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Abstract—Utterance verification represents an important tech-

nology in the design of user-friendly speech recognition systems.

It involves the recognition of keyword strings and the rejection
of nonkeyword strings. This paper describes a hidden Markov
model-based (HMM-based) utterance verification system using
the framework of statistical hypothesis testing. The two major
issues on how to design keyword and string scoring criteria
are addressed. For keyword verification, different alternative
hypotheses are proposed based on the scores aftikeyword
models and a general acoustidiller model. For string verifi-
cation, different measures are proposed with the objective of
detecting nonvocabulary word strings and possibly erroneous
strings (so-called putative errors). This paper also motivates the
need for discriminative hypothesis testing in verification. One
such approach based on minimum classification error training is
investigated in details. When the proposed verification technique
was integrated into a state-of-the-art connected digit recognition
system, the string error rate for valid digit strings was found
to decrease by 57% when setting the rejection rate to 5%.
Furthermore, the system was able to correctly reject over 99.9%
of nonvocabulary word strings.

I. INTRODUCTION

out-of-vocabulary events is essential for improving the perfor-
mance of a general keyword spotting system. The issue of how
to build an appropriate filler model has been extensively stud-
ied during the past few years. Rohlicek al. [24] described

a keyword spotting system based on a continuous-density
HMM with a filler that was constructed from either segments
of the keyword models or by weighting the distributions in
the keyword states. Wilpoet al. [37] presented a keyword
spotting system that used a single filler model which was
developed by training on transmission noise and extraneous
speech input.

To reduce false alarm rate, a large number of studies
have incorporatedkeyword verificationfollowing detection
and segmentation of speech into keyword hypothesis via a
conventional Viterbi search. These studies employ some type
of alikelihood ratio distance to verify whether or not a given
keyword exists within a segment of speech. The key issue is
the selection of an appropriate alternative model to provide an
antiword scoring in computing the likelihood ratio statistics.
This has been traditionally done using a general acoustic

URING recent years, it has become increasingly essenfidler model. Rose and Paul [27] reported high performance
to equip speech recognition systems with the ability téeyword verification with monophone filler models trained

accommodate spontaneous speech input. Although providffgm transcribed speech. Bourlagdal. [3] obtained improved
this capability facilitates a friendly user-interface, it also posé&gyword verification performance over a single monophone
a number of new problems, such as the inclusion of ofiter model or multiclass broad phonemic models by using the
of vocabulary words, false starts, disfluency, and acoustiédierage of theV-best local scores of the phonemic models as
mismatch. For example, in a recent connected digits triah antiword scoring. Besides using likelihood scores, Moreno
conducted in Bloomington, MN, users who were promptegt al. [16], Chigier [5], Feng [9], and Sukkar [33] have
to repeat their telephone number would often begin by sayifftyestigated alternative features, including durations (state,
“Uh,...,” “My telephone number is...,” or “what?” In theseunit, word, etc.) and acoustic features (e.g., state’'s average
situations, a speech recognition system must be able to deg&fistrum). Durational, acoustic, and language knowledge have
and recognize the “keywords” and reject the “nonkeywordsbeen particularly useful in large vocabulary speech recognition
Recognizers equipped withkeyword spottingapability allow systems [25], [36]. Other issues in keyword verification, such
users the flexibility to speak naturally without the need tas reducing the amount of task-specific speech training data
follow a rigid speaking format. and the use of context-dependent acoustic models, have been
Significant progress has been made in keyword spotting ®#dressed by Rose and Hofstetter [28], [29].
unconstrained speech using hidden Markov models (HMM's). To improve the discrimination between keywords and out
Keyword spotting systems introduce a filler (or garbag@f vocabulary speech, several studies have introduced dis-
model for enhancing keyword detection and absorbing o@riminative training techniques following maximum likelihood
of-vocabulary events. Proper modeling of filler models usirgstimation. Rose [26] applied maximum mutual information
Manuscript received June 3, 1995; revised July 22, 1996. The associg}éMl) [1] estimation for t_he discrimination Of keywords from
editor coordinating the review of this manuscript and approving it fod broad class of acoustic events. Villarrubia and Acero [35]
publication was Prof. Kuldip K. Paliwal. applied affine transformation to the log-probability of the
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thresholds during the training process. Other studies includedl be discussed in detail and later evaluated on a speaker-
performing some type of linear transformation or discriminandependent connected digits task.
tive feature analysis [31]—-[33]. The rest of the paper is organized as follows. Section Il dis-
As a generalization to keyword verificationtterance veri- cusses statistical hypothesis testing for utterance verification,
fication attempts to reject or accept part or all of an utteran@nd motivates the use of the discriminative training methodol-
based on a computed confidence score. It also attempts to regept. Section Il presents different strategies for reporting ver-
erroneous but valid keyword strings (the so-called putativication results. Section IV describes the database used in our
errors). This is particularly useful in situations where utteexperiments as well as the front-end process of our recognition
ances are spoken without valid keywords, or when significasigistem. Section V reviews the training/recognition/verification
confusion exists among keywords, which may result in a higtystem. Section VI presents several formulations for digit
substitution error probability. In general, to deal with theseerification based on likelihood scores of three types of
types of problems, recognizers must be equipped with bothmmdels, namely, keywords, antikeywords, and filler. The con-
keyword spotting capability to correctly recognize keywordstruction of a string verification score based on the combined
embedded in extraneous speech, and with an utterance veviirification scores of the digits is discussed in Section VILI.
cation capability to reject utterances that do no contain valiection VIl outlines the use of discriminative minimum error
keywords and utterances that have low confidence scores.training in HMM’s and presents experimental results when
In a study on utterance verification, Sukkar and Wilpon [33jpplying MCE/GPD training to utterance verification. Section
introduced a two-stage method where the likelihood scoresl&sdiscusses a number of open issues in utterance verification
well as the scores of a segmental generalized probabilistied outlines directions for future efforts. Finally, a summary
descent (GPD) method [6] were combined using linear dignd conclusions will be given in Section X.
criminant analysis to provide a keyword/nonkeyword decision.
Significant improvement over a HMM-based classifier was Il. STATISTICAL HYPOTHESIS TESTING
reported when the two-stage approach was applied to operator-

assisted calls. Good performance was later reported when £or a given speech segmett = {01, Oz, -+, 01}, the

