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Prof. Hui Jiang
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COSC6328 Course Outline:
“Speech & Language Processing”
» Part I: Introduction (2 weeks)
— Overview of speech and language technologies
— Basic Knowledge of speech and spoken language
— Math|foundations: review
Part II: Basic theory of pattern classification/ver ification (4 weeks)
— Bayesian decision rule
— Model estimation methods
— Some statistical models: Gaussian, GMM, Markov Chai| n, HMM
» Part lll: case studies (4 weeks)
— Automatic speech recognition
— Spoken language processing
» PartIV: Advanced topics — YOUR PARTICIPATION I (2 weeks)
— Choose a recently published article in speech and|  anguage area
— Self-study and oral presentation in class
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o Pattern

o Pattern

—Pattern classification—

* Many applications fall into the categories: pattern classification
or pattern verification.

classification: based on some observed info rmation of an
input, classify it into one of the finite number of classes.

— Speech recognition

— Speaker identification (recognition)
— Text categorization

— Lahguage understanding

— eta.

— Speaker verification
— Audio/video segmentation
— eta.

Pattern Classifi_ca_itiop and

Verification:

Major Paradigm Shift:

Rule/Knowledge-Based & Data-Driven

— Know
— Infere

— Many
— Mode
— Make
* Recently,

— Autor
— Statig

* Rule/Knowledge-based method:
— Experts analyze some samples to gain knowledge.

» Data-driven statistical approach:
— Collect a mass amount of representative data.
ally select a statistical model for the underly  ing data.

ledge representation: rule-based.
nce based on rules: parsing, etc.

| estimation from the data set automatically.
decision based on the estimated models.

data-driven statistical approach has achi eved |great
successes in many many real-world applications:

natic speech recognition (ASR)
tical machine translation

— Comg
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Probability & Statistics: review

» Probability
» Random variables/vectors: discrete vs. continuous
» Probability distribution of random variables: pmf, pdf, cdf
* Mean, variance, moments
» Conditiagnal probability & Bayes’ theorem: independen ce
 Joint Probability distribution: marginal distributi on
» Some useful distributions:

— Multinomial, Gaussian, Uniform, Dirichlet, Gamma, e | tc.

 Information Theory: entropy, mutual information, in formation
channel] KL divergence, etc.

» CART (Classification and Regression Tree)
» Function Optimization

» Linear Algebra: matrix manipulation

+ Others

Probability Definition

. Sample Space: Q)
—  collection of all possible observed outcomes
. AnEvent A: ALJQ including null event ¢
. O -field: set of all possible events AlF,
. Probability Function (Measurable) P:F, - [0]
Meet three axioms:
Pl@=0 PQ)=1
If AOB then P(A)<P(B)
If An B=¢ then P(AU B)=P(A)+P(B)

w e

Dept. of CS, York Univ. 3
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Some Examples
. Example I: experiment to toss a 6-face dice once:
Sample space: {1,2,3,4,5,6}
Events: X={even number}, Y={odd number}, Z={larger than 3}.
O -field: set of all possible events
Probability Function (Measurable) =¥ relative frequency
. Example II:
—  Sample Space:
Q. = {x: x is the height of a person on earth}
Events:
e A={x: x>200cm}
e B={x: 120cm<x<130cm}
O -field: set of all possible events Fo
Probability Function (Measurable) P:F, - [01]
measuring A, B:

#of personsvhoseheightover200cm
total #of personsn theearth

Pr(A) =

Conditional Events

. Prior Probability

—  probability of an event before considering any addi tional
knowledge or observing any other events (or samples ): P(A)

. Joint probability of multiple events: probability o f several events
occurring concurrently, e.g., P(An B)
. Conditional Probability:  probability of one event  (A) after another

event (B) has occurred, e.g., P(A|B).

