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Robust Decision Tree State Tying for Continuous
Speech Recognition

Wolfgang Reichl and Wu ChqWMember, IEEE

Abstract—in this paper, methods of improving the robustness [2], [4], [8], [11], [12], [16], [17], [23]. While some authors [4],
and accuracy of acoustic modeling using decision tree based[12], [16] concentrate on the problem of constructing improved

state tying are described. A new two-level segmental clustering yees others try to generate optimal sets of questions automat-
approach is devised which combines the decision tree based state

tying with agglomerative clustering of rare acoustic phonetic ically [_2]’ [23_]' Two problgms in deCISlon.tree state tylng_are
events. In addition, a unified maximum likelihood framework Of particular interest. One is the tree growing and node splitting
for incorporating both phonetic and nonphonetic features in problem and it concerns the issue of how to find an optimal node
decision tree based state tying is presented. In contrast to other gplit, given the particular parametric form of the impurity func-
heuristic data separation methods, which often lead to training tion (e.g., the likelihood of the training data). Another one is the
data depletion, a tagging scheme is used to attach various features " . T .

of interest and the selection of these features in the decision tree parametric mOde".n.g problem of th? ‘?'ata d'smbunons durlr.\g
is data driven. Finally, two methods of using multiple-mixture the process of decision tree node splitting. For phonetic decision
parameterization to improve the quality of the evaluation function tree based acoustic modeling, these two problems are closely
in decision tree state tying are described. One method is based onrelated. The problem of optimal node splitting is about finding
the approach of k-means fitting and the other method is based on the best node split, and the parametric modeling is a problem

a novel use of a local multilevel optimal subtree. Both methods f idi iat tri hich defi th lit
provide more accurate likelihood evaluation in decision tree clus- ©' Providing an appropriate metric, which defines the guality

tering and are consistent with the structure of the decision tree. Of the split. In general, construction of a globally optimal de-
Experimental results on Wall Street Journal corpora demonstrate ~ cision tree is a computationally intractable problem. The para-

that the proposed approaches lead to a significantimprovementin metric forms of distributions used in decision tree node splitting
model quality and recognition performance. are often based on Gaussian distributions, although more ac-
Index Terms—Acoustic modeling, decision tree state tying, curate multiple-mixture Gaussian distributions are used in the
speech recognition. final acoustic model. This disparity is due in part to the com-
putational complexity in the decision tree clustering process.
|. INTRODUCTION The multiple-mixtu_re Gaussian distribution for each tree node
needs to be re-estimated from the data, whereas the parameters
D ECISION tree state tying based acoustic modeling has kgthe single-mixture Gaussian distribution can be derived from
come increasingly popular for modeling speech variatioge cluster members without going back to the training data.
inlarge vocabulary speech recognition [1], [10], [19], [24], [25]. |n, this paper, we discuss methods for improving the robust-
In this approach, the acoustic phonetic knowledge of the targiss and accuracy in decision tree clustering based acoustic
language can be effectively incorporated in the model accordifghgeling. The novel contributions of this paper are as follows.
to a consistent maximum likelihood framework. The statistical , 5 oy segmental two-level clustering algorithm is de-
framework of decision tree in acoustic modeling provides two vised. It combines the phonetic decision tree based state
major advantages over the previous rule or bottom up based ap- tying with agglomerative clustering to improve model
proaches. First, the classification and prediction power of the de- coverage on rarely seen acoustic phonetic events in the
cision tree allows to synthesize model units or contexts, which training data.
do not occur in the training data. Second, the node splitting , We present a unified maximum likelihood framework
procedure of decision tree based state tying is a model selec- to incorporate generalized phonetic and nonphonetic

tion process. It provid_es a way of maintaining the balar_1ce be- features in decision tree based state tying. It is data driven
tween model complexity and the number of parameters in order and solves the problem of training data depletion in

to render a robust model parameter estimation from the limited condition dependent acoustic modeling.

amR:)unt (ir tr?rl]nmg data. it s 10 i the phoneti « Atagging scheme s introduced in decision tree based state
ecently, there are many attempts 1o improve the pnonetic tying and is used to tag various features of interest. In

decision tree state tying based approach in acoustic modeling our proposed approach, the tagged information are used in
conjunction with phonetic questions during decision tree
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one is for word boundary dependent acoustic modelingingle tree for a given phone was nothing more than the previous
Comparisons are made and performance advantagestezes joined by additional nodes [12].
demonstrated. Usually, a decision tree is built using a top-down sequential

* We present two approaches of using multiple-mixtureptimization procedure (e.g. classification and regression tree,
Gaussian parameterization to improve the likelihoodr CART [3]) starting from the root node of the tree. Each node
evaluation function in decision tree node splitting. Onis split according to the phonetic question which results in the
is based on a speciatmeans fitting algorithm and the maximum increase in the likelihood on the training data. The
other one is based om-level optimal subtree. Both gain in likelihood due to a node split can be calculated effi-
approaches are extensions of the conventional one-leggntly from pre-calculated sufficient statistics of the affected
optimal single-mixture Gaussian based approach. states[19], [24]. The process is repeated until the likelihood gain

» A short-list based caching scheme is described whicalls below a threshold. A minimum occupation count is often
significantly reduces the computational complexity impplied to ensure that all terminal nodes have sufficient training
using multiple-mixture Gaussian parameterization idata associated with them. Different sets of phonetic questions
decision tree construction. Experimental evidences anmave been investigated in [11], [12] and good recognition re-
given that multi-level optimal tree building proceduresults were obtained using questions about phonetic features and
is computationally feasible and advantageous in largentexts. Methods of improving the quality of the set of ques-
vocabulary speech recognition. tions were also proposed, and additional questions can be added

The organization of this paper is as follows. We introduce t{8rough phoneme or diphone clustering [2] or by a multipass
basic structure of decision tree based acoustic modeling in SBEecedure, which adds the intersections of simple questions of
tion I1. The two-level segmental clustering approach for robuBfeviously generated decision tree to the question set used in the
decision tree state tying is described in Section IIl. The unifidtfXt Pass [23]. Additional stopping criteria based on cross-val-
maximum likelihood framework for incorporating generalizedfl@tion have been investigated in [11], [12], [16]. Typically an
features is presented in Section IV. In Section V, we introdu@¥er-grown tree is constructed first and then the tree is pruned
two approaches of using multiple-mixture Gaussian parametBAck by merging terminal nodes with different parents, if the
ization in decision tree construction. The theoretical basis alfgelinood decrease due to node merging is less than a preset
the short-list based caching scheme are described in detail. S8€PPIng threshold. In phonetic decision tree clustering, a set of
tion VI is devoted to experimental results and comparisons 47MM states is recursively partitioned into subsets according to

made to various known approaches. Finally, we summarize d{}¢ Phonetic questions at each tree node when traversing the tree
findings in Section VII. from the root to its leaves. States reaching the same leaf node of

the decision tree are regarded as similar and tied. The missing
triphones are constructed by answering the phonetic questions
for the missing triphone and traversing the decision tree from the
root node to a final leaf. The most similar leaf node determined
One approach to deal with the data sparseness pr0b|enb}hthe decision tree is used to synthesis the unseen triphone.
training acoustic models involves sharing of models across dif-Since the log-likelihood of the training data(s) =
ferent contexts to form the so-called generalized triphones [1B}g P(X|S) generated from a tree node can not be easily
This model based sharing can be further improved to handle giculated, the common EM auxiliary function [7] is used as
left and right contexts independently and leads to state bagdyective of the clustering
sharing of parameters [14]. However these techniques use only