L . L rpose of pattern classification is to determine to which class
erélillsarstar\i?]%rst)z?ggl'was applied for verification of connecte%‘j&O)- .6 [Crck - _1,---,K} the segment_ b_elongs. !f_ the
This paper describes a HMM-based recognition/verificatio nditional probabilitys(O | C) and thea priori probab|||ty_ .
system. A two-pass strategy, with recognition followed by vefx Cj) are as_sgm_ed known, the_n_ th(_a optimal c lass decision
ification, is adopted. In the first pass, recognition is perform (O.). that minimizes -th.e cIaSS|f|cat|on error 1s -the Bayes

via a conventional Viterbi beam search algorithm, whic ecision rule that maximizes treeposterioriprobability such
segments the test utterance into a string of keyword hypothe %t
or N-best strings of keyword hypotheses. In the secondé(O)
pass, utterance verification is performed, which computes a
confidence measure that determines whether or not to reja%t
D o 3 el foruaton i b tet el ypothsitl it a e

hypothesis that a given keyword or a set of keywords exis gyword, KWy, exists and is correctly recognized within a
within a segment of speech against #iternativehypothesis segment of speecidy, against the alternative hypothesis,,

that such keyword or keyword set does not exist, or that KW, does not exist, or is incorrectly classified, within

. . o at speech segment. If again the probabilities of the null and
incorrectly classified, within that speech segment. Based on the . :

e e alternative hypotheses are known exactly, then according to
well known Neyman—Pearson Lemma [2], a verification te

. - . O Neyman—Pearson Lemma [2], the optimal test (in the sense
can then be constructed using a likelihood ratio statistic. In re F y [2] P (

. . . . maximizing the power of the test) is usually the probability

operational cases involving HMM systems, however, ne'th%tio test such that the null hypothesidy, is accepted if
the null nor the alternative hypotheses can be evaluated ex- '
_ (O | Ho)

actly. It also complicates the issue that some typeoofiposite
pe(O | Hy)

alternative hypothesis is needed to provide improved discrimi-

nation between keywords and out-of-vocabulary words as well o )

as improved detection of near-misses in keyword recognitioh?is is referred to as thiéelihood ratio teswherep, (O | Ho)

To facilitate this capability, this study will investigate the us@ndpi(O | H1) are the probability density functions (pdf's)
of two sets of models to represent the alternative hypothespé the null and the alternative hypotheses, respectively,;and
namely, antikeywordsand filler. Considering that this test isiS the critical thresholdof the test [2], [10f

not guaranteed to be optimal for HMM-based recognition, we FOr testing simple hypotheses where the pdf'#fofand H,

will investigate the use of discriminative hypothesis testing® known exactly, the likelihood ratio test is often the most
where a class of discriminant functions is used to perforRpwerful testfor a given level of significance. For HMM-based
classification and hypothesis testing, and the required parath€ech recognition/classification systenif, represents the
eters are discriminatively trained using the available trainirf|@SSCx which is either a sound, a subword unit, a whole-word

data. One.S'UCh Clgss_baSEd on minimum C'Ia_SSiﬁcatior_] €M The termscritical threshold and verification thresholdare both used
(MCE) training objective and the GPD training algorithminterchangeably in this paper.

= arg ml?xp(Ck | O) = arg ml?xp(O | Cr)p(Ch).
(1)

the other hand, for statistical hypothesis testing, the prob-

LR(K) > T )
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other classeqC;}, s.t. j # k. The parameters\, of the

class C;, typically represent the state transition matrix, the

state observation probability and the initial state probability. \
In this framework, however, bothy, (O | Hy) andpx(O | Hy) PILRACKEICW, @ ) / !
can only be estimated by assuming a parametric form of the

e Typei!/ TYPEH |
conditional densities and the distribution of the hypotheses. f i \

unit, or even an utteranceéd;, on the other hand, represents T
/\ P{LR(K)IRW S0 )
1
|
|

Clearly, any assumption of a parametric distribution may cause A

i

a mismatch between the “true” and estimated conditional !
distributions. This possible mismatch as well as a possible LFk)

estimat!on error due to msu_fﬁ_uent training date_l myahdate thﬁg. 1. Example showing histograms of the likelihood rafi® (k) when
optimality of the Bayes decision rule and the likelihood ratiac\v, € ¢, and KWy ¢ C.

test implied by the Neyman-Pearson Lemma.

