=∈−=∈== 1)|Pr(1)|Pr()Pr( 112 HCXHUXE

)|Pr( 1HCX ∈=γ

Statistical Hypothesis Testing(III)
• A hypothesis can be simple or composite :

– Simple hypothesis: completely specifies the 
distribution, e.g.

– Composite hypothesis: involves a region or 
interval, e.g.

00 : θθ =H

0101 :or          : θθθθ >≠ HH
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Statistical Hypothesis Testing(IV)
•• NeymanNeyman Pearson TheoremPearson Theorem : 

– For a simple H0 and simple H1, if the distributions under both H0

and H1 are known , i.e., f0(X|θ0) and f1(X|θ1). Given any i.i.d. 
observation data D={X1,…,XT}, for any significance level α, the 
most powerful test is formulated as:
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The threshold     is adjusted to make the significa nce of the test to be α.
If the both pdf’s have the same form, the only diffe rence is parameters, 
The ratio is also called likelihood ratio (LR).

τ

Statistical Hypothesis Testing(V)
• The Neyman Pearson Theorem provides a method of cons tructing 

the most powerful tests for simple hypotheses when the 
distribution of the observation is known.

• How about if the hypothesis is composite 
• Likelihood Ratio Test (LRT): assume the distributio ns are known 

except some parameters,

– LRT is not always uniformly most powerful but has s ome 
desirable properties.

– Distribution of T is complicated, p(T); only computable  
asymptotically. 

– Widely used for many practical applications.
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Pattern Verification as Statistical Hypothesis Testing
• Based on the question to be answered, design two co mplementary 

hypotheses, 

– The null hypothesis H0: corresponds to YES of the answer.
– The alternative hypothesis H1: corresponds to NO.

• The feature distribution under either H0 or H1 is unknown.
• Training: apply the same idea of data modeling: 

– Choose proper statistical model for either H0 or H1. 
– The model parameters are estimated from some traini ng 

samples collected from H0 or H1.
• Decision: use likelihood ratio test (LRT) to make d ecision

τ
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where f0(.) is the model chosen for H0, f1(.) for H1.                    are 
parameters estimated from data.  
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Pattern Verification
• More generally, T can be any test statistics from observation data.

– LRT is a special case for T.

• Given a test statistic T, we can’t minimize both type I error and type 
II error at the same time.

• Improve verification by choosing different test sta tistics
– Distributions of T: less overlap � better separation � better 

verification accuracy (smaller type I and type II e rrors)

• The key in designing a pattern verification is to f ind a test statistics 
T and its corresponding parameters so that the overla p between 
the two distributions is minimized. 

• What does it mean by a better verification accuracy ?
– Type I error (false rejection error)
– Type II error (false alarm error)Evaluating Verification (I)

Total Error

0 τThreshold

Type I Error

Type II Error

Equal Error

Equal 
Error
(EE)

Minimum Total 
Error 

dTHTg )|( 1∫∞
=

τ
β

βα + dTHTg )|( 0∫ ∞−
=

τ
α
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Evaluating Verification (II): ROC curve (Receiver Operating characteristic)
False Alarm Error (Type II)

False 
Rejection 
Error (Type I)

100% 

100% 

0% 

A Not-so-good 
System

A Better System

Equal Error 
Performance

Speaker Verification (SV)
Open Sesame

What is your 
secret pass-
phrase ?

What is your account number?

530-203-1230-2390

Speaker
Verification

Server

Call Center
System

Customer
Voice Model
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Example(I): Speaker Verification(1)
• Speaker verification: verify user ID based on the v oice. The user 

first claims a user ID, the system records some voi ce sample from 
the user and try to answer YES/NO to the question “I s the person 
the claimed user or not?”.

• Speaker verification: if a person claims to be the user A,  
– Observation: a segment of voice � feature vectors X

– H0: X is from the claimed user A.
– H1: X is NOT from the claimed user A.

• Data modeling: commonly use GMM for both H0 and H1. 
– Mixture number depends on the amount of available d ata, 

usually from 16 to 256.
– For simplicity or estimation reliability, each Gaus sian mixand

is assumed to be diagonal. 

– For each known user aa registered in the system, we must 
estimate two GMM’s and         for its H0 and H1. 

aΛ aΛExample(I): Speaker Verification(2)
• Model estimation:

– For         in H0: collect some training samples from the 
known user and train it based on ML criterion.
(how to do ML estimation for GMM?)

– How about        in H1 ?
• Anti-speaker model: Train it based on training data  

collected for all other known users (except a). (ML 
estimation)

• Training it based on training data from some “cohort ”
speakers who are confusing with the current speaker  a.  
(how to choose cohort speaker?)

