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COSC6328.3  Speech & Language Processing
Prof. Hui Jiang

Department of Computer Science
York University

No.2 Math Background
COSC6328 Course Outline: “Speech & Language Processing”

• Part I:  Introduction (2 weeks)
– Overview of speech and language technologies
– Basic Knowledge of speech and spoken language
– Math foundations: review

• Part II: Basic theory of pattern classification/ver ification (4 weeks)
– Bayesian decision rule
– Model estimation methods
– Some statistical models: Gaussian, GMM, Markov Chai n, HMM 

• Part III: case studies  (4 weeks) 
– Automatic speech recognition
– Spoken language processing

• Part IV:   Advanced topics – YOUR PARTICIPATION !!  (2 weeks)
– Choose a recently published article in speech and l anguage area
– Self-study and oral presentation in class
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Pattern Classification and Pattern classification
• Many applications fall into the categories: pattern  classification 

or pattern verification.
• Pattern classification: based on some observed info rmation of an

input, classify it into one of the finite number of  classes. 
– Speech recognition

– Speaker identification (recognition)
– Text categorization

– Language understanding
– etc.

• Pattern Verification:
– Speaker verification

– Audio/video segmentation
– etc. Major Paradigm Shift:Rule/Knowledge-Based � Data-Driven

• Rule/Knowledge-based method:
– Experts analyze some samples to gain knowledge.

– Knowledge representation: rule-based.
– Inference based on rules: parsing, etc.

• Data-driven statistical approach:
– Collect a mass amount of representative data.

– Manually select a statistical model for the underly ing data.
– Model estimation from the data set automatically.

– Make decision based on the estimated models.
• Recently, data-driven statistical approach has achi eved great 

successes in many many real-world applications:
– Automatic speech recognition (ASR)

– Statistical machine translation
– Computational linguistics
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Probability & Statistics: review
• Probability
• Random variables/vectors: discrete vs. continuous
• Probability distribution of random variables: pmf, pdf, cdf
• Mean, variance, moments
• Conditional probability & Bayes’ theorem: independen ce
• Joint Probability distribution: marginal distributi on
• Some useful distributions:

– Multinomial, Gaussian, Uniform, Dirichlet, Gamma, e tc.
• Information Theory: entropy, mutual information, in formation 

channel, KL divergence, etc.
• CART (Classification and Regression Tree)
• Function Optimization
• Linear Algebra: matrix manipulation
• Others Probability Definition
• Sample Space: 

– collection of all possible observed outcomes 

• An Event  A:                 including null event  
• -field: set of all possible events

• Probability Function (Measurable) 
– Meet three axioms:

1.
2. If                then 

3. If                      then
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Some Examples
• Example I: experiment to toss a 6-face dice once:

– Sample space:  {1,2,3,4,5,6}
– Events: X={even number}, Y={odd number}, Z={larger than 3}.

– -field: set of all possible events
– Probability Function (Measurable) � relative frequency

• Example II: 
– Sample Space: 

= {x: x is the height of a person on earth}
– Events: 

• A={x: x>200cm}
• B={x: 120cm<x<130cm}

– -field: set of all possible events
– Probability Function (Measurable) 
– measuring A, B:

σ

earth  in the persons of # total

 200cmover height   whosepersons of #
)Pr( =A

σ

cΩ
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Conditional Events
• Prior Probability

– probability of an event before considering any addi tional 
knowledge or observing any other events (or samples ): P(A)

• Joint probability of multiple events: probability o f several events 
occurring concurrently, e.g.,                     .

• Conditional Probability: probability of one event (A) after another 
event (B) has occurred, e.g., P(A|B).

– updated probability of an event given some knowledg e about 
another event. Definition is:

• Prove the Addition Rule:

• From Multiplication Rule, show Chain Rule:
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Bayes’ Theorem
• Swapping dependency between events

– calculate P(B|A) in terms of P(A|B) that is available and more relevant in 
some cases

• In some cases, not important to compute P(A)

• Another Form of Bayes’ Theorem 
– If a set B partitions A, i.e.
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• A random variable ( R.V.) is a variable which could take various 
values with different probabilities. 

