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Discriminative Utterance Verification
for Connected Digits Recognition

Mazin G. Rahim,Member, IEEE,Chin-Hui Lee,Senior Member, IEEE,and Biing-Hwang Juang,Fellow, IEEE

Abstract—Utterance verification represents an important tech-
nology in the design of user-friendly speech recognition systems.
It involves the recognition of keyword strings and the rejection
of nonkeyword strings. This paper describes a hidden Markov
model-based (HMM-based) utterance verification system using
the framework of statistical hypothesis testing. The two major
issues on how to design keyword and string scoring criteria
are addressed. For keyword verification, different alternative
hypotheses are proposed based on the scores ofantikeyword
models and a general acousticfiller model. For string verifi-
cation, different measures are proposed with the objective of
detecting nonvocabulary word strings and possibly erroneous
strings (so-called putative errors). This paper also motivates the
need for discriminative hypothesis testing in verification. One
such approach based on minimum classification error training is
investigated in details. When the proposed verification technique
was integrated into a state-of-the-art connected digit recognition
system, the string error rate for valid digit strings was found
to decrease by 57% when setting the rejection rate to 5%.
Furthermore, the system was able to correctly reject over 99.9%
of nonvocabulary word strings.

I. INTRODUCTION

DURING recent years, it has become increasingly essential
to equip speech recognition systems with the ability to

accommodate spontaneous speech input. Although providing
this capability facilitates a friendly user-interface, it also poses
a number of new problems, such as the inclusion of out
of vocabulary words, false starts, disfluency, and acoustical
mismatch. For example, in a recent connected digits trial
conducted in Bloomington, MN, users who were prompted
to repeat their telephone number would often begin by saying
“Uh,...,” “My telephone number is...,” or “what?” In these
situations, a speech recognition system must be able to detect
and recognize the “keywords” and reject the “nonkeywords.”
Recognizers equipped with akeyword spottingcapability allow
users the flexibility to speak naturally without the need to
follow a rigid speaking format.

Significant progress has been made in keyword spotting for
unconstrained speech using hidden Markov models (HMM’s).
Keyword spotting systems introduce a filler (or garbage)
model for enhancing keyword detection and absorbing out-
of-vocabulary events. Proper modeling of filler models using
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out-of-vocabulary events is essential for improving the perfor-
mance of a general keyword spotting system. The issue of how
to build an appropriate filler model has been extensively stud-
ied during the past few years. Rohliceket al. [24] described
a keyword spotting system based on a continuous-density
HMM with a filler that was constructed from either segments
of the keyword models or by weighting the distributions in
the keyword states. Wilponet al. [37] presented a keyword
spotting system that used a single filler model which was
developed by training on transmission noise and extraneous
speech input.

To reduce false alarm rate, a large number of studies
have incorporatedkeyword verificationfollowing detection
and segmentation of speech into keyword hypothesis via a
conventional Viterbi search. These studies employ some type
of a likelihood ratio distance to verify whether or not a given
keyword exists within a segment of speech. The key issue is
the selection of an appropriate alternative model to provide an
antiword scoring in computing the likelihood ratio statistics.
This has been traditionally done using a general acoustic
filler model. Rose and Paul [27] reported high performance
keyword verification with monophone filler models trained
from transcribed speech. Bourlardet al. [3] obtained improved
keyword verification performance over a single monophone
filler model or multiclass broad phonemic models by using the
average of the -best local scores of the phonemic models as
an antiword scoring. Besides using likelihood scores, Moreno
et al. [16], Chigier [5], Feng [9], and Sukkar [33] have
investigated alternative features, including durations (state,
unit, word, etc.) and acoustic features (e.g., state’s average
cepstrum). Durational, acoustic, and language knowledge have
been particularly useful in large vocabulary speech recognition
systems [25], [36]. Other issues in keyword verification, such
as reducing the amount of task-specific speech training data
and the use of context-dependent acoustic models, have been
addressed by Rose and Hofstetter [28], [29].

To improve the discrimination between keywords and out
of vocabulary speech, several studies have introduced dis-
criminative training techniques following maximum likelihood
estimation. Rose [26] applied maximum mutual information
(MMI) [1] estimation for the discrimination of keywords from
a broad class of acoustic events. Villarrubia and Acero [35]
applied affine transformation to the log-probability of the
filler model. Chang and Lippmann [4] applied a figure of
merit1 backpropagation training, which eliminated the use of

1Figure of merit is the average detection rate over one to ten false alarms
per keyword per hour.
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thresholds during the training process. Other studies included
performing some type of linear transformation or discrimina-
tive feature analysis [31]–[33].

As a generalization to keyword verification,utterance veri-
fication attempts to reject or accept part or all of an utterance
based on a computed confidence score. It also attempts to reject
erroneous but valid keyword strings (the so-called putative
errors). This is particularly useful in situations where utter-
ances are spoken without valid keywords, or when significant
confusion exists among keywords, which may result in a high
substitution error probability. In general, to deal with these
types of problems, recognizers must be equipped with both a
keyword spotting capability to correctly recognize keywords
embedded in extraneous speech, and with an utterance verifi-
cation capability to reject utterances that do no contain valid
keywords and utterances that have low confidence scores.

In a study on utterance verification, Sukkar and Wilpon [33]
introduced a two-stage method where the likelihood scores as
well as the scores of a segmental generalized probabilistic
descent (GPD) method [6] were combined using linear dis-
criminant analysis to provide a keyword/nonkeyword decision.
Significant improvement over a HMM-based classifier was
reported when the two-stage approach was applied to operator-
assisted calls. Good performance was later reported when a
similar approach was applied for verification of connected
digits strings [32].