In an effort to alleviate some of these problems, discrimingg provide a trade-off between Type | and Type Il errors. For
tive hypothesis testing is SOUght where a class of diSCI’imin%}tamme, one may choose to haveaiua| error rate which
functions is used to perform classification and hypotheajﬁ)md require Setting—k to pro\/ide equa| amounts of Type |
testing. The form of the discriminant functions is required to Qﬂ]d Type Il errors. A|ternative|y,,—k may be chosen to provide
specified and their parameters are estimated from the train@ghinimum total error rateof Type | plus Type Il errors. Both
data. One such class of discriminant functions, based on M@Fthese measurements will be frequently utilized in this paper.
and GPD training, is described in Section VIII. A two-class To select an appropriate operatirig point in utterance veri-
problem is formulated where the null hypothesis assumes thightion, it is conventional to plot a histogram gfR(k) for
the test utterance is correctly recognized as claég and the gaJ| training samples from clags; and another histogram for
alternative hypothesis assumes ttvas incorrectly recognized || training samplesiot from classCy,. An example of such a
as classCy. Based on this framework, we define céass representation is shown in Fig. 1. This representation serves as
confidence measurr discriminant functiol, gx(O; A), for  a way to quantify approximate Type | and Type Il errors. The
classCj. ,which evaluates the confidence of accepting the n@haded area to the right of represents the amount of Type II
hypothesis tha) € Cj. The parameter sefy, in g,(O;A)  error and the shaded area to the leftpfepresents the amount
is the recognition model parameters. We also defin@m@it  of Type | error. The dashed line corresponds to the point where
discriminant measure7,(O; A) which is used to evaluate ,(LR(k) | KW, € Cr) = mup(LR(E) | KWy, & Cy).
how “unlikely” O containsC}y. A measure similar to the Io0g  To provide a more accurate representation of the errors, a
likelihood ratio in (2) can now be defined as a function of theaceiver operating characteristic (ROC) curve may be used.
difference betweem; (O; A) and G (O; A) An example is shown in Fig. 2, which displays the detection

AN ) ) rate (1—Type 1) versus the false alarm rate (Type II) as

h(038) = —ge(O; A) + Gr(O; A), 3) the operating point is varied. This type of representation has

dk(O7A) is referred to as thenisclassificatiormeasure. The two benefits. First, the diagonal line from the top left to the
MCE/GPD training algorithm involves finding a set of pabottom right corners of the plot intersects the ROC curve
rameters for each class that minimizes the expected vaRiethe equal error rate point. Second, the performance curve
of di(O; A). The implied discriminative test is equivalent taProvides an overall picture of the trade-off between Type | and

maximizing the likelihood ratioLR (k), since Type Il errors when varying the operating point. This helps in
selecting an appropriate operating point to satisfy a particular
LR(k) = —di(O; A). (4)  application requirement. Notice that fewer errors incur when

This is similar in spirit to the normalized verification functioniiig i?)?;iormance curve approaches the top left comer point of

defined in [15] for speaker verification. In this paper, the .
MCE/GPD method will be used for training the filler and Due to the fact that ROC curves do not provide the

the keyword (i.e., recognition) models. The effect of applymnecessary tool to compare different statistical tests, since

discriminative training of this nature on both recognition aner?gr Fljg\?eslissit rig ;r::]ren:i?;f: rizgésrse;?@fotoh;i‘/g V:tnc;:%ther
verification will be discussed. ' y y

representation to show the error amount as a functiomy, of
An example of such a representation is shown in Fig. 3. The
two dotted curves represent the accumulated Type | and Type
Statistical hypothesis testing is often evaluated based lbrerrors. The solid curve represents the total error rate. From
two types of error measurements, namely, false rejection ¢bis plot, one could deduce the minimum total error rate as
Type I) and false acceptance (or Type Il—also referred to a&ll as the equal error rate. The use of histograms, ROC's
false alarm). The former type of error occurs when a nudind error rate curves will be frequently seen in this paper.
hypothesis (e.g., keyword) is rejected, whereas the latter typeA final thought regarding performance evaluation for key-
occurs when a nonvalid null hypothesis (e.g., nonkeyword), word spotting and utterance verification is that one should
a valid keyword that is incorrectly recognized, is accepted. Bijstinguish between making an error due to out-of-vocabulary
appropriate selection of the critical thresheld it is possible words and an error due to a confusion among valid keywords.

Ill. PERFORMANCE EVALUATION
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In order to provide nonkeyword utterances for training and
verification, about 6000 phonetically rich sentences, modeled
after the TIMIT sentences [14], was collected using the same
recording environment as before. Half of this data was applied
for training the filler model and the other half was used for
testing.

The front-end feature extraction process was conducted as
follows. Input speech, sampled at 8 kHz, was initially preem-
phasized (1-0.95') and grouped into frames of 240 samples
with a shift of 80 samples. For each frame, a Hamming
window was applied followed by autocorrelation analysis and
LPC analysis using a tenth-order Durbin’s recursion method
[18]. A 12-dimensional LPC-derived cepstral vector was then
computed and liftered using a weighting of the form

W.(m) = [1 + 6sin (%)},

The first- and second-time derivatives of the cepstrum, the

so-called delta-cepstrum and delta-delta cepstrum, were also
computed. Besides the cepstral-based features, the log of the
energy, normalized by the peak sample, and its first- and

second-order time derivatives, were also computed. Thus, each
speech frame was represented by a vector of 39 features
consisting of 12 cepstrum, 12 delta-cepstrum, 12 delta-delta
cepstrum, 1 energy, 1 delta-energy and 1 delta-delta energy.
Following feature extraction, signal bias removal was applied

for channel normalization [20], [21].

1<m<12. (5

V. TRAINING/RECOGNITIONVERIFICATION SYSTEM
Each keyword (i.e., digit) is modeled by aW,-state

Fig. 3. Example showing the variations of Type I, Type Il, and total errors " . . . .
J b 9 ype Ly continuous density left-to-right HMM withd/,,;,; mixture

as a function ofry,.