• A R.V. is said to be discrete if its set of possibl e values is a discrete 
set. The probability mass function (p.m.f.) is defined:

• A univariate discrete R.V., one p.m.f. example:

• A R.V. is said to be continuous if its set of possi ble values is an 
entire interval of numbers. Each continuous R.V. ha s a distribution 
function: for a R.V. X, its cumulative distribution function (c.d.f.) is 
defined as: 

• A probability density function (p.d.f.) of a continuous R.V. is a 
function that for any two number a, b (a<b),
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Random Variable
• Expectation of random variables and its functions

• Mean and Variance

• r-th moment (r=1,2,3,4,…)

• Random vector is a vector whose elements are all ra ndom 
variables.
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Joint and Marginal Distribution
• Joint Event and Product Space of two (or more) R.V.’s

– e.g. E=(A,B)=(200cm<height, live in Canada)
• Joint p.m.f of two discrete random variables X, Y:

• Joint p.d.f. (c.d.f.) of two continuous random vari ables X, Y:

• Marginal p.m.f. and p.d.f.:
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Conditional Distribution of RVs
• Conditional p.m.f. or p.d.f. for discrete or contin uous R.V.’s 

• Conditional Expectation

• Conditional Mean:

• Independence:

• Covariance between two R.V.’s

• Uncorrelated R.V.’s:
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• Binomial Distribution: B(R=r; n, p)

– probability of r successes in n trials with a success rate p

– For binomial distribution:

• Multinomial Distribution

– For multinomial distribution
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Plot of Probability Mass Function
• Binomial distribution: n=3, p=0.7P(R=r) 0 r1 2 30.027 0.189 0.441 0.343 nrpp
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Some Useful Distributions (II)
• Poisson Distribution with mean (and var) as

• Beta distribution with parameters

– For Beta distribution:  
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Some Useful Distributions (III)
• Dirichlet distribution: a random vector (X1,…,Xk) has a Dirichlet

distribution with parameter vector (α1,…, αk) (for all αk>0) if

– For Dirichlet distribution: 
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Some Useful Distributions (IV)
• Uniform Distribution: U(X=x; a, b)

• Normal (or Gaussian ) Distribution: Bell Curve

• Show
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Typical Normal Distributions
)(1 xp )(0 xp

10 σσ <

z

Standard deviation (s.d. or spread):

1σ
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01 σσ >Some Useful Distributions (V)
• Gamma Distribution: a random variable X has a gamma  

distribution with parameters α and β (α>0, β>0) if 
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Some Useful Distributions (VI)
• 2-D Uniform Distribution: 

• Multivariate Normal Distribution

• Show

• Can you write down the 2-D distribution form, compu te 
Cov(X,Y), and derive the marginal and conditional densitie s, 
f(y) and f(x|y) ?
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Gaussian Mixture Distribution
• Gaussian Mixture distribution:

• In theory, MG(x) matches any probabilistic density up to second 
order statistics (mean and variance)

• Approximating multi-modal densities which is more l ikely to 
describe real-world data

• Multinomial Mixture Model for discrete data.

xDistribution of speech 
features (MFCC) over 

a large population
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Parametric Distributions
• Parametric Distribution

– r.v. described by a small number of parameters in p df/pmf
– e.g. Gaussian (2), Binomial (2), 2-d uniform (4)
– many useful and known parametric distributions
– Probability distribution of independently and ident ically distributed 

(i.i.d.) samples from such distributions can be eas ily derived.
• Non-Parametric Distribution

– usually described by the data samples themselves

– Sample distribution & histogram (pmf / bar chart): counting samples 
in equally-sized bins and plot them

• Statistic : Function of random samples
– sample mean and variance, maximum/minimum, etc. 

• Sufficient Statistics
– minimum number of statistics to remember all sample s

– for Gaussian r.v. need count, sample mean and varia nce
– for some r.v.’s, no sufficient statistics, need all  samplesFunction of Random Variables
• Function of r.v.’s is also a r.v.