—  updated probability of an event given some knowledg e about
another event. Definition is:

P(A|B)=P(An B)/P(B)

. Prove the Addition Rule: A B
P(AOB)=P(A)+P(B)-P(An B)
. From Multiplication Rule, show Chain Rule:

n

P(An A n...nA)=P(A)P(A|A)P(A I A)

Dept. of CS, York Univ. 4
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Bayes’ Theorem

. Swapping dependency between events
- calculate P(BJA) in terms of P(A|B) that is available and more relevant in

some cases P(B A P(A|B)P(B
p(B| )= PE1A _ PAIBPE)
P(A) P(A)
. In some cases, not important to compute P(A)

AIB)P(B) _ .

B" =argmaxP(B|A) = argmaxp( gmaxP(A|B)P(B)
B B P(A) B

. Another Form of Bayes’ Theorem
- If a set B partitions A, i.e.

A={J.B BnB.=¢

P(A[B;)P(B)) _ P(A[B,)P(B))

P(B; |A) = P(A) Zin:l P(B)

Random Variable
A random variable ( R.V.) is a variable which could take various
values with-different probabilities:

A R.V. is said to be discrete if its set of possibl e values is a discrete
set. The probability mass function (p.m.f.) _is defined:

f(X)=Pr(X =x) for x=x,%,, > f(x)=1
A univariate discrete R.V., one p.m.f. examy“ple:
x | 1 | 2 | 3 | a4
i) | 04 | 03 | 02 | o1

A R.V. is said to be continuous if its set of possi ble values is an
entire interval of numbers. Each continuous R.V. ha s a distribution
function: fora R.V. X, its cumulative distribution function (¢.d.f.) is

defined as: F(t) = Pr(X <t) (-0 <t < o0)
imF@©=0 limF()=1

A probabijlity density function (p.d.f.)  of a continuous R.V,. is a
function that for any two number a, b (a}<b), .

Pr@as X-<sh)= = x=1

Dept. of CS, York Univ.
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Random Variable

. Expectation of random variables and its functions

E(X)=[ xTF(x)dx  or 3 x Dp(x)

EQCO) =" g (dx or 3 (%) h(x)
. Mean and Variance

Mean(X) =E(X) Var(X)=E(X -E(X)]?)
. r-th moment (r=1,2,3,4,...)

E(X)=[ X Te)dx  or  ¥X Dp(x)

. Random vector is a vector whose elements are allra  ndom
variables.

Joint and Marginal Distribution

Joint Event and Product Space of two (or more) R.V.’s Q)Q
— e.g. E=(A,B)=(200cm<height, live in Canada)

. Joint p.m.f of two discrete random variables X, Y:
X \Y 0 1 2

T 0.03 0.24 0.17

F 0.23 0.11 0.22

Joint p.d.f. (c.d.f.) of two continuous random vari ables X, Y:
p(x y) =Pr(X =xY =y)

b ed
Pr@<x<b,c<y<d)= L L f (X, y)dydx
. Marginal p.m.f. and p.d.f.:

()= p(xY) F0)=]F(xy)dy

Dept. of CS, York Univ. 6
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Conditional Distribution of RVs

b Conditional p.m.f. or p.d.f. for discrete or contin uous R.V.’s
p(x|y) = p(x, ¥)/ p(y)

. Conditional Expectation
E@OX)IY =yo) = [ a0 f (x| y)dx or >"a0x)p(x | ¥o)

. Conditional Mean:
E(X 1Y = yp) = [ XCF (x| y,)dx
. Independence:
fxy)=f)f(y) f(x]y)=f(x)
. Covariance between two R.V.’s

Cov(X,Y) = E([X —E(X)][Y ~E(Y)])
=[], <= ECO)y - E(V) T (x, ) dxdy
o Uncorrelated R.V.’s:

Cov(X,Y) =E([X —E(X)][Y -E(Y)]) =0

Some Useful Distributions (I)