Il. DECISION TREE STATE TYING

a priori phonetic knowledge and are not supported by the actual QS) = / P X, S)log P(X, u|S) du Q)
training data. Although agglomerative clustering procedures are w
used to automatically determine the tying of states from dajterew denotes the unobserved data @d= {1, - - -, 27}

and result in high recognition performance [24], the problem ¢ the sequence of observation vectors from the training
modeling unseen or rarely seen acoustic contexts in the traingi@ta. Assuming a single mixture Gaussian distribution
data remains. Decision tree based state clustering is ShOWl]\IQJ;W(S)’ ¥(9)) for the nodeS, the unobserved data is the
lead to similar and often better performance in large vocabsequence of HMM states and the auxiliary function becomes
lary speech recognition [10], [25]. It integrates bathpriori

phonetic knowledge and acoustic similarities derived from data. Q(S) = Z Z vs(@e) log N (¢ |pe(S), 3(S)) 2

In decision tree clustering, single mixture Gaussian models are z; s€S

trained first and the phonetic decision tree is used to establisF

the state tying. One decision tree is constructed for each State e s (w,) is thea posterioriprobability of the observation

of each center phone and all the context dependent state xto?t time¢ generated from state Using basic properties of

this phone are clustered into groups by the decision tree algo"iluss"”m distributions, then [25]

rithm. The resulting clusters of tied states are then retrained an _ 1 . .
multiple-mixture Gaussian distribution HMMs are estimated. In @(S) 2 ; Scz; 7alrn) log [5(S)| + Dilog(2m) + 1)]
[12], [17] ajoint decision tree for all states of each center phone 3)
was introduced, but it was found that the additional questiomsereD is the dimensionality of the data vector gil.S)| de-
about the state positions immediately separated the trees andhities the determinant of the covariance mak{}). Because
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of the monotonic relation between auxiliary function and likemodels. However, the single Gaussian, untied triphone system
lihood: Q(S) > Q(S) = L(5) > L(S), the sequential opti- forms the basis of the decision tree, and estimation errors intro-
mization of the auxiliary function in the decision tree clusterinduced in the single Gaussian, untied system often have a long
also results in the optimization of the likelihood function. Therderm adverse effect to the quality of the decision tree based state
fore the auxiliary function can be used as objective in the decilustering.
sion tree. By using the single mixture Gaussian assumption forOne of the issues in using Viterbi alignment in decision
the cluster distribution, the likelihood variation of clustering catree based acoustic modeling is how to make a robust use
be efficiently evaluated for every tree nodebased on the al- of the rarely seen triphone samples in the training data. In
ready available sufficient statistics of its member states withoBaum-Welch based parameter estimation, all possible paths
additional need to access the training data. Each phonetic que®- considered, and it has a much stronger smoothing effect
tion splits the states into two subsélgs . andsS,,, and therefore on the parameters of those rarely seen triphones which have
partitions the acoustic space. The question with maximum ionly very few training samples in the training data. In Viterbi
crease in the auxiliary functiohQ,(S) = Q(Syes)+Q(Sn,)— alignment based segmental clustering approach, only the best
Q(S) is selected to split the node. The quality of the decisigmath is considered and parameter estimates of these rarely seen
tree based state tying depends on the parametric form of the dligghones can degenerate very quickly with the decrease of
tribution used in evaluating(S), which should approximate astraining samples. In order to make full use of the training data
closely as possible to the multiple-mixture Gaussian distributi@md improve the robustness of the decision tree based state
used in the final model. The single Gaussian parameterizatitying, a two-level segmental clustering scheme is devised in
for cluster distributions in the conventional decision tree basedr approach. The first level segmental clustering is performed
state tying only provides a very limited acoustic resolution arlsbfore forming the single-Gaussian, untied system. It is to
may become inadequate to model the acoustic variability in tbkister those rarely seen triphones into various types of gener-
training data. alized triphones [13] according to their phonetic similarities, so
that the number of samples in each of the clustered generalized
triphones is above the minimum sample count threshold
required for the estimation of the sufficient statistics of the
Previous studies in decision tree tying based acoustic maaditial, untied states. A low sample count threshold (e.g., five or
eling focus mainly on how to incorporate decision tree tying iten) can be used for a robust estimate of the single state mean
Baum-Welch based parameter estimation [1], [25]. These amd diagonal covariance matrix. The rare triphones are grouped
proaches are based on the Baum—Welch algorithm to estimlagerelaxing the triphone contexts [14]. First, the left contexts
the HMM parameters. However a Viterbi alignment based segf rare triphones are relaxed, and if there are not sufficient
mental clustering approach is more consistent with the decodsgmples in the training data to build these models, the right
process used in recognition. The advantages of the segmeotaltexts of the rare triphones are disregarded. The second level
k-means training procedure were presented in [18]. For Vitertlustering is a top-down decision tree based clustering of states
training, it is important to note that once the state alignmentagcording to phonetic questions. The phonetic identity of each
given, computations for estimating each individual HMM statgeneralized triphone from the first level clustering is defined to
become independent from each other. This makes it possibldtothe intersects of the phonetic properties of all rare triphones
fully parallel the model training process on multiple CPUs, and the cluster.
on large data set, the training time can be reduced from days t@he two-level clustering approach described above takes the
hours. advantage of the robustness of generalized triphone at the stage
Mismatch in data alignment is one of the major causes whidiiforming a robust, single-Gaussian, untied system to improve
degrades the robustness and precision of acoustic modelitg quality of the subsequent decision tree. The final model is
Since the decision tree clustering is based on the fundamerstill decision tree tied, in which state tying is determined solely
assumption that tying of states will not change the alignmeby the likelihood increase on the training data. This is very dif-
of training data, the initial alignment based on untied triphondsrent from the conventional generalized triphones, where tying
with Gaussian state observation densities in the stand@&dletermined purely by the phonetic contexts. In addition, the
Baum-Welch training may not represent correctly the finainseen triphones are always synthesized according to the deci-
models based on tied states and multiple-mixture distributiorsson tree without making reference to the generalized triphones.
Thus the single-Gaussian model alignment may not be accurat©ne advantage of applying a segmental clustering based ap-
and can provide poor estimates for clustering [16]. In this segroach in decision tree state tying is that segmentation of the
tion, we present a new robust two-level clustering approach fmaining data is separated from the model parameter estima-
Viterbi based HMM training. It consists of an initial groupingtion process. Therefore more accurate mixture Gaussian models
of rare triphones and a subsequent decision tree clusteringdan be used to provide high quality data alignment, which will
state tying. lead to more precise estimates of the likelihoods used in the
In addition to the data alignment problem, robust estimatiafecision tree construction and improve the quality of the final
of rarely seen triphones is another critical issue. In the standacbustic models. In our approach the decision tree is refined
method, a single Gaussian, untied triphone system is built firgeratively during the training process, which provides a more
It is common that only the mean vectors are estimated frgonecise estimation of state tying. In each iteration, the training
data, whereas the variances are smoothed with the mono-phdat is re-segmented by the Viterbi algorithm using the tied state