– e.g. X=U+V+W, if we know f(u,v,w) how about f(x) ?
– e.g. sum of dots on two dices

• Problem easier for known and popular r.v.’s
– e.g. if U and V are independent Gaussian, so is X=U +V

– e.g. if W and Z are independent uniform, is Y=W+Z u niform?
• Sample mean of n independent samples of Gaussian r.v.’s is also 

Gaussian, show that:

• Average of two independent samples of uniform r.v.’ s form a 
triangular shape p.d.f. 

• How about n samples and n is very large?
– Law of large numbers – asymptotic Normal p.d.f. !!
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Transformation of Random Variables
• Given random vectors

• We know 
• Given p.d.f. of                                         how to derive p.d.f. for     ?

• If the transformation is one-to-one mapping, we can  derive an 
inverse transformation as:

• We define the Jacobian matrix as:

• We have
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• Probability Theory Tools
– fuzzy description of phenomena
– statistical modeling of data for inference

• Statistical Inference Problems
– Classification : choose one of the stochastic sources
– Decision and Hypothesis Testing : comparing two stochastic 

assumptions and decide on how to accept one of them
– Estimation : given random samples from an assumed distribution , find 

“good” guess for the parameters
– Prediction : from past samples, predict next set of samples
– Regression (Modeling ): fit a model to a given set of samples

• Parametric vs. Non-parametric Distributions
– parsimonious or extensive description (model vs. da ta)
– Sampling, data storage and sufficient statistics

• Real-World Data vs. Ideal Distributions
– “there is no perfect goodness-of-fit”
– ideal distributions are used for approximation
– sum of random variables and Law of Large Numbers
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Information Theory & Shannon
• Claude E. Shannon (1916-2001, from Bell Labs to MIT ): Father of 

Information Theory, Modern Communication Theory …
• Information of an event: 
• Entropy (Self-Information) – in b it, amount of info in a r.v.

– Entropy represents average amount of information in  a r.v., in other 
words, the average uncertainty related to a r.v.

• Contributions of Shannon:
– Study of English – Cryptography Theory, Twenty Questions game, 

Binary Tree and Entropy, etc.
– Concept of Code – Digital Communication, Switching a nd Digital 

Computation (optimal Boolean function realization w ith digital relays 
and switches)

– Channel Capacity – Source and Channel Encoding, Erro r-Free 
Transmission over Noisy Channel, etc.

– C. E. Shannon, “A Mathematical Theory of Communicati on”, Parts 1 
& 2, Bell System Technical Journal , 1948.

– He should have won a Nobel Prize for his contributi ons (1948 is also 
the year of the discovery of transistor at Bell Lab s)
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Joint and Conditional Entropy
• Joint entropy: average uncertainty about two r.v.’s ; average amount of 
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• Conditional entropy: average amount of information (uncertainty)
of Y after X is known.

• Chain Rule for Entropy :

• Independence:
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Mutual Information
• Definition : 
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• Intuitive meaning of mutual information: given two r.v.’s, X and Y , 
mutual information I(X,Y) represents average information about Y
(or X) we can get from X (or Y).  

• Maximization of I(X,Y) is equivalent to establishing a closer 
relationship between X and Y, i.e., obtaining a low-noise 
information channel between X and Y.
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Shannon’s Noisy Channel Model
• Shannon’s Noisy Channel Model

• A Binary Symmetric Noisy Channel (Modem Application)

• Channel Capacity 

• p(X) & p(Y|X) can be given by design or by nature.