. Binomial Distribution:  B(R=r; n, p)
—  probability of r successes in n trials with a success rate p
n!
r'(n-r)!
—  For binomial distribution:

STBrinp =1 Eg(R)=>" rB(rin,p)=np Var,(R)=np{-p)

p'@-p)"" where O<r<n

B(r;n, p) =

. Multinomial Distribution

M(Fpyeeos PNy Proeess Poy) =

nl mo, -
—  For multinomial distribution

E(R)=np, Var(R)=np(1-p) COV(R1R')=_npipj

Dept. of CS, York Univ. 7
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Plot of Probability Mass Function

P(R=r)

. Binomial distribution: n=3, p=0.7

B(r;n,p) =

n!
r'(n-r)!

0.441

p'a-p)*”

0.343

where 0<r<n

0.189

0.027

p(x|4) =

— For Beta d
a

Dept. of CS, York Univ.

—A X
e’ for x=012,---

0 otherwise

» Beta distribution with parameters

0 otherwise

istribution:

« Poisson Distribution with mean (and var) as A(A=

T@*B) yoq5yft for0<x<1 £ty

p(xla.p) =1 @I

Some Useful Distributions (Il)
0)

E(X)=_"—  Var(x)= ap

1/8/2008
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Some Useful Distributions (l1l)

+ Dirichlet distribution: a random vector (X1,...,Xk) has a Dirichlet
distribution with parameter vector  (axy,..., ak) (for all ak>0) if

MNa,+--+a,) a4 a1
X, X |a,,-,a,) = 1 K s | 3O

forallx >0 (i =12-,k) and>" x =1
— For Dirichlet distribution:

k
Denotea, =) _ &,

E(X) =% var(x,) =% =)
ao aO(aO-l-l)
aa,
Cov(X;, X)) =——5——

Some Useful Distributions (1V)
. Uniform Distribution:  U(X=x; a, b)
{J/(b—a) asx<b
U(x;a,b) =

0 otherwise
Normal (or Gaussian ) Distribution: Bell Curve

with a<b

1
N(x p,0°) = ———e"#"">"
JiO

—o<x<o g>0
. Show

Q

b_ 2
£,00=222 and B, ()i VAR,(0=CT2 and VAR, (="

Fix)

Dept. of CS, York Univ.
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Typical Normal Distributions

Hy Ho
0.14
012
o1r Threshold P{T{X)\ HO)
z
<«~T—>
2008
g 9o
<]
o p0.08
0.04
—>
0.02
Region | . Region |l

Standard deviation (s.d. or spread): 03 > 0

Some Useful Distributions (V)

* Gamma Distribution: a random variable X has a gamma
distribution with parameters  a and B (>0, B>0) if

rﬁ—a X r@ ™ forx>0
p(x|a,B) =} @

0 otherwise

with
Pix)

F(a):j: u{™edu (gammafunction) \

a

E(X)=Z Var(X):F (1,1

2
i1,2yh

Dept. of CS, York Univ. 10
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Some Useful Distributions (Vi)

2-D Uniform Distribution:

U(x,y;a,b,c,d):{]/(b_a)(d_c) asxsbcsys<d with a<b,c<d

0 otherwise
Multivariate Normal Distribution
N(x;n,C) = #e-(x-w‘cﬂ(x-u)/z —0 <X <00
J@m"|C|

Show E,(X)=p and VAR, (X)=C

Can you write down the 2-D distribution form, compu te
Cov(X,Y), and derive the marginal and conditional densitie s,
fty) and f(xly) ?

2
Ix ue| H c=| % 199
X= y U, ro,o, O,

Gaussian Mixture Distribution

MG(X) :Z::lme(x;ym,ai) with Z::lwm =1 0<w,<1 o0,>0

Gaussian Mixture distribution:

Distribution of speech
features (MFCC) over
a large population

Lx]

In theory, MG(X) matches any probabilistic density  up to second

order statistics (mean and variance)

Approximating multi-modal densities which is more |
describe real-world data

ikely to

Multinomial Mixture Model for discrete data.