I1l. Two-LEVEL SEGMENTAL CLUSTERING
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models generated from the previous iteration. The convergence
property of the segmentalmeans [18] approach ensures that
training data alignment will improve and converge with this it-
erative process. SEGMENTATION
For a set of states, sharing one common Gaussian distribu-
tion and using Viterbi alignment, the auxiliary function is given

by ROBUST CLUSTERING

OF RARE TRIPHONES
Q(S) = Y log N(x|u(S), X(5)) @)

Ty 8. ES

SINGLE-MIXTURE MODELS
where all observation vectors with a state alignment, € S FOR UNTIED TRIPHONES

are considered. In this case the auxiliary function and the log-
likelihood are identical and for a single-Gaussian distribution it

IS PHONETIC DECISION TREE TYING
SYNTHESIZE 'UNSEEN’ TRIPHONESY

S
Q(S) = L(S) = _n(2 )[10»5-’; 12(S)| + D(log(2m) + 1)] (5) MULTI-MIXTURE DISTRIBUTIONS
FOR ALL TIED STATES

wheren(S) is the number of observation vectors assigned to the
states associated with node

In the proposed segmental clustering algorithm, a mul-
tiple-mixture Gaussian distribution is estimated directly Fig.1. Block diagram of two-level segmental clustering algorithm.
for each tied state before realigning the training data. This
differs from many Baum-Welch based approaches, Whe%e

multiple-mixture distributions are obtained by iterative binar |phthongs but proba.bly less on stops or fricatives. Usually al
splitting of each Gaussian density function (mixing-up) an odel units are retrained based on the selected subset of data

data realignment. The block diagram of the proposed two-leviljd there is no consistent theoretical framework to incorporate

segmental clustering training algorithm is illustrated in Fig. f_onphonetlc features.

The algorithm terminates after a predetermined number of it?r_Mpreover, slpllttflng of rt]ralnmg fdata rdedluce; t:e av?llagltta
ations or if the likelihood gain falls below a certain threshold. raining samples for each acoustic model, which can fead to
poorly estimated models. For this reason, other specific models

beyond gender conditions are rarely used [15], [21]. One so-

IV. GENERAL FEATURES IN DECISION TREE BASED ACOUSTIC lution to train s.pecific HMMS for different fea_tures is th.rou_gh
MODELING model adaptation techniques such as maxinaposteriori
(MAP) adaptation [9]. In this approach, generic and condition
In speech recognition, many nonphonetic features are usedependent models are estimated first and then adapted to

to improve the resolution of the acoustic model and to obtaihe specific conditions. Although MAP adaptation is useful, it
high recognition performance. Examples of such featurdses not change the state tying relations of the generic model.
include gender, speaker or speaker group identity, speakifige state tying relations of the generic model may not reflect
rate, channel and environmental conditions, ambient noisgecific features in the adaptation data. Individual states in the
level, etc. However, these features are not phonetic featugeseric model may be separated or tied together according
and it has been a problem of how to incorporate them coto the likelihood estimation and occupation counts from the
sistently with phonetic features in high-resolution acoustmomplete, unconditioned data set, which may not be optimal
modeling. The common practice is to manually separate tfa specific conditions. This situation can become acute when
data according to the specification of the nonphonetic featuréise properties of training and adaptation data are substantially
such as gender, and retrain a model using only the data whitifierent.
posses these features. This approach has two major problemgor these reasons, itis preferable to use an automatic and uni-
First, it depletes the amount of available training data as thied approach to generate specific acoustic models for different
number of nonphonetic features increases and puts a limit fe@tures in a data-driven manner. In [17] several linguistic and
the number of nonphonetic features that can be incorporateghmonetic features such as vowel stress were incorporated into
the model. In addition, there is no data sharing between varidhg decision tree clustering. In our approach, these features are
conditions. As a consequence, the model may become poargneralized to include any additional information which may
estimated and the performance of the model can degradénffuence the configuration of the model in decision tree state
data become too sparse after splitting. Secondly, the feattyig. This is achieved by incorporating various features into
selection process is empirical and heuristic. Some nonphonetie decision tree clustering based on a unified maximum like-
features may influence only certain part of the model. Fdihood statistical framework. Individual states for different fea-
example, gender difference has more influence on vowels andes are only separated if this leads to a significant increase
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in the likelihood on the training data. The additional informaanly provides a very limited acoustic resolution and may be-
tion about specific features are provided as tags to the deodme inadequate to model the acoustic variability in the training
sion tree clustering procedure. In our experiments, gender atata. Moreover, the use of different likelihood functions in state
word boundary tags are used. The tagging procedure in our pnag and decoding also introduces a mismatch and violates the
proach partitions the training data into specific subsets, basedamsumption that state alignments are unchanged for untied and
both the phonetic context and tagged features of interest, ug@u system. This suggests that using multiple-mixture Gaussian
which initial single-mixture Gaussian models are trained. Codistribution, instead of the single-mixture Gaussian, to evaluate
sequently, every HMM state is associated with an appropridtee likelihood function should be advantageous.
label, marking the specific conditions of its training data. The In this section we will present two methods to improve the
question set of the decision tree is extended to also include quesality of decision tree clustering. The quality of the likelihood
tions regarding nonphonetic features. The nonphonetic featurestimates used during the tree construction is improved by the
such as gender, channel condition, speaking rate, etc., are thessge of multiple-mixture Gaussian distributions for each set of
features which can not be derived from their phonetic contextdates. Ak-means based algorithm is described first, and then
During the construction of the decision tree, the best (phonetie present another approach which is based on a novel use of
or nonphonetic) question is selected to split the tree nodes ao-optimal subtree to partition the acoustic space of a cluster
cording to the likelihood criterion [17], [21]. node.