For example, a keyword{W; may be detected as a valid
keyword but identified from clas§;|;«. In this paper, such
errors will be referred to as “putative” errors. Putative errors

Gaussian state observation. The PDF for the observation vector
O, from stateS; and HMM J;, is defined as

Mmix

p(O¢ | Sy, M) = Z hjmN (O¢; pkjm, Zrjm)  (6)

can also be of Type | and Type Il. When performing utterance m=1

verification, two levels of verification will be carried out. Th
first tests whether a valid digit string is being detected. T
second tests for any putative errors. These two tests co

Svhere crjm IS the mixture weight andV'() is a multivariate
gussian distribution with mear,;,, and diagonal covariance

kjm-

take advantage of different statistical information, however, Training of each keyword model consisted of estimating

only one set of statistics is utilized in this study, as will bcleh

discussed in Sections VI and VII.

IV. SPEECH DATABASE AND FEATURE EXTRACTION

A speaker-independent telephone-based connected digigsned. An antikeyword can be considered as a digit-specific
database was used in this study to evaluate the verification silger model. It is based on a similar concept to the cohorts
tem. This database was collected across two regions, namalyspeaker verification [30]. An antikeyword moda}, is
Long Island, NY, and Boston, MA, over a digital T1 inter-generally trained on the data of all keywortisit that of
face. Speech was recorded using four different microphokeyword K'W);. Further explanation of this will be provided
handsets, two electret and two carbon button. Digit strings the next section.
of lengths 10, 14, 15, and 16 digits, corresponding to creditAside from keywords and antikeywords, we also introduced
card numbers and long-distance telephone numbers, wargeneral acoustic filler model trained on nondigit speech
collected from 250 adult talkers (125 males and 125 femaledpata, and a background/silence model trained on the nonspeech
Approximately half of the speakers were used for trainingegments of the signal. Therefore, a total of 24 models were
the HMM'’s and the other half for testing and evaluating thesed, corresponding to 11 keywords, 11 antikeywords, filler,
various verification techniques. The training set and the testiagd background/silence. Each model was represented by a ten-
set consisted of 2735 and 2842 valid-digit strings, respectivetate HMM with 16 Gaussian densities per state, with the

e mean, covariance, and mixture weights for each state
using maximum likelihood (ML) estimation (e.g., [17]). In

this study, the state transition probabilities were fixed at 0.5.
For each keyword model, an antikeyword model was also
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whereT}, is the number of frames allocated for digit This
type of formulation is believed to improve discrimination

_ Keywords |- 1 Keywords
’ HMM Training | _Anti-keywords
o il |

between keywords and out of vocabulary words.

The next two choices for the alternative hypothesis intro-
duce a digit-specific antidigit model in order to provide better
detection of near misses in digit recognition. We first consid-
ered using a type of a geometric mean of all competing digit
models. For digit modeh,,, for example, the corresponding
antidigit function would be

Speech Reject/Accapt?

| Verification |

Vitedi . R |(w1 sz KWN FL Test
st

Decoding

Fig. 4. Block diagram of the training/recognition/verification system.

GPO:N) =log | = 3 el (0|0} ©

Recognized String FLOKW, KW, ... KW, H 2
hIFR
‘ ! where N is the total number of digit models (i.e., 11,is
Keywords KR ethood | a positive constant, ang; (O | A)) = 7-log[p(O | )],
T == = | Rectheopt? This type of discrimination is believed to improve detection
4 AU R — of near misses in digit recognition. Therefore, digit strings with

possible putative errors could be detected. One would notice
that the alternative hypothesis in (8) is somewhat similar to
the concept of cohorts in speaker recognition [30]. It is also
similar to the antidiscriminant function defined in minimum
error discriminative training (see Section VIII) [6], [7], [12],
exception of the background/silence that included a single stft8]. In this formulation, ifx is set to infinity, then only the
of 32 Gaussian densities. first competing digit (i.e., second best) would be considered.
A block diagram of the training, recognition, and verifica- The obvious problem with the antidigit function in (8) is that
tion system is shown in Fig. 4. A two-pass strategy is adoptéé-best digit scores would be needed for each digit hypothesis
consisting of recognition followed by verification. In the firsin order to compute the geometric average. If computational
pass, recognition is performed via a conventional Viterbi bea@ast is an issue, then this type of formulation would pose a
search algorithm, which segments the test utterance intddr@blem. To obtain a valid approximation of the same function
string of keyword hypotheses. In the second pass, an utteranéhout having to compute likelihood of all competing digits,
based confidence measure is constructed by combining W have trained 11 digit-specific antidigit modéls; } using
likelihood scores of all keywords and their correspondindie same ML training procedure for obtaining the digit models.
antikeyword and filler models. In the example shown in Fig. &ach model,\, is trained on all digits except of the data for
each antikeyword modek W, is specific to keywords W,  digit &
while the filler model, FL, is the same for all keywords.
A likelihood ratio test is then performed, and the utterance

as a whole is either accepted or rejected. Further details are o o )
presented in Section VII. By using the function in (9), an antidigit score becomes avail-

able without having to compute a word-best hypothesis but

at the expense of increasing the number of models. Therefore,
there is a choice of either more computation when applying
G?(0; ), or more memory when applying'”)(O; A).

N I,
L

Fig. 5. Schematic diagram of the verification test.