Dept. of CS, York Univ.

1/8/2008

11



Prepared by Prof. Hui Jiang 1/8/2008
(COSC6328)

Parametric Distributions

. Parametric Distribution
—  r.v. described by a small number of parametersinp  df/pmf
— e.g. Gaussian (2), Binomial (2), 2-d uniform (4)
—  many useful and known parametric distributions

—  Probability distribution of independently and ident ically distributed
(i.i.d.) samples from such distributions can be eas ily derived.

. Non-Parametric Distribution
— usually described by the data samples themselves

—  Sample distribution & histogram (pmf / bar chart): counting samples
in equally-sized bins and plot them

. Statistic : Function of random samples
—  sample mean and variance, maximum/minimum, etc.

. Sufficient Statistics
— minimum number of statistics to remember all sample S
—  for Gaussian r.v. need count, sample mean and varia  nce
—  for somer.v.’s, no sufficient statistics, need all samples

Function of Random Variables

Function of r.v.’sis also a r.v.
- e.g. X=U+V+W, if we know f(u,v,w) how about f(x) ?
— e.g. sum of dots on two dices
Problem easier for known and popular r.v.’s
— e.g.ifUand V are independent Gaussian, sois X=U +V

N(| 44, 07) + N (| 14,07) = N(| 4y + 4y, 07 + 57)

- e.g. if W and Z are independent uniform, is Y=W+Z u  niform?

. Sample mean of n independent samples of Gaussian r.v.’s is also
Gaussian, show that:

E(X)=u Var(X)=0?/n

. Average of two independent samples of uniform r.v.’ s form a
triangular shape p.d.f.
. How about n samples and n is very large?

—  Law of large numbers — asymptotic Normal p.d.f. !I

Dept. of CS, York Univ. 12
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Transformation of Random Variables

« Given random vectors X =(X,,---X,) andY =(Y,,---,Y,)
® We knON YI:gl(X)i'..’Yn:gn(X) -
« Given pld.f.of X, p(X)=p (X, :-X,), how to derive p.d.f. for ¥

* If the transformation is one-to-one mapping, we can  derive an
inverse transformation as: X, =h(Y),--, X, =h(Y)

* We define the Jacobian matrix as:

oh . oh
oy, Y,
vy=| =
oh, . o
ay, aY,

* We have

P, (Y) = py (y(Y),+-h, (V) T (Y))
Hea e e R o = L i i

Probability Theory Recap

. Probability Theory Tools
—  fuzzy description of phenomena
—  statistical modeling of data for inference
. Statistical Inference Problems
—  Classification : choose one of the stochastic sources

—  Decision and Hypothesis Testing : comparing two stochastic
assumptions and decide on how to accept one of them

—  Estimation : given random samples from an assumed distribution , find
“good” guess for the parameters

—  Prediction : from past samples, predict next set of samples
—  Regression (Modeling ): fit a model to a given set of samples
. Parametric vs. Non-parametric Distributions
—  parsimonious or extensive description (model vs. da ta)
—  Sampling, data storage and sufficient statistics
Real-World Data vs. Ideal Distributions
—  ‘“there is no perfect goodness-of-fit”
— ideal distributions are used for approximation
—  sum of random variables and Law of Large Numbers

Dept. of CS, York Univ. 13
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Information Theory & Shannon

. Claude E. Shannon (1916-2001, from Bell Labs to MIT ): Father of
Information Theory, Modern Communication Theory ...

. Information of an event: I (A) =log, 1/ Pr(A) = -log, Pr(A)
. Entropy (Self-Information) —in b it, amount of info in ar.v.

1
H(X)=- | =Elog,—~~] 0log,0=0
(X) ;p(x) 0g,p(x) = Ellog, p(X)] 0g,

Entropy represents average amount of information in ar.v., in other
words, the average uncertainty related to a r.v.

o Contributions of Shannon:

Study of English — Cryptography Theory, = Twenty Questions game,
Binary Tree and Entropy, etc.