Encoder
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Channel
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Mutual Information: Example (I)
• In Shannon’s noisy channel model:  assume X={0,1} Y ={0,1}

X is equiprobable Pr(X=0)=Pr(X=1)=0.5  � H(X) = 1 bit
joint distribution  p(X,Y)=p(X) p(Y|X)

– Case I : p=0.0 (noiseless)

– Case II: p=0.1 (weak noise)

– Case III: p=0.4 (strong noise)
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Mutual Information Example(II): Identifying keywords in Text Categorization
Sports Politics Economy othersNewsNews

ArchiveArchive

3,245 documents 7,254 documents 6,785 documents 1,134 documents

• All documents contain 10,345 distinct words in tota l (vocabulary)
• How to identify which words are more informative wi th respect to any one 

topic?  (keywords of a topic)
• Use Mutual information as a criterion to calculate correlation of each word 

with any one topic.
• Example: word “ scorescore ” vs. topic “ sportssports ”

– Define two binary random variables:
X: a document’s topic is “sports” or not. {0,1}

Y: a document contains “score” or not. {0,1}
– I(X,Y) � relationship between word “ scorescore ” vs. topic “ sportssports ”
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Identifying keywords in Text Categorization
• Count documents in archive to calculate p(X,Y)

• How about word “what” – topic “sports”

• “score” is a keyword for the topic “sports”; “what” is no t;

archive in the docs of # total

score"" contains and sports"" c with topidocs of #
)1,1( === YXp

archive in the docs of # total
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Identifying keywords in Text Categorization
• For topic Ti, choose its keywords (most relevant)

– For each word Wj in vocabulary, calculate I(Wj,Ti) ;
– Sort all words based on I(Wj,Ti) ;

– Keywords w.r.t. topic Ti :  top N words in the sorted list.

• Keywords for the whole text categorization task:
– For each word Wj in vocabulary, calculate

– Sort all words based on I(Wj) or I’(W j).

– Top M words in the sorted list.
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Bayes’ Theorem Applications
• Bayes’ Theorem for Channel Decoding
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Kullback-Leibler (KL) Divergence
• Distance measure between two p.m.f.’s (relative ent ropy)

– D(p||q)>=0 and D(p||q)=0 if only if q=p

• KL Divergence is a measure of the average distance between 
two probability distributions.  

• Mutual information is a measure of independence

• Conditional Relative Entropy
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Classification: Decision Trees
Decision Tree classification: interpretability
Example: fruits classification based on features
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Classification and Regression Tree (CART)
• Binary tree for classification: each node is attach ed a YES/NO 

question; Traverse the tree based on the answers to  questions; each 
leaf node represents a class.

• CART: how to automatically grow such a classificati on tree on a 
data-driven basis.

– Prepare a finite set of all possible questions.
– For each node, choose the best question to split th e node.   

“best” is in sense of maximum entropy reduction betwe en 
“before splitting” and “after splitting”.

• Entropy � uncertainty or chaos in data; 
Small entropy � more homogeneous the data is; less impure
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The CART algorithm
1) Question set: create a set of all possible YES/NO  questions.

2) Initialization: initialize a tree with only one nod e which consists 
of all available training samples.

3) Splitting nodes: for each node in the tree, find the best splitting 
question which gives the greatest entropy reduction .

4) Go to step 3) to recursively split all its childr en nodes unless it 
meets certain stop criterion, e.g., entropy reducti on is below a
pre-set threshold OR data in the node is already to o little.

CART method is widely used in machine learning and data mining:

1. Handle categorical data in data mining;
2. Acoustic modeling (allophone modeling) in speech recognition;
3. Letter-to-sound conversion;
4. Automatic rule generation
5. etc.
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Optimization of objective function (I)
• Optimization:

– Set up an objective function  Q() ;
– Maximize or minimize the objective function with resp ect to 

the variable(s) in question.
• Maximization (minimization) of a function:

– Differential calculus;
• Unconstrained maximization/minimization

– Lagrange Optimization: 

• Constrained maximization/minimization
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Optimization of objective function (II)

• Gradient descent (ascent) method:

• Other general optimization algorithms:
– Linear Programming
– Semi-definite Programming
– Quadratic programming (nonlinear optimization) 

• EM (Expectation-Maximization) algorithm
• Growth-Transformation method
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Other Relevant Topics
• Statistical Hypothesis Testing

– Likelihood ratio testing

• Linear Algebra:
– Vector, Matrix;
– Determinant and matrix inversion;
– Derivatives of matrices;
– etc.

• A good on-line matrix reference manual
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/
http://www.psi.toronto.edu/matrix/matrix.html