Filler 3

GY(051) = 7-loglp(O | W) ©)

VI. DIGIT-BASED VERIFICATION

Starting with four sets of HMM's, namely, 11 digifs\ },
%ﬁegI?\It_sgz?tm\(,:e222:;%;s{i2kgér?iliaedn%(Z/?abilkggg:g\sthzngu” The next choice of an antidigit function is to combine
I o 15 Larred ot both G{V(0; A) and the best of3(?(0; A) or G{¥(0; A)
oAV kY AV,
hypothesis that a specific digit exists in a segment of speec?l that to achieve improved discrimination between keyword

O versus the alternative hypothesis that the digit is not prese L honkevword models as well as reasonable detection of
Based on the likelihood ratio test given in (2), the digi'i;1 yw w :

is accepted or rejected if its lielihood ratiBRx(O | A) putative errors. Although there are many ways for constructing

lies above a specific verification threshotg (here, A = Zﬁg?naa}ltfil\]/gcﬂOnéguzlsrilp:‘?)ra\éier;gaeswas chosen thus defining the
{)‘k}v{)‘k}v)\sv)‘f)- yp g

In this study, we considered four different formulations G%)(O;A) =log [y exp {,QG;})(O;A)}
for the alternative hypothesis [i.ep (O | Hy) in (2)]. The @)
first choice is simply to use the general acoustic filler model + (1 —7) -exp {sG}(O; A)}]
A, which isdigit independentThis is trained using nondigit or
extraneous speech and is the same for all digits. The Iikelihooq;gi)(O;A) = log [’V . exp {mGS)(O;A)}
for the alternative hypothesis is defined as

1
B

(10

+(1—7v)exp {/iGS’)(O; A)}] g

1
GV(0:A) = = log[p(O | A 7
e ) T3 oglp(O | A1)l @ where~ is a weighting that has been set to 0.5 in this study.
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Fig. 6. Histograms for digit 9 using a likelihood ratio distance based drig. 7. ROC performance curve for digit 9 using a likelihood ratio distance
GsP (05 1), based onG{" (O; A).

In order to compare the above four criteria for representing '®
the alternative hypothesis, one can construct two histograms oo
for each keyword consisting of in-class and out-class likeli-
hood ratio scores (as suggested in Fig. 1). The overlap between
each two histograms corresponds to the amount of confusion 7
of the keyword with all other keywords and nonvocabulary
words. We will consider the digit “9” as an example. Fig. 6
shows the two histograms computed usiﬁél)(O;A). The
histogram on the right represents the distribution of the training
samples from the digit 9. Similarly, the histogram on the left
represents the distribution of the training samples that are not
from the digit 9 (i.e., this involves the rest of the digits as
well as the nonvocabulary words). From this representation, o1}
approximate Type | and Type |l errors can be computed for ‘ ‘ ‘ ‘ . , , . .
each digit for a given choice of;, (see Fig. 1). ° 1 2 ememey 20

By changing the value of;, for digit 9, a ROC curve can be
constructed as shown in Fig. 7. This representation is usefig- 8- R%% performance ((:?Eq)rves for digit “9” using likelihood ratio distances
since it provides an overall picture of the amounts of err§pSed Oncs™ (05 A) and Gy (05 A).
that would be incurred when operating at different verification
thresholds. For example, the equal error rate point for the digitAlthough the curves are quite comparable, using a likelihood
9 is 1.9% when setting; to 3.1. The minimum total error rate ratio score based on’)(O;A) versust)(O;A) results in
is 3.3% when setting;, to 2.8 If a new operating point, say a smaller error rate. A similar observation was noticed when
4.3, is established, then the Type | and Type 2 errors becorf@ evaluated on the remaining set of digits. For this reason,
5.0 and 0.7, respectively. Ideally, one would like to have ge opted to use?f’)(O;A), which will avoid the additional
minimal change in the error rate when varying the operatiRgmputational effort needed to perform wond-best but at
point slightly. This touches the issue of robustness, which gge expense of nearly doubling the number of models.
addressed in [19] and [23]. The second experiment was performed to verify the role

With the aid of histograms and ROC curves, we now need & introducing a digit-specific antidigit model. We evaluated
determme whl_ch of thg Qntldl_g_n fgnchons p_resented in (7) Qe two functionsGS)(O;A) anngf)(O;A) since the former
(11) is best suited for digit verification. A series of experimenig,nsiders a filler model only and the latter uses both the filler
was performed. The first experiment compagg@ (0; A) and and the antidigit function of{”’(0; A). Upon examination
GS’)(O;A)- Recall that both measures incorporate the concegitthe histograms of these two functions in Fig. 9, it appears
of digit-specific antidigit model with the former requiring theyyat G§4)(O;A) is able to provide a better class separation
computation of anV-best digit hypothesis/{ was set to 4) thanG_gl)(O;A), resulting in lower Type | and Type Il errors.

a_”d the latter requiring the construction of an antidigit HMMThe two corresponding ROC curves for the two functions are
Fig. 8 shows the ROC curves of the two functions for the d'géthown in Fig. 10. Again, the advantages of representing the

SNote that different operating points may be needed to achieve equal erﬂ“'emat've mo_del by an am'keyword’ versus the use of a filler
rate and minimum total error rate. model alone, is clearly demonstrated.
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Fig. 9. Histograms for digit “9” using likelihood ratio distances based ofig. 11. Equal error rates for all the digits using likelihood ratio distances
G5V (0:A) and 6§V (0: ). based onG")(0: A) and G{¥(0; A).

T perform utterance verification rather than keyword rejection,
it is essential to define an utterance-based likelihood measure.
This problem will be dealt with in the next section.

VII. UTTERANCE-BASED VERIFICATION

There are several advantages in using utterance verification
(or rejection) in connected digits recognition. The first is veri-
fying whether the recognized digit string isvalid digit string.