The tagged nonphonetic features are used simultaneously
with the regular phonetic features in the decision tree clusteridg K-Means Based Multiple-Mixture Clustering
process during model construction. Therefore, the decision tregy, tnis subsection we present an approach using:theans
based model building is according to two types of knowledg§q,rithm to approximate multiple-mixture Gaussian distribu-
sources and there is no manual separation of the training dgfghs in decision tree state tying. The phonetic questions are
As a consequence, the model is built from the same setigfiher used in the decision tree to partition the initial, untied
training data regardless the number of nonphonetic featutgsies into various subsets upon which the likelihood objective
which we intend to incorporate. Thus, it solves the trainingnction has to be evaluated. Ameans clustering is utilized
data depletion problem as in prior data separation approachgghin each partition to obtain the requirdd mixture compo-
Moreover, these generalized features are incorporated in figts The multiple-mixture distributions are consistently used
decision tree based state tying according to a unified apg the jikelihood calculation from the initial untied states to the
consistent maximum likelihood framework. If separation of, ) tied states.
data with specific conditions results in a maximum likelihood pjyst we derive the decision tree objective function assuming
gain among all other questions, separate HMM states will Byt 5)1 A7 mixtures are already known. For a multiple-mixture
constructed for thgse specific conditions. If no question abougairibution withm = 1, -+, M mixture components, the un-
particular feature is used on the path from the root tree nodedQseryed data of the auxiliary function consists of the state and
a particular leaf node, the associated tied state to that leaf negig e sequence in the model and the auxiliary function (1) be-

is independent of that feature. comes
This data-driven approach prevents unnecessary data sepa-
ration and allows maximum data sharing among various condi- Q(S) = Z Z Z P(s, m|a)
tions. It constructs a minimum set of states for the given training o1 CS
data and a pre-selected likelihood threshold. As a consequence, 108(Cm N (24|t (S), Zm ()
the decision tree state tying is extended from tying states with
various phonetic contexts to tying states with generalized pho- = Z Z s () Z P(mlz:)logen
netic and nonphonetic (e.g., gender, position, etc.) features. This T oS "
leads to a significant increase in the amount of training samples +) > @) Y P(mlay)
for condition dependent acoustic modeling and the robustness T: €S m
of the condition dependent model is also enhanced. Moreover, log N(@i|ptm(S), Bim(S5)) (6)
there is no hard limit on the number of conditions to which the
model can incorporate and the whole process is data driven. Heere
proposed tagging approach is very general and can be used for e N (2|t (S), Em(S))
many other features, such as speaker identity, age group, etc. P(m|z,) = : (7)

em N (@] pm (5), Tm(S))
V. DECISION TREE CLUSTERING BASED ON

MULTIPLE-MIXTURE GAUSSIAN DISTRIBUTION denotes thea posteriori probability of a mixture component

given the observation. Using the mixture weighfs derived
The quality of the decision tree based state tying dependsfosm the Baum—-Welch reestimation equations
the parametric form of the distribution used in evaluating the im-

purity function, which should approximate as closely as possible ZZP(mm)% (2¢)
the multiple-mixture Gaussian distributions used in the final @y €S

. . . . . Cm = 8
model. The conventional single-mixture Gaussian parameteri- 2 :2 :%(xt)

zation for cluster distributions in decision tree based state tying e sCS
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the auxiliary function becomes two Gaussian distributions. Thismeans clustering process is
sub-optimal but it is very efficient for the purpose of providing
QS) = cmlogem > > vslae) a multiple-mixture Gaussian distribution fitting for each tree
m z; sCS node encountered in decision tree based state tying. The auxil-
+ Z Z Z P(ml|az)vs () iary or log-likelihood function of the tree nodes in decision tree
™ 3. seS based state tying is calculated based on this fitted multiple-mix-
log N(z¢|ptm(S), Tm(S)) ture Gaussian distribution without coming back to the original
acoustic training data.
= Z Z% () Z cmlog e — 5 Zcm One important property of this&-means based approach is
7: 5CS ™ ™ that the structure of the phonetic decision tree is well main-

tained and therefore, it has the same prediction capability as the
-log [£,,,(S)| — 5 Dlog(2n) decision tree generated from the single-mixture Gaussian ap-
proach. This is different from other data drivermeans based
_ % Z Z vs () Z P(m|z)(zy — i (9))7 approaches, such as the CPA algorithm [5] used in [16]. In CPA
7r 5CS ™ based approach, the locally optimal partitions (splits) are calcu-
S8 (@ — pm(9)). (9) lated based on themeans algorithm, but no phonetic questions
are used. This leads to a tree without phonetic properties and the
Applying basic properties of Gaussian distribution, we deriveprediction power of the phonetic decision tree is therefore lost.
As a consequence, in order to construct unseen triphones, an ad-
ditional “pre-tree”is used in [16]. Our approach is based on pho-
Q(S) = -3 Z Z s (1) Z Cm log [Xm (S)] — 2 Z m  npetic questions to partition the states, @ancheans clustering is
@ 8€S m m utilized within each partition to obtaih/ mixture components.
A different approach to evaluate the impurity function for mul-
log e + D(log(2m) + 1) | - tiple-mixture Gaussian distributions was presented in [8]. There,
(10) a criterion to measure the overlap between Gaussian mixture
pdfs was developed and applied to semi-continuous HMMs. To
In case of a segmental approach based on Viterbi alignment, #9id extremely unbalanced trees, an additional normalization
auxiliary function simplifies to (_)f the crlt_erlo_n was necessary. Our criteria is based on the like-
lihood objective function and does not prefer unbalanced trees.

Q) = "%

Z Cm 10g |3 (S)] — 2 Z cm log ¢, B. Multilevel Optimal Trees for Multiple-Mixture Clustering

In this subsection, we describe another decision tree based
state tying algorithm, which is based on a different estimate
of multiple-mixture Gaussian distributions in node splitting for
phonetic decision tree based acoustic modeling. The key idea
In this formulation, the contribution of each mixture compoin this approach is to use an-level optimal subtree during the
nent toQ(S) is thelog |, (S)| term multiplied by the mixture node split, which is an extension of the conventional one-step
weightc,, plus an additional entropy-like terijp’, . ¢, logc,, greedy CART algorithm [3]. In this new approach, the node
which takes into account the contribution of the mixture weightsplit is not determined by the improvement of the impurity func-
to the log-likelihood. tion evaluated by the one-step splitting of that node as typical in