Concept of Code — Digital Communication, Switchinga  nd Digital
Computation (optimal Boolean function realization w ith digital relays
and switches)

Channel Capacity — Source and Channel Encoding, Erro  r-Free
Transmission over Noisy Channel, etc.

C. E. Shannon, “A Mathematical Theory of Communicati  on”, Parts 1
& 2, Bell System Technical Journal , 1948.

He should have won a Nobel Prize for his contributi ons (1948 is also

Dept. of CS, York Univ.

. Chain Rule for Entropy :

. Independence:

the year of the discovery of transistor at Bell Lab S)

Joint and Conditional Entropy

. Joint/entropy: average uncertainty about two r.v.’s ; average amount of
information provided by two r.v.’s.

1 -5 S p(x.y)log,p(x.v)

H(X,Y) = E[log,
( ) E[OQ p(X!Y) XOX yay

. Conditional entropy: average amount of information (uncertainty)
of Y after X is known.

HICY 1X) = =2 pOOH (Y [ X =X) = > p(I[-2_ p(y]¥)log, p(y | X)]

xOX xOX yay

==>">" p(x y)log,p(y|x)

XOX yoy

H(X,Y)=HX)+H(Y|X)=H()+H(X]Y)

H(X, Xy oo, X)) = H(X) +H O [ X))+ H(X, | Xq, ey Xl)

H(X,Y)=H(X)+H(Y) or H(Y|X)=H(Y)

1/8/2008
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Mutual Information
° Definition : HOCY)

1(X,Y)=H(X)-H(X]Y)
=H(Y)-H(Y|X) o0

=H(X)+H(Y)-H(X,Y)

HX) HY)

I - 2
1(X,Y)= gx‘,p(x) 0% 09 Zp(y) 0g, —— p() %;p( ,y)log, ——— (X v

(XY p(x.) y)log, PN 44
= ;;p(xy) %9 sp(y). 31 P08 o o &Y

. Intuitive meaning of mutual information: given two rv.’s, Xand,
mutual information 1(X,Y) represents average information about Y
(or X) we can get from X (or Y).

. Maximization of 1(X,Y) is equivalent to establishing a closer
relationship between X and Y, i.e., obtaining a low-noise
information channel between X and Y.

Shannon’s Noisy Channel Model
. Shannon’s Noisy Channel Model
:vrlltended X Y 'I\)necoded

—1 Encoder [ S — Decoder [
p(y[x)
. A Binary Symmetric Noisy Channel (Modem Application)
o o
1-p
X JJ Y I (X ,Y)
1 s 4

. Channel Capacity
C =max,, | (X,Y) =max,,[H(Y)=H(Y[X)]
C=1-H(p)=1

. p(X) & p(Y|X) can be given by design or by nature.

Dept. of CS, York Univ.
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Mutual Information: Example (I)

In Shannon’s noisy channel model: assume X={0,1} Y

={0,1}

Xis equiprobable Pr(X=0)=Pr(X=1)=0.5 =» H(X) = 1 bit
joint distribution p(X,Y)=p(X) p(Y|X)
— Case | : p=0.0 (noiseless)

_ p(%y)
1(X,Y)= p(x, y)log,
DO<Y) 0 1 22 = 1p00 p(Y)
0 0.5 0.0 05 05
=050og, ——— + 00+ 050bg, ——— +00=10
1 0.0 05 9% 0505 92 05005

— Case Il: p=0.1 (weak noise)