This enables rejection of strings that contain nonvocabulary
words or noise. The second is verifying whether a valid digit
string is acorrect digit string. This is a more difficult task

than the previous one, since it is dependent on the reliability
of the recognizer. Detecting incorrectly recognized digit strings

Detection Rate (%)

PR s - s e 10 improves the performance and the usability of the recognition
False Alam (%) system. The third determines which parts of the valid digit
Fig. 10. ROC performance curves for digit “9” using likelihood ratio disstring is reliable. The system may prompt the user to provide
tances based 06" (0; A) and GV (0; A). only the part of speech that is unreliable, for example, “please

repeat the first three digits.” Therefore, different string-level

Fig. 11 gives the equal error rates for all the eleven digifg‘Q’tS E?ed to be investigated. . ificati ¢ il
when utilizing a likelihood ratio distance based on either In t IS study,. we ‘?'0 Qot .conS|der verification o partla
G(4)(O~A) or Gg)(OA) Clearly, for almost all digits, it information. A digit string is either totally accepted or rejected

k b ¢ b . ’ ’

. L - e sed on its confidence score. Two approaches for computin
Is safe to conclude that digit-specific antidigits are somewh[%?e confidence score have been invepsﬁigated In the firzt ap?

complementary to a general acoustic filler model. Combinin . ; o
ach, the utterance confidence measure relies on individual

the scores of both sets of models in a geometric average Igit scores, such that an utterance is rejected if the test on
resulted in an improved performance and consequently lo o7 C !
gny detected digity

both the Type | and Type Il errors. A similar trend was foun
when plotting the minimum total error rate for all digits. It SO(O;A) = LRL(O;A) < 7, (11)
should be noted that these results are substantially better %"é re
those obtained when using absolute likelihood scores only (i.e.,
with no alternative hypothesis). The equal error rate when
using absolute likelihood scores, averaged over all digits, qus

LR (O;A) = g,(O; A) — G, (O; A) (12)

about 6.5% higher in value than the results shown in Fig. 1 S reject if any one detected digit falls below a cr'itical
Throughout the rest of the paper, digit verification wil reshold, ). This measure can be relaxed by allowing a

be conducted using a likelihood ratio test with the antidigﬁtrlng to be rejected only if the likelihood ratio scores of

. @)/ AN 4 . . . multiple digits fall below a specified critical threshold.
function G,,”(0; A)." Since the objective of this study is to The second approach for utterance verification computes a

4For simplicity of notation,GEf)(O;A) will be written asG,(O; A) for string-based confidence .m'easure by avera.gi'ng the likelihood
the remainder of the paper. scores of all detected digits. Thus, forJadigit string, we
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Fig. 12. ROC performance curves fﬁﬁ‘)((); A) andS(Q)((); A). Fig. 13. String recognition performance as a function of rejection rate.
have the following: TABLE | )
L PERFORMANCE RESULTS WHEN APPLYING EITHER S(1) (O; A) 0rR S(2)(0: A)
1 J W FOR UTTERANCE VERIFICATION AT THE POINT OF MINIMAL ERRORRATE
5(2)(0; A) — log — Z exp{_n . )CR(I(O; A)} (13) Function Before Rej. (%) | Rej. Rate (%) | After Rej. (%) | Rej. non-voc. (%)
J i ST{0;8) 91.0 2.9 92.7 99.7
= S1(0;A) 91.0 3.1 93.0 99.9

wherey is a positive constant. There are two advantages of

using this measure compared 6" (O; A). First, it provides (. .
string verification statistics based only on one distributio _nd from 91'0% to 93.7%_usmg‘( ).(O.’ .A)' Although this
gerence in performance is not significant (about 0.2% at

rather than one per digit. Second, this measure weights L o = /A,
contributions of all the digits within a given string based off reJectllon rate of 5%), it is SL_jm_C'em to preféi (O A)
over SA(0; A). Furthermore, it is expected that a larger

the selected value of (note that; can be digit specific). This . L (2) (). i ;
is believed to be important since digit strings with multiplémprovement u§|r1tg>‘ 50711}) f:anlt;e z%rcr?e\_/ed whenlselegtmg
putative errors would be more easily detected with this type Sfmo:? a{:?proprla e value farin (13). This is currently under
formulation. Also, a putative error causes almost all neighbo'P—Ves \gation. . . . :
ing segmentations to be changed and consequently affectin able | summarizes the results when using either functions
S®(0; A) more thans™(0; A). If > 1thenS® (0; A) =~ t*o verification at the point of minimal error rate. This is

; )T » 7. achieved by selecting an operating point for each function

in, LR,(O; A) (i.e., the lowest score). Currently,is set to N .
wing LRq(O; A) (i W ). Cu Ll to best minimize the combined Type | and Type Il errors.

unity. . . ) o L
y ith a suitable operating point, it is clear that rejection of

The two utterance verification functions defined in (11 ! : :
and (13) have been evaluated on the testing database. L%Qvocabulary strings is not a problem with performance that
ceeds 99% (see column 5).

us first consider a combined error measure including bo‘f’ﬁ(s. S@(0:A) h istently sh _ d perf

nonvocabulary words and putative errors. By varying the ince S((l)’ O)~ Aas csn&s_z_n ys _owln 'Tpm\ﬁ( l_[?]er (;r—

critical threshold for each function, a ROC performance curv ance ove (O;A), ye providing a singie string ikelinood
?trlbutlon versus one per digit, this measure will be used in

is obtained as shown in Fig. 12. This figure demonstrates t - !
S®(0; A) achieves a lower error rate thai)(O; A) at all &' "€Maining experiments.
threshold values. The equal error rates &) (0O;A) and
S2)(0;A) are at 2.5% and 2.3%, respectively. This amounts VIIL.
to a reduction of 8%. In Section I, we showed that the Bayes decision rule and
Let's now consider putative errors only. Assuming thahe likelihood ratio test are not guaranteed to be optimal
nonvocabulary words never existed then the baseline stringen applied for verification of HMM-based speech recog-
recognition performance of the system witlo rejection is nition systems. To alleviate this problem, we motivated the
91.0%. If utterance verification is to be employed using eithese of discriminative hypothesis testing, where a class of
SM(0O;A) or S@(0O; M), then it would be expected for thediscriminant function is used to perform classification and
string recognition performance to improve when raising theypothesis testing. One such class of discriminant functions
rejection rate. Fig. 13 shows this exact behavior. Note that thased on minimum classification error (MCE) and generalized
rejection rate refers to the total rejection of correct digit stringgobabilistic descent (GPD) is reported in this section. The
and putative errors. The string recognition performance reféeshnique of MCE/GPD, proposed by Katagstial [13] and
to the accuracy on the remaining digit strings after rejectioduang and Katagiri [12], has been extensively used in the
For example, at a rejection rate of 5%, it is possible to improves, simplicity of notation,5() (O; A) will be written asS(O; A) for the
the string accuracy from 91.0% to 93.5% usifil)(O;A), remainder of the paper.