In our implementation, up td4, Gaussian mixture compo- CART but by a multilevel optimal subtree derived from the can-
nents are estimated for every untied state from the training dadaate node. In this paradigm, CART algorithm has become a
However, the number of mixtures can not be set too large singgecial case, where the level of algorithm optimality reduces to
the available data samples for the untied states vary highly frane. For every question to be evaluated a temporary subtree is
state to state. During the process of decision tree state tying, tihastructed. Depending on the depth of the binary subtree, the
multiple-mixture Gaussian parameterization is carefully maistate set of the evaluated node is splitted recursively in different
tained and applied to every possible node splitting accordinggartitions. These partitions are then used to calculate a new im-
a set of phonetic questions. For this purposé;raeans clus- purity function based on a single Gaussian density per partition
tering is adopted in our approach to fitdd-mixture Gaussian [6]. For a two-level optimal splitting, two Gaussian densities are
probability density function for each tree node. The objectiverlculated for each state subsgt, andsS,,, from the partitions
of this clustering process is to find an approximate multiplesf the lookahead tree. In a three-level optimal splitting scheme,
mixture Gaussian distribution based on the multiple-mixtufeur Gaussian densities are estimated for each binary outcome
Gaussian parameterization of the untied states in that tree nawfeall evaluated questions. The principle of the multilevel op-
The process starts withl seed mixture Gaussians and performsmal subtree approach is illustrated in Fig. 2. It shows the sub-
a k-means clustering algorithm to form the requirktimix- tree created for the three-level evaluation of a question in the
ture Gaussian parameterization for the node. The distance fusalid nodeS. The subtree consists of a “yes” and a “no” branch
tion used is the same log-likelihood metric used in decision tréar the primary question with four terminal nodes (shaded) each.
clustering and it measures the loss in likelihood by mergirthese terminals subdivide the state sgfs, and.S,,, into four

+D(log(2m) + 1)| . (11)
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partitions each, for which a Gaussian density is calculated. A
separate subtree is calculated for each ofthejuestions.
LetT'(S, m) denote ann-level subtree, with root nodg and

a maximum level ofn. The log-likelihood of then-level tree
T(S, m) is defined to be / \

L(T(S, m)) = > L(s) (12) PN o
s’ e S Syes ﬂ\//,-’ m\_\}m Sm;
which is obtained by summing the log-likelihood over all its '_,/V"‘\\ \
leavest G0 o0

The proposedn-level optimal subtree based decision tree /% /7 ava
growing algorithm consists of the following steps. 0o 0 LR
1) If S is the root node, grow am-level optimal subtree Fig.2. Subtree construction for the evaluation of a question splitting the solid
T(S, m), not necessarily balanced, using the phonetftde:
questions. Split the node into nodesS,., and.S;..

2) Update the log-likelihood of,,., andS,, to be greedy tree growing algorithm is again a special case in the
. . proposed approach when optimal subtree levek 1.
L(Syes) = L(Tyes(S, m))  andL(Sno) = L(T0o(S, m)) However, there is a fundamental difference between the pro-

N N (13) posed approach and the look-ahead search technique used in
whereT,.; and7;,,, are branches of thex-level optimal  decision tree based state tying [4], [11], [12]. The look-ahead
subtreel’(S, m). The updated log-likelihood di(Syes) search is to find a more accurate estimate of the log-likelihood
and L(S,,) is modeled by2™~*-mixture Gaussians be- increase when split nod& In other words, it uses a refined esti-
cause they are the sum of single-mixture Gaussians frefiate ofL(S,.,) andL(S,,,) but does not change the parametric
the corresponding:-level optimal subtree leaves. distribution of S nor the value ofZ(S). In the proposed ap-

3) Foreach current terminal tree noflevith cluster sample proach, an-level subtree is used as a mean to introduce honest
count greater than the minimum sample count thresholgyltiple-mixture Gaussian parametric distribution for nate
grow anm-level optimal subtred’(S, m) and split the which is used consistently for all related log-likelihood esti-

nodes into nodesS,.. andS,, provided that mates in node splittingl.(:S), L(Syes) andL(Sy,,).
. Although the greedy tree splitting algorithm based on single-
L(I'(S, m)) — L(S) > An,. (14)  mixture Gaussian distribution may not be accurate enough, it is

nevertheless computationally quite efficient. For single-mixture
Update the log-likelihoodL(Syes), L(Sno) by Per- Gaussian, the log likelihood(S) of a cluster at tree nod§
forming step 2). can be calculated by using the already available sufficient sta-
4) The algorithm stops if there is no terminal node that sastics from the untied state clusters without additional access
isfies step 3) and the minimum sample count constraings the data. As a consequence, the phonetic decision tree based
It should be noted that both(T'(S, m)) andL(S) are based state tying only constitutes a small portion of the computation
on multiple-mixture Gaussian distributions. This is because t{{eacoustic model building [19]. This may not be the case when
likelihood of the nodes is updated by its likelihood from theytiple-mixture Gaussian distributions are used in node split-
m-level optimal subtree, which is a combination of Gaussia@ﬁ;,g_ Although the proposed approach does not make a direct
from the corresponding tree leaves. The proposed approgaimation of the multiple-mixture Gaussian distribution in de-
utilizes anm-level optimal subtree to obtain an estimate ofjsion tree state tying, growing an-level optimal subtree can
the multiple Gaussian distribution for node splitting. Althougpecome expensive. Given a sefaf phonetic questions, finding
the m-level optimal subtreel’(S, m) is derived from the 5 two-level optimal subtre@’(S, m) involves in an order of
phonetic questions and using single-mixture Gaussians 9f » N operations of node splitting. The algorithmic com-
the untied states, the leaves of thelevel subtre€l’(5, m) plexity grows exponentially with the subtree level making
introduce a multiple-mixture Gaussian parameterization of thgnfeasible for application in large vocabulary speech recogni-
log-likelihood of the tree nod§. In addition, the multiple-mix- jgn.
ture Gaussian parameterization 6{5) obtained from the | order to reduce the algorithmic complexity, we propose a
proposed approach is honest in the sense that all its mixtuggseme that is based on caching the f6pest second-level
are supported on the data partition by the phonetic queStiglﬁestions of the previous search in a short-list table [6]. The
of the decision tree and it will not give an over estimate Qjhort-Jist of the besk second-level phonetic questions associ-
L(S). This is different from the previous approach, whergieq with left and right branches used to constructthtevel
the multiple-mixture distributions for the potential splits argptimal subtre@(S, m) is attached to the new children nodes
derived from ak-means algorithm without any constraintss ands,,, . In the future split, then-level subtree constructed
regarding phonetic properties. The conventional one-levgk 5 .. ands,., will be restricted to questions in the short-list.