• For simplicity, use the same background model       for 
all known users in the system.        is trained ba sed on 
all users’ training data.

aΛ

aΛ

Λ
Λ
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Example(I): Speaker Verification(3)
• Verification Decision:

– A new user claim id as AA, based on the recorded voice feature Y:

Speaker 
Scoring

Speaker
ModelInput Speech Output DecisionSpeakerClaimed ID

Decision
Making

Speaker
Threshold

τ>
Λ
Λ==

)|(

)|(

)|(

)|(

1

0

A

A

Yp

Yp

HYp

HYp
TIf , accept the user as A; otherwise,

reject the user.

τThe decision threshold        is determined empiric ally in practice.Example(II): reject outliers in pattern classification
• How to reject outliers (belonging to none of known classes) in 

pattern classification ?

– In speech recognition, how to detect unknown words,  called 
out-of vocabulary (OOV ) words used by users??

• Solution 1:  treat outliers as another class � (N+1)-class patterns
• Solution 2: 

– Stage 1: do N-class pattern classification, find th e best match, 
say class k;

– Stage 2: verify the decision made in stage 1.
– Stage 2 is a pattern verification problem:

• H0: the pattern X really comes from class k
• H1: the pattern X does NOT come from class k

reject otherwise decision; accept the  
)|Pr(

)|Pr(

1

0 ζ>=Λ
HX

HX
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Weighted Finite State Transducer (WFST)
• Efficient algorithms for various operations.

• Weights

– Handle uncertainty in text, handwritten text, speec h, 
image, biological sequences.

• Applications:

– Text: pattern-matching, indexation, compression.

– Speech: speech recognition, speech synthesis.

– Image: image compression, filters.Weighted Finite State Transducer (WFST)
• Transducers:

• Automata/Acceptors
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WFST Definition (I)
• A path π:  a sequence of transitions.

– Original and destination states
– Input and output labels

• A semiring ≡ a ring without negation
– Number set K.
– Sum       and Product        .

• Semiring examples:
– Probability semiring: R, +, X. R, +, X. 
– Tropical semiring: R, min, +.R, min, +.

⊕ ⊗

WFST Definition (II)
• General Definitions

– Alphabets: input ΣΣ, output ∆∆
– States: QQ, initial II, final FF.

– Transitions:  E → Q * (ΣΣ U U єє) * () * (∆∆ U U єє) * K * Q) * K * Q

– Initial/Final weights:  λλ = = I I →→ K,  K,  ρρ = F = F →→ KK

• WFST T = (T = (ΣΣ, Q, I, F, E, , Q, I, F, E, λλ, , ρρ):):

[ ]
. and  allfor 

])[(][])[(),(

**

),,,(

∆∈Σ∈

⊗⊗⊕=
∈

yx

nwpyxT
FyxIP

πρππλ
π
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WFST Operations
• Sum

• Product

• Closure

• Reversal

• Composition

• Determinization

• Weight pushing

• Minimization

WFST Sum
• Sum: [ ] [ ] [ ] ),(),(),( 2121 yxTyxTyxTT ⊕=⊕
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WFST Product
• Product: [ ] [ ] [ ] ),(),(),( 222111

,
21

2121

yxTyxTyxTT
yyyxxx

⊗⊕=⊗
==

WFST Closure
• Closure: [ ] [ ] ),(),(

0

* yxTyxT n

n

∞

=
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WFST Reversal
• Reversal:  [ ] [ ] )~,~(),(

~
yxTyxT =

WFST Composition
• Composition: [ ] [ ] ),]([),(),( 2121 yzTzxTyxTT

z
⊗⊕=o
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WFST Composition Algorithm

WFST Determinization
• Deterministic WFST: no common input label for all o utgoing 

transitions from any state. 

• Determinimization:  determinizable WFST � deterministic W.
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WFST Determinization Algorithm

WFST Weights Pushing
• Weight pushing: re-distribute all weights along pat hs. 
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WFST Minimization
• Minimize number of states and transitions of a deter ministic WFST.

WFST Applications
• String search/match

• String conversion/ language normalization

• Representing Language models and probabilistic 
grammar

• Sentence generation
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Example I: keyword detection

Example I: keyword detection: tabular search
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Example I: keyword detection: Automata Search
Example I: keyword detection: Deterministic  Search
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Example I: keyword detection: Minimal Deterministic  Search

Example II:Context-dependent Phones
• Monophone vs. Triphone

• Sentence:  How do they turn out later ?

• Monophones:   h aw d uh dh eh t er n aw t l ai t er

• Triphones: 

<s>-h+aw h-aw+d aw-d+uh d-uh+dh uh-dh+eh …

• WFST: mapping context-independent monophones to 
context-dependent triphones



Prepared by Prof. Hui Jiang 
(COSC6328)

2/19/2008

Dept. of CS, York Univ. 31

Example II:Context-dependent Phones
• A simple example with only two symbols x,y:

Example III:Representing Language model
• Representing language models as WFST

• Representing HMMs as WFST

• Representing overall grammar as WFST 

• Come back later …