D ISCRIMINATIVE TRAINING
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area of speech recognition [6], [7] and speaker recognition o.0s ‘ , ; .
[15]. In this study, we investigate the effect of this training |
paradigm for both recognition and verification. The training %[
objective function will be formulated at thstring level in

order to consider all three types of errors, namely, insertions,
deletions, and substitutions. 0.05-

Unlike ML estimation, which maximizes a likelihood func- ¢

tion of a sequence of observations given a set of HMM’s, in 8994
MCE/GPD the goal is to minimize the expected loss function =

0.061

- MCE/GPD --> 1
0.03 £ .
L(A) = E[l{d:(O; A)}] (14) 0.02 1

where [{-} is a smooth function which is typically set to a i |
sigmoid, and{;(O; A) is amisclassificatioormeasure for string ol
classi. A three-step procedure is applied for estimating the
expected loss funCtlorL(A)' The first step formulates theFig. 14. Histograms showing the distribution of the string-based likelihood

misclassification distance for string ratio scores, based a(O; A), before and after MCE/GPD training.

]
Log Likelihood Ratio

di(0; A) = =gi(O; A) + Gi(O; A). (15) " all our experiments, MCE/GPD was only applied for training
S _ the filler and the keyword models. At the time of writing
The discriminant functiong;(O; A), for the correct clas€’;  this paper the digit-specific antidigit models were not trained

is defined ast. log p(O; A), and the antidiscriminant function, with this technique. Training of these models would require a

G;(O; A) is defined as somewhat different paradigm as shown in [22] and [34].
In the results reported by Liat al. [15], it was shown that
) M ¥ MCE/GPD training helped in pulling apart the in-class/out-
Gi(O; A) =log Y Z exp{n-g;(O; M)} , n>0. class histograms of speaker verification scores, thus causing

lesser Type | and Type Il errors. This property was also
(16) Observed in our study. Fig. 14 shows the two histograms

G;(O; A) can be considered as some type of a geometﬂU the in-class/out-class string likelihood scores, based on
mean of the likelihoods of the competing classesCto In  (13), when applying ML training (dotted lines) and following
the current study(¥;(O; A) was estimated using a four-besM(_:E_/GPD tra_lnlng (solid I|n_e). Clearly, the dlscnmlnatlve
string hypothesis decoder [8]. Thus, the number of competiffning technique has provided a better separation of the
classes, M, is three when the correct string is among thiwo distributions, a feature that is more apparent in the left
top four candidates and/ is four, otherwise. Note that the distribution representing the incorrect class.
distance in (15) is negative i is correctly classified and Naturally, since the histograms are less overlapped than
positive otherwise. those previously obtained with ML training, a decrease in the
The next step is to approximate the misclassification erfBfror rate would be expected. Fig. 15 shows the variation of the

count. This is achieved using a smooth and differentiable o tal Type | "’?”d Type I.l errors for ML and MCE/GPD training
sigmoid function of the form when changing the critical threshold betweef and 5. The

total error rate plot following MCE/GPD training is shifted
1 toward the origin and is clearly less sensitive to variations in
L(O;A) = U(di(O;A)) = - (17)  the critical threshold. For example, to obtain less than a 10%
L+expi-adi(O;A) + 5} total error rate for ML training, the critical threshold can be set
. nywhere between 1.5 and 5.2. For the same total error rate of
wherea and 3 are constants which control the slope and th 0%, the critical threshold following MCE/GPD training can

shift of the smoothing function, respectively. .
The third and final step in MCE/GPD training involvesbe set anywhere between0.7 and 4.3. The larger dynamic

finding the set of parameters that minimize the expected range in setting the critical threshold provides some degree

T ) of robustness to any possible acoustic mismatch between the
value of the loss function, i.eL(A), in (17). The parameter training model and the testing data [19], [23].

setA (!.e., rT“X“”e means, varlances and gains) is updated a%.ince the rejection rate of nonvocabulary word strings is

every iterationn. according to in excess of 99%, it appears that the major challenge in

utterance verification is the rejection of putative errors. When

Ay = Ay =V VL(Ay), € >0 (18)  considering valid digit strings only, Fig. 16 shows the string

recognition performance as a function of rejection rate. At

whereg,, is a learning rate an#f,, is a positive definite matrix. a rejection rate of 5%, for example, the string recognition
Details of the derivation of the HMM parameters using thperformance improves from 93.6% following ML training to
MCE/GPD technique are available in [7] and [12]. Througho@6.1% following MCE/GPD training. This corresponds to a

JyFi
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45 , . , . : optimally under mismatched testing conditions. Methods to
alleviate this problem are reported in [19] and [23].

At present, we are investigating several different avenues to
improving the verification performance. The first involves the
development of a string-based likelihood ratio distance. Recall
that the function, defined in (13), is basically a geometric
average of digit likelihood ratio scores. Since the use of
likelihood ratio distances, as opposed to likelihood distances,
has resulted in a tremendous improvement in performance, it is
believed that extending our formulation to include an antistring
discriminant function would provide equal benefits.