1\We use the log-likelihood instead of the auxiliary function in the followind~OF tWo-level optimal subtree, this reduces the algorithmic com-
discussion. plexity of doing node splitting fronV, x N, to K x N,, where
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K is the depth of the short-list. This approximation is reason- TABLE |
able in two senses. First, the-level subtree constructed with NUMBER OF TRIPHONES EXCEEDING

. . . . DIFFERENT FREQUENCY THRESHOLDS INWSJ DATABASE
this caching scheme is always superior than the subtree con-

structgd from one-step greedy algorithm. Second, theffop Training data | #utterances min. Frequency
questions forS,.; and.S,, derived from them-level optimal

i . . 1 5 10 30
subtree construction of their parent nogleontain at least the
K bestm — 1 level questions. This provides a good coverage of SI-84 7,200 (15h) | 16,500 | 11,500 | 8,600 | 4,600
the questions used for the-level optimal subtrees &, and S1-284 38,700 (60h) || 22,500 | 18,000 | 14,400 | 9,600

Sno- The use of the caching scheme makes it practical to apply
the proposed:-level optimal subtree approach for phonetic de- TABLE Il
cision tree based state tying in large vocabulary speech recogni-  worp Error RATES FORNOVI2 WSJ BALUATION (SI-84,

tion tasks. In addition, other more aggressive caching schemes GENDER-INDEPENDENTMODELS)
can also be used which will lead to further complexity reduction.
In our speech recognition experiments, we observe a significant Language NOV92
speed-up without recognition performance degradation. model 5k-closed | 20k-open
bigram 6.7% 14.4%
VI. EXPERIMENTAL RESULTS trigram 5.0% 12.8%

The performance of the proposed decision tree clustering
algorithms was evaluated on different experiments foiiad ten, and 30 are listed for WSJ SI-84 and SI-284 training data
Street Journal(WSJ) task. Twelve mel-cepstral coefﬂmentgS ots
a}nd the .nor_mahzed energy plus thelr_ first and second or e the SI-84 training data set (7200 sentences, 15 h of
time derivatives were used as acoustic features. The ceps

mean for h sentence w lculated and removed ech), only 16500 triphones occur in the training data.
€an for each sentence was calcuiated a emoved. mong them, 8600 triphones have more than ten occurrences,

HMMs have three emitting states and a left-to-right t0|00|Og}//\'/h reas about 7900 triphones have less than ten examples
Training of the acoustic parameters was based on the Propogt '

two-level segmental clustering algorithm for decision tree staé% ut 22500 different triphones are observed in 60 h of

tving. Single-mixt del timated for all trioh eech for the SI-284 data, but only 14400 have more than
ying. single-mixiure models were estimated for all tnphonga, , examples. In the first level clustering of our approach, rare
exceeding a sample count threshold in the training data.

minimum count threshold of five and ten examples was usedtlrrqohones with less than five or ten examples are clustered into
: . pies roups of generalized triphones to increase the robustness of
our experiments, but no significant performance difference w

e estimates for the untied states. The second level decision

1% clustering is performed on the first level clusters. After

below the minimum count threshold were grouped by relaxwlﬂe decision tree based state tying, the triphone model based

f|rst. the left colntext and then the right gontext. A phonetlgn SI-84 training data consist of 3447 individual states tied
decision tree tying was used to cluster equivalent sets of contfﬁ{t

; fough various contexts. It has a total of 37000 Gaussian
dependent states and to construct unseen triphones. The fir ? 9

) . . &ributions. The average number of mixtures per state is 10.9.
trlphon_e HMMs were built b_ased on the tled_ states from t valuations on the WSJ tasks were performed on the official
clustering. The number of mixtures for each tied state depe

th t of training dat ianed and varies f ¢ V92 (si_et 05, si_et 20) and NOV93 (si_et_hl) test sets
?nlze_?mpu“ ° :alrtwgt at: ass.;gnet_ an fv?rr]lestwror Ortﬁrr the closed 5K and open 20K vocabulary. The results are
0 12. Typically, only two to three iterations of the two- evequ13tained based on a one-pass frame synchronous decoding

segmental clustering algorithm were performed to obtain hi%\nthout adaptation. The word error rates for the NOV92
guality acoustic models. Decoding was done using a one-pag !

N-gram decoder [26], in which the search was conducted valuation of the gender-independent (Gl) WSJ system trained

| d self-adiusting decodi h using th the SI-84 training data are tabulated in Table II.
a layered sefi-adjusting decoding graph using e Cross-worq o qe0onqg experiment, the WSJ SI-284 data was used in

triphone models. The standard SI-84 and SI-284 training dg{a, 1 5iing of the acoustic models. About 8100 of the 22500
sets were used to train the WSJ models. The pronunciati

lexicon was aenerated automatically using a aeneral En Iic())ﬁserved triphones occur less than ten times in the training data
9 y gag 9130d are grouped into 1029 generalized triphone clusters to en-

text-to-speech system (41 phones) [22]. The language mo Sel.ll e robust estimates for the state clustering. After the pho-

lused in the e(;(pler|mer_1(tjs :rbe the st?nd?]rd bigram and t”grﬁg}ic decision tree clustering, 8006 individual states with about
anguage models provided by NIST for the WSJ corpus. 99 000 Gaussian distributions (an average of 12.4 mixtures per
state) were estimated. The results for the NOV92 and NOV93
tests using this model are listed in Table lll. It is shown, that
Even for large training data sets the number of actually ob-low 3% word error rate in the 5k vocabulary NOV92 eval-
served triphones is only a small fraction of the total numberation for gender-independent models is achieved. The error
of possible triphones. For a phoneme inventory of 41 phoneses for the 20k vocabulary evaluations are between 9.8% for
plus two additional silence models, almost 80 000 possible cddOV92 and 13.4% for the NOV93 test, based on a trigram lan-
text-dependent phones exist. In Table I, the number of triphorgisage model. The 1.8% out-of-vocabulary words have a sig-
exceeding different minimum frequency thresholds of one, fivaificant contribution to the word errors in this open vocabulary

A. Two-Level Segmental Clustering
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test. These low error rates for both the 5k and 20k evaluations TABLE Il

indicate the high performance of the proposed two-level seffOrRD ERRORRATES FORNOV92 AND NOV93 EVALUATION OF THE WSJ TASK
. ; (SI-284, GENDER-INDEPENDENTMODELS)

mental clustering approach, and from now on, the model built

py two-level segmental c.Iu_stering algorithm_ was used asa base- Language NOV92 NOV93
line system for the remaining experiments in this section. odel Skclosed | 20k-open | 20k-open
B. Gender-Dependent Models bigram 5.0% 11.9% 15.4%