_ p(x,y)
1(X,Y)= X, y)log, +——~—27—
p(X,Y) 0 1 (X,Y) Xﬂ%jl)y%}p( y)log, 500 p(Y)
0 0.45 0.05
=2[0450og, 045 ., 5roos llog, 005 _ 533
1 0.05 0.45 05005 0505
— Case lll: p=0.4 (strong noise
p=0.4 (strong noise) XY= 3 3 px,y)log, )
p(X,Y) 0 1 X101} 10,1} p(xX) p(y)
0 0.3 0.2 =2[0.3Mog, 03 +2E|D.2[lb92£:003
0505 05005
1 0.2 03

Mutual Information Example(II):

Identifying keywords in Text Categorization

Politics Economy

3,245 documents 7,254 documents

All documents contain 10,345 distinct words in tota
How to identify which words are more informative wi
topic? (keywords of a topic)

Use Mutual information as a criterion to calculate
with any ane topic.

Example:|word “ score ” vs. topic “ sports ”
— Define two binary random variables:
X: a document’s topic is “sports” or not.
Y: a document contains “score” or not.
— I(X,Y) => relationship between word “

{0,1}
{0,1}

6,785 documents 1,134 documents

| (vocabulary)
th respect to any one

correlation of each word

score " vs. topic “ sports ”

Dept. of CS, York Univ.
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Identifying keywords in Text Categorization
e Count documents in archive to calculate  p(X,Y)
(X =1y =1) = #of docswith topic"qurts'andcor.ltainS'score"
total# of doctin the archive
(X =1Y =0)= #of docswith topic"sports."anddon't (.:ontainS'score"
total# of docsin the archive
Y >“score”
p(X,Y) 0 1 p(x, y)
1(X,Y)= x,y)lo (i
X 0 0.802 0.022 |[0824 = m%) yr{;i)p( P10% 56 p()
1 0.106 0.070 | oare 012
0.908 0.092
« How about word “what” — topic “sports”
Y 2>what”
pX,Y) 0 1 LX) = . y)log,_P0Y)
, = [o]
X 0 0.709 0.115 0.824 >0 xr%:l) yr%:i)p( V1o, pP(x) p(y)
1 0.153 0023 |oie 000007
0.862 0.138
« “score” is a keyword for the topic “sports”; “what” is no t;

Identifying keywords in Text Categorization

» Fortopic Ti, choose its keywords (most relevant)
— For eachword W;jin vocabulary, calculate
— Sort all words based on  I(Wj,Ti) ;
— Keywords w.r.t. topic Ti: top N words in the sorted list.

I(W;,Ti) ;

» Keywords for the whole text categorization task:
— For eachword W;jin vocabulary, calculate

(\N)_mZH\N,T) orl (W)= maxl(\N.,T)

— Sort all words based on  I(Wj) or I'(W}).
— Top M words in the sorted list.

Dept. of CS, York Univ. 17
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Channel Modeling and Decoding
Speech Recognition Speech Understanding
Words Noisy Speech S Message M Noisy Speech S
Channel Channel [T

Speech S | channel | Words W Speech S| channel | Message M

Decoding Decoding
Information Retrieval Speaker Identification

Document || Noisy Key Terms J Speaker K Noisy Speech S
Channel Channel T

Key Terms J Channel E):ument | Speech S Channel |Speaker K
Decoding — | Decoding T

, - -
Bayes’ Theorem Applications
« Bayes’ Theorem for Channel Decoding
. A PO 1)P(I A
I =argmaxP(l |O) =argmax LE() =argmaxP(O|1)P(l)
I I P(O) I
Application Input Output p) p(o/l)
Speech Word Speech Language Acoustic
Recognition Sequence Features Model (LM) Model
Character Actual Letter Letter OCR Error
Recognition Letters images LM Model
Machine Source Target Source Translation
Translation Sentence Sentence LM (Alignment)
Model
Text Semantic Word Concept LM Semantic
Understanding Concept Sequence Model
Part-of-Speech POS Tag Word POS Tag LM Tagging
Tagging Sequence Sequence Model

Dept. of CS, York Univ. 18
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Kullback-Leibler (KL) Divergence
» Distance measure between two p.m.f.’s (relative ent  ropy)

D(plle) =E,fog; | '°( )] 3" p(¥)log, pg))

— D(p||9)>=0 and D(pllq)=0 ifonly if g=p

» KL Divergence is a measure of the average distance between
two probability distributions.