Another avenue to minimizing false rejection errors and
false alarms is to apply discriminative training to the digit-
specific antidigit models. This would require a modification
0 "% Ty P 3 4 5 of the MCE formulation to accommodate for antikeyword

Critical Threshold models. Combining such an approach with MCE training in
Fig. 15. Combined Type | and Type Il errors with ML training and followingd two-pass strategy is expected to give a desired trade-off
MCE/GPD training. between a reduced Type | and Type Il errors and a minimum

string error rate [22], [34].

98 v v . v , - \ , v An effective approach to improving the performance of ut-
terance verification systems is to introduce additional features,
971 1 besides the likelihood scores, to help detect nonvocabulary
//J words and putative errors more accurately. One example is to

i 1 use state durational information that is known to be effective
in detecting extraneous speech [32]. A different strategy to
improving the verification performance is to use context-
dependent subword units instead of the whole word models.
M i From our experience, these types phonological units result in
an improved performance in connected digits recognition. At
the time of writing this paper, a verification system tailored
toward subword units was under study [22], [34].

A
(=]
T

[
3]

(]
[=]

xxx MCE/GPD
+++ ML

\]
w

n
[=]

Type | + Type Il (%)

String Recogrition Rate (%)

©
W
T

o2r 1 Finally, to provide a user-friendly speech recognition sys-
tem, verification of partial information is essential. Users of
Yo 2 3 a4 s & 7 8 9 10 a speech recognition system are typically impatient when

Relection Rate (%) being prompted to repeat their 16-digit credit card number,

Fig. 16. String recognition performance as a function of rejection rate whéor example, more than once. Being asked to repeat a portion
introducing MCE/GPD training. of the digit string is commonly more acceptable. Current study
is focused on evaluating the success rate of the proposed

reduction in string error rate by about 39% which is consistegérification system in identifying unreliable parts of a spoken
even up to a 10% rejection rate. digit string.

IX. DISCUSSION

As the demand for speech recognition technologies in- X. SUMMARY AND CONCLUSION

creases, the need for the development of systems that ar&his paper presented an HMM-based system for connected
robust to speaking style, accents, environmental mismatcligits recognition/verification. A two-pass strategy was
disfluency, etc., is becoming increasingly essential. In theadopted, consisting of recognition followed by verification.
circumstances, utterance verification plays an important rdkethe first pass, recognition was performed via a conventional
in maintaining an acceptable error rate and in providing \Aterbi beam search algorithm. In the second pass, an
desirable trade-off between false alarm rate and false rejectigterance-based confidence score was computed and applied
rate. for verification.

The work presented in this paper is a first step toward ourFor digit verification, we tested the null hypothesis that
vision of atotally robust utterance verification system. Robust specific digit exists in a segment of speech versus the
verification is a subject that demands considerable attentiaiternative hypothesis that the digit was not present. Several
In a separate publication [19], [23], we show that utterancémrmulations were investigated for the alternative hypothesis
recorded under different environmental conditions require difased on likelihood distances of digit-specific antidigit models
ferent operating points in order to satisfy a given optimalitgnd a general acoustic filler model. It was demonstrated that
criterion. Experimentally, it is shown that the ROC statisticmcorporating a geometric average that combined the scores of
based on a particular training or evaluation set would not woboth sets of models resulted in reduced equal error rates.
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TABLE I [2]
STRING RECOGNITION PERFORMANCE AT DIFFERENT REJECTION RATES
Rej. Rate (%) | After ML (%) | After MCE/GPD (%) Bl
0.0 91.0 93.8
1.0 91.8 94.5
3.0 92.9 95.6 [4]
5.0 93.6 96.1
7.0 94.1 96.8
9.0 94.8 97.1 (5]

For utterance verification, two approaches were investigatelﬁ]
based on the likelihood ratio scores of digits. The first was to
reject the digit string if the score of any detected digit falls[7]
below a specified digit-specific critical threshold. The second
approach was to combine the likelihood scores of all detecteg;
digits using a type of a geometric average and then to reject
the digit string if its confidence score falls below a specific
string verification threshold. The latter approach was shown t@)
give improved performance for connected digits as well as to
provide a single string-based likelihood distribution as oppos%]
to one distribution per digit. When evaluating the utterance
verification system on a speaker-independent connected-digHs
database, the string error rate reduced by about 29% at 5%
rejection rate. The string recognition performance at differefi2]
rejection rates is shown in Table Il. For rejection of nonvocab-
ulary word strings, the proposed system rejected over 99.9%;
of the utterances.

In this paper, we illustrated that the Bayes decision rule anﬂ]
the likelihood ratio test are not guaranteed to be optimal when
applied to verification of HMM-based speech recognition
systems. To alleviate this problem, we investigated the uEé&l
of discriminative hypothesis testing in the framework of min-
imum classification error training. A string-based MCE/GPIIL6]
method was applied for training the filler and keyword models.
Since the keyword models were used in both recognitiqfy)
and verification, it was established from our experimental
results that MCE/GPD training helped not only to reduce &8l
recognition error rate but also the verification error rate. Usingo]
this discriminative training method with a specific operating
point, the string error rate was reduced by a further 39% b
5% rejection rate (see Table II). It was interesting to note that
a similar reduction in error rate was also achieved at high[ezr1
rejection rates.

In summary, the proposed utterance verification system re-
jected over 99.9% of nonvocabulary word strings and reducé&g!
the string error rate for valid digit strings by about 57% at 5%
rejection. The application of this technique under mismatched
environmental conditions is reported in [19] and [23]. (23]
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