This paper describes a HMM-based recognition/verification
system. A two-pass strategy, with recognition followed by ver-
ification, is adopted. In the first pass, recognition is performed
via a conventional Viterbi beam search algorithm, which
segments the test utterance into a string of keyword hypotheses
or -best strings of keyword hypotheses. In the second
pass, utterance verification is performed, which computes a
confidence measure that determines whether or not to reject
the recognized strings. Utterance verification is formulated as
a statistical hypothesis test where the task is to test thenull
hypothesis that a given keyword or a set of keywords exists
within a segment of speech against thealternativehypothesis
that such keyword or keyword set does not exist, or is
incorrectly classified, within that speech segment. Based on the
well known Neyman–Pearson Lemma [2], a verification test
can then be constructed using a likelihood ratio statistic. In real
operational cases involving HMM systems, however, neither
the null nor the alternative hypotheses can be evaluated ex-
actly. It also complicates the issue that some type ofcomposite
alternative hypothesis is needed to provide improved discrimi-
nation between keywords and out-of-vocabulary words as well
as improved detection of near-misses in keyword recognition.
To facilitate this capability, this study will investigate the use
of two sets of models to represent the alternative hypothesis,
namely,antikeywordsand filler. Considering that this test is
not guaranteed to be optimal for HMM-based recognition, we
will investigate the use of discriminative hypothesis testing
where a class of discriminant functions is used to perform
classification and hypothesis testing, and the required param-
eters are discriminatively trained using the available training
data. One such class based on minimum classification error
(MCE) training objective and the GPD training algorithm

will be discussed in detail and later evaluated on a speaker-
independent connected digits task.

The rest of the paper is organized as follows. Section II dis-
cusses statistical hypothesis testing for utterance verification,
and motivates the use of the discriminative training methodol-
ogy. Section III presents different strategies for reporting ver-
ification results. Section IV describes the database used in our
experiments as well as the front-end process of our recognition
system. Section V reviews the training/recognition/verification
system. Section VI presents several formulations for digit
verification based on likelihood scores of three types of
models, namely, keywords, antikeywords, and filler. The con-
struction of a string verification score based on the combined
verification scores of the digits is discussed in Section VII.
Section VIII outlines the use of discriminative minimum error
training in HMM’s and presents experimental results when
applying MCE/GPD training to utterance verification. Section
IX discusses a number of open issues in utterance verification
and outlines directions for future efforts. Finally, a summary
and conclusions will be given in Section X.

II. STATISTICAL HYPOTHESIS TESTING

For a given speech segment , the
purpose of pattern classification is to determine to which class

the segment belongs. If the
conditional probability and thea priori probability

are assumed known, then the optimal class decision
that minimizes the classification error is the Bayes

decision rule that maximizes thea posterioriprobability such
that

(1)
On the other hand, for statistical hypothesis testing, the prob-
lem formulation is to test thenull hypothesis, , that a given
keyword, , exists and is correctly recognized within a
segment of speech,, against the alternative hypothesis, ,
that does not exist, or is incorrectly classified, within
that speech segment. If again the probabilities of the null and
the alternative hypotheses are known exactly, then according to
the Neyman–Pearson Lemma [2], the optimal test (in the sense
of maximizing the power of the test) is usually the probability
ratio test such that the null hypothesis, , is accepted if

(2)

This is referred to as thelikelihood ratio testwhere
and are the probability density functions (pdf’s)
of the null and the alternative hypotheses, respectively, and
is the critical thresholdof the test [2], [10].2

For testing simple hypotheses where the pdf’s ofand
are known exactly, the likelihood ratio test is often the most
powerful test for a given level of significance. For HMM-based
speech recognition/classification systems, represents the
class which is either a sound, a subword unit, a whole-word

2The termscritical threshold and verification thresholdare both used
interchangeably in this paper.
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unit, or even an utterance. , on the other hand, represents
other classes , s.t. . The parameters of the
class typically represent the state transition matrix, the
state observation probability and the initial state probability.
In this framework, however, both and
can only be estimated by assuming a parametric form of the
conditional densities and the distribution of the hypotheses.
Clearly, any assumption of a parametric distribution may cause
a mismatch between the “true” and estimated conditional
distributions. This possible mismatch as well as a possible
estimation error due to insufficient training data invalidate the
optimality of the Bayes decision rule and the likelihood ratio
test implied by the Neyman-Pearson Lemma.

In an effort to alleviate some of these problems, discrimina-
tive hypothesis testing is sought where a class of discriminant
functions is used to perform classification and hypothesis
testing. The form of the discriminant functions is required to be
specified and their parameters are estimated from the training
data. One such class of discriminant functions, based on MCE
and GPD training, is described in Section VIII. A two-class
problem is formulated where the null hypothesis assumes that
the test utterance is correctly recognized as class and the
alternative hypothesis assumes thatis incorrectly recognized
as class . Based on this framework, we define aclass
confidence measure(or discriminant function), , for
class ,which evaluates the confidence of accepting the null
hypothesis that . The parameter set, , in
is the recognition model parameters. We also define ananti-
discriminant measure which is used to evaluate
how “unlikely” contains . A measure similar to the log
likelihood ratio in (2) can now be defined as a function of the
difference between and

(3)

is referred to as themisclassificationmeasure. The
MCE/