The experiments in this subsection are concentrated on the trigram 3.0% 9.8% | 134%

use of generalized features in phonetic decision tree state tying.
We first present results of the proposed unified maximum
likelihood approach to generate gender-dependent acoust TABLE IV

pp g g p . S§984 WORD ERRORRATES FORDIFFERENT GENDER-DEPENDENTACOUSTIC
models. We compare the proposed approach with approach@speLs witH TRIGRAM LM (SGD: SPLITTED TRAINING DATA, mMGD: MaP
based on MAP adaptation and training of separate gender ADAPTED MODELS, cGD: TAGGED DECISION TREE CLUSTERING)

specific models. Since gender identification is not the issue

of this paper, we assume the genders of the test speakers to Model NOvs2

be known. Table IV tabulates the word error rates of different SI-84 #states 5k-closed | 20k-open

gender-dependent acoustic models trained on the WSJ-84 male + female

dataset'using a trigram language modgl. ' SGD | 2,633 + 2,622 1.8% 12.2%
The first set of models (sGD) was trained following the con-

ventional practice of splitting the training data into male and fe- mGD |  2x 3447 45% | 121%

male subsets upon which two completely independent HMMs ¢GD | 2,753 + 2,735 4.4% 11.7%

for both genders were built. State tying for male and female
models were derived from separate decision trees constructed
from ge.nder SpeCIfIC .SUbsetS Of data' It resulted in tv.vo m.0d8%284 WORD ERRORRATES FORTDAIFBFLEIIE?E\N/TGENDER—DEPENDENTACOUSTIC
containing 2633 individual states for male and 2622 individualiopeis with TRIGRAM LM (SGD: SPLITTED TRAINING DATA, mGD: Map
states for female. Comparing to Table Il, a modest word error  ADAPTED MODELS, cGD: TAGGED DECISION TREE CLUSTERING)
reduction of about 5% was observed. Adaptation of gender-in-
dependent acoustic models to gender-dependent male and fe- Model NOVS2 NOV93
male models using MAP adaptation techniques resulted in two  g1-284 #states 5k-closed | 20k-open | 20k-open
model sets (MGD) with 3447 states each. It should be noted that

MAP adaptation does not affect the state tying relationship in

male + female

sGD 5,835 + 6,043 3.2% 9.8% 13.3%

the generic, gender-independent seed model. MAP adaptation
provides a more robust estimates for triphones and results inan mGD 2 x 8,006 3.0% 9.8% 13.2%
error rate reduction comparing to the baseline sGD models. The cgp | 5,984 + 6,181 2.9% 9.5% 13.2%

last row in Table IV is the result of the models obtained from the
proposed tagged decision tree clustering (cGD) approach using
generalized features. The algorithm decides, based on the data, mostly separated for males and females, while stops and
for every state of all triphones whether the state should be mddeatives share up to 34% of their states for both genders. This
eled separately for male and female or a joint state for both gexppears to be consistent with the dependency of phones on
ders should be used. The total number of states in cGD—HMMscal tract characteristics. The gender questions are competing
is 5488. About 420 of these states are shared between maleianthe decision tree with other questions about the phonetic
female models, which reduces the total number of individuabntexts. They are used only if it leads to a maximum increase
states slightly below the total of 5255 for the sGD-HMMSs. Thim the likelihood among all other questions and the minimum
performance improvement over gender-dependent sGD-modssple count constraint is satisfied. A leaf state is shared
is between 4% and 8%, and the relative error rate reductibatween genders if no gender specific question separating the
over gender-independent models is between 9% and 12% basede and female data was used in the path from the root tree
on the two evaluation test sets. In Table V, results based oode to that leaf tree node. Phonemes with more than 10%
HMMs trained from SI-284 data set are tabulated. The automatate sharing between genders in various contexts are listed in
ically clustered gender-dependent cGD-HMMs again perforiiable VI.
best among other approaches. The effect of training data fragFig. 3 illustrates the frequency of usage of gender questions
mentation may become more important for smaller databastes,different depths of the decision tree. The average depth of the
where any data splitting usually results in reduced performanteee in this experiment was 11.4. Most of the gender questions
Data-driven splitting and data sharing between conditions care used in the upper part of the trees. This is an evidence that
help to improve the robustness of condition-dependent modéls many phones strong gender-dependent variations exist and
in these cases. gender-dependent acoustic modeling is useful. The proposed
An analysis of the decision tree used in constructinggging approach to incorporate general features into phonetic
cGD-HMMs shows a phonetically reasonable behavior. Statscision tree tying detects these dependencies automatically and
for vowels and diphthongs (except for the schwa sound, /aghnerates individual states if useful.
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TABLE VI TABLE VII
RATE OF STATE SHARING BETWEEN GENDERS FORSOME PHONEMES WORD ERROR RATES POSITION-DEPENDENTHMMS (TRIGRAM LM)
/t/ | faal | Jd] | Jey/ | /eb/ | f2h/ [ /ih/ | /b/ | /th/ | Jub/| /hb/ | [p/ Model NOV92
34% | 32% | 30% | 29% | 25% | 22% | 22% | 22% | 22% | 21% | 17% | 15% Skclosed 20k-open
POS-IND | POS-DEP | POS-IND | POS-DEP
SI-84 GI 5.0% 4.4% 12.8% 11.6%
228 SI-84 | mGD 4.5% 4.2% 12.1% 11.2%
g fgg SI-284 | GI 3.0% 3.0% 9.8% 9.5%
§ 100 SI-284 | mGD 3.0% 2.9% 9.8% 8.8%
50 =
0 Bl " el GG I —
123456 7 8 910111213 14 15 16 17 18 19 20 TABLE VIl

SHARING OF STATES BETWEEN POSITION-DEPENDENTMODELS FOR

ree depth DIFFERENT PHONEME CLASSES

Fig. 3. Frequency of usage for gender questions over the depth of the decision Fricatives | Stops | Nasals | Vowels
tree.
65% 1% | 76% 80%

C. Word-Boundary Dependent Models D. Multiple-Mixture Gaussian Based Tree Node Clustering

The proposed tagging scheme for decision tree clustering wasgn this subsection, we present some experimental results of
also applied to modeling word-boundary dependent HMMusing multiple-mixture Gaussian distributions in decision tree
While some of the context dependent models (silence and noisele clustering. Between one and four mixture distributions
models) occur only at word boundaries, most of the triphonggere estimated for each untied state depending on the amount of
appear in both inter- and intra-word positions and exhibidtvailable data in the WSJ SI-84 training set. For every examined
various degrees of dependencies on their positions. Moreovede in the decision tree, themeans algorithm was applied to
the number of occurrences of these word-boundary dependegitulate a four mixture distribution. The auxiliary function ac-
triphones in the training data also varies drastically, and somerding to (11) was used as objective in node splitting. A de-
units may not have enough samples to be modeled separatghion tree with 3719 leaves was grown based on this objective
Table VII depicts the word error rates for position-dependefitnction and unseen triphones were constructed in a standard
(POS-DEP) HMMs trained on WSJ SI-84 with the proposeslay. The average log-likelihood for the training data increased
generalized clustering. Results for position-independent modé&tsm —99.69 to—98.01 compared to the standard single-mix-
(POS-IND) are also included for comparison. ture likelihood calculation. Fig. 4 illustrates the relative likeli-