D(p(x, y)lla(x, y)) = D(p(x)[[a(x)) + D(p(y [ x)llaly X))

» Mutual information is a measure of independence

p(x,y)
Y) = ,y)log, = ,
1(X,Y) ;;ﬂ p(x,y)log 00 0(y) D(p(x, VI p(X) p(Y))

» Conditional Relative Entropy

D(p(y X)Ilaly [x) = ZP(X)Z P(y[x)log, p((y||)>(())

CIaSS|f|cat|on DeC|S|on Trees

color = yellow?
e,

no

size = big?
e

Watermelon

size = medium?

ves

no

Apple Grape Banana

size = big?
e,

Grapefruit Lemon Cherry  Grape

Dept. of CS, York Univ. 19
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Classification and Regression Tree

» Binary tree for classification: each node is attach ed a YES/NO
guestion; | Traverse the tree based on the answers to guestions; each
leaf node|represents a class.

» CART: how to automatically grow such a classificati on
data-driven basis.

— Prepare a finite set of all possible questions.

— For each node, choose the best question to split th e node.
“best’ is in sense of maximum entropy reduction betwe en
“before splitting” and “after splitting”.

» Entropy = uncertainty or chaos in data;
Small entropy -> more homogeneous the data is; less impure

H (X) — Choose a q from

Use question g the question set to
........................................................................................ inakimize the difference
X (a) X (a)
| 1 | H (Xl(CI)) + | 2 |
| X] [ X]

z

H(X{)

The CART algorithm

1) Question set: create a set of all possible YES/NO  questions.

2) Initialization: initialize a tree with only one nod e which consists
of all available training samples.

3) Splitting nodes: for each node in the tree, find the best splitting
guestion which gives the greatest entropy reduction

4) Go to step 3) to recursively split all its childr en nodes| unless it
meets certain stop criterion, e.g., entropy reducti on is below a
pre-set threshold OR data in the node is already to o ljttle.

CART method is widely used in machine learning and data mining:

Handle categorical data in data mining;
Acoustic modeling (allophone modeling) in speech recognition;
Letter-to-sound conversion;
Automatic rule generation

etc.

agprwNPE
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— Linear Programming

* EM (Expectation-Maximization) algorithm
» Growth- i

the variable(s) in question.

* Maximization (minimization) of a function:
— Differential calculus;

» Unconstrained maximization/minimization
df(x)
= f(X)>—2=0=x=?
Q=1(x | X

Q: f(Xl!XZ!’XN):W:O:??
X

— Lagrange Optimization:

» Constrained maximization/minimization

Q= f(X,X%, -, Xy) Withconstraint g(x, X,,---,%y) =0
Q= f (%%, X ) F ALY X070, %)
aiQ:OaiQ:O aQ :OaiQ:O

ox 0% 0%, 04

Optimization of objective function (I)
* Optimization:

— Set Up an objective function  Q() ;

— Maximize or minimize the objective function with resp

ectto

Q= (X, %o, w+1 Xy)
Foranyx , startfromanyinitial valuex®
X" =X ke M, (X%, %)

x =x"

Semi-definite Programming
Quadratic programming (nonlinear optimization)

Optimization of objective function (II)

» Gradient descent (ascent) method:

1/8/2008
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Other Relevant Topics

— etc.

. Statis&ical Hypothesis Testing
— Likelihood ratio testing

* Linear Algebra:
— Vector, Matrix;
— Determinant and matrix inversion;
— Derivatives of matrices;

* A good on-line matrix reference manual
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/

http://www.psi.toronto.edu/matrix/matrix.html
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