The use of position-dependent SI-84 models leads to a 16w0d gain for some phonemes when multiple-mixture proba-
word error rate reduction for gender-independent (GI) HMMgility density functions were used in node splitting.
and a 5% word error rate reduction for gender-dependentlhe biggest gain by the improved acoustic modeling is noted
(mGD) models. The SI-84 systems achieve 95.8% word acd@r vowels (2.3%), while the likelihood for fricatives increases
racy for WSJ-5k and 88.8% word accuracy for the WSJ-20¥ly about 1.0%. The average improvement is 1.7% over all
task. The total number of individual states for the position-d@honemes. This shows that the four component mixture den-
pendent HMMs increased about 30% from approximately 34@dies fit the data better than the single Gaussian used in the
to 4400. For the SI-284 system, a slight error rate reducti§f/ndard decision tree. We expect this improved acoustic mod-
was obtained for the gender-independent 20 k task and a m@ligg in the decision tree clustering to increase the quality of
significant 10% word error rate reduction was observed for tiige state tying. HMMs based on the proposed multiple-mixture
gender-dependent models over the baseline results. Table \¢lUstering were constructed using WSJ-SI84 training data, and
illustrates the average percentage of state sharing betwég model was evaluated on WSJ-92 evaluation test sets. The
inter- and intra-word models for different phonetic classes. Word error rate for the 5k vocabulary task was slightly reduced

The number of states shared between inter- and intra-wdf@m 5.0% to 4.8% and for the 20k evaluation the error dropped
models varies from 30% for the /dh/ sound and 100% for rafé@m 12.8% to 12.5%. This shows how the improved acoustic
phones like /zh/. These rare phonemes do not have sufficient B¥@deling during the decision tree clustering leads to better state
amples in the training data to allow a state split into position-d&ing and increases the model accuracy.
pendent variants of the same phoneme. Some vowels like /eh/
seems not much affected by word boundaries and share uﬂzto
88% of the states. The proposed tagged decision tree clusteringxperiments of using the proposed mutli-level optimal sub-
approach automatically balances the need to generate separatealgorithm for state clustering were also performed. A two-
position-dependent states for improved acoustic resolution dadel optimal subtree, based on a short-list of top questions, was
the availability of training data for robust model parameter esttonstructed, and multiple-mixture Gaussian distributions were
mation. estimated from the optimal subtree. The average log-likelihood

Multilevel Optimal Subtree Approach
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Fig. 4. Likelihood increase in percent for some phonemes.

for the training data increased from99.69 to—98.65 com- TABLE IX

pared to the standard likelihood calculation. In order to verify ~WORD ERRORRATES FORTWO-LEVEL OPTIMAL SUBTREE BASED
. . . CLUSTERING (TRIGRAM LM)

the short-list based caching scheme, an experiment was con-

ducted using a short-list t_)ased on the top-30 question; and the Model NOV92

results were compared with a short-list of si¥e= 208, which

. . L . . 5k-closed 20k-open

is a complete list containing all possible questions. The rank of

the best two-level questions during the subtree construction was std. | two-level |  std. | two-level
recorded. First, it was observed that questions used in tree con- S84 | GI | 5.0% 4.5% | 12.8% 12.2%
s:truction are quite different between the .proposed multilevel op- SI-8¢ | mGD |l 4.5% 44% | 121% | 11.8%
timal subtree approach and the conventional one-level tree node size1 | a1 307 0% | 9.5% 0.5%
splitting scheme. In 40% of the cases, the two-level optimal sub- 2 Skl Bl i
tree algorithm and the conventional one-level tree splitting algo- SI-284 | mGD || 3.0% 2.9% | 9.8% 9.4%

rithm selected identical questions. But for the remaining 60% of
cases, the best questions selected by the two approaches dj =
Secondly, the top-30 short-list provided a 96% coverage of tg,,h was devised which combines the decision tree based
blest (Iq.uestlodns L:S?d n th? f‘ubtrze algon:)hm pasled on the cQe 1ying with agglomerative clustering. Under this approach,
plete list, and only in 4% of the nodes a suboptimal question Wag oy seen triphones in the training data are first clustered into
chosen because the best two-level question was notin the topsaQerajized triphones. These generalized triphone clusters are
short-list. Th|§Just|f|es the usage of_the short-list scheme for the. | | sed in the second level decision tree based state tying to
two-level optimal subtree construction to reduce the amountgh e the robustness and coverage of the decision tree based
required computation for the likelihood evaluation of the treg. ., stic modeling. In order to incorporate various features in
nodes. The word error rates for gender-independent and Mia, gecision tree clustering, a unified maximum likelihood

adapted gender-dependent HMMs using optimal subtree bagehe\york for generalized phonetic and nonphonetic features
state clustering are given in Table IX. . was proposed. A tagging scheme was used to tag various
The highest error rate reduction of about 10% based on fi&res of interest and the selection of these features in the

g were described. A two-level segmental clustering ap-

apout 3%-4%. It is interesting to note that the pe_rformanﬁ:@ad to training data depletion, the proposed approach makes
differences between gender.-dependent and gender-mdepenﬂg&b efficient use of the entire training data and allows training
models for the two-level optimal subtree based state cIusten&gta sharing across various conditions. As a consequence, the

tering method. The two-level optimal subtree splitting algorith%rious phonetic contexts to tying states with generalized

clearly helps to build an improved decision tree and to enhangg, hetic and nonphonetic (e.g. gender, position, etc.) features.
the quality of the acoustic models. Increasing the levels of t

. - - , is leads to a significant increase in the amount of training
optimal subtree in node splitting beyond two levels did not pro, 1y hjes for condition dependent acoustic modeling and the

vide additional performance improvements in our experimentsy, siness of the condition dependent model is also enhanced.
Our study indicates that multilevel optimal subtree building P'%0reover, there is no hard limit on the number of conditions
cedure can be made computationally feasible and it can signii-\hich the model can incorporate and the whole process is
icantly improve the robustness of the model. The experimenE@Ata driven. Finally, two methods based on multiple-mixture
resglts provide. the first experimental evidencg that mu“"e"@aussian parameterization were described and applied in
optimal tree building procedure beyond CART is advantageolsye yocabulary speech recognition to improve the evaluation
in large vocabulary continuous speech recognition. function in decision tree state tying. One method is based
on ak-means fitting approach and the other one is based on
an application of optimal multilevel subtree. Both methods
are consistent with the structure of the decision tree, and
In this paper, methods of improving the robustness atiderefore, the prediction power of the decision tree is well
quality of acoustic modeling using decision tree based statmintained without the need of a separate tree for unseen

VII. SUMMARY
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triphone generation. The proposed approaches were tested pa] W. Reichl and W. Chou, “Decision tree state tying based on segmental
the Wall Street Journal corporation and compared with other
known approaches. The efficacy of the proposed approach
were verified and a significant improvement in model quality
and recognition performance was obtained. The application
of the generalized decision tree to word-boundary depende|[12t1]
acoustic models for example reduced the word error rate for
the 20k-WSJ test data up to 10% and two-level optimal subtre&?l
based clustering resulted in about 5% error reduction for thes,
same test data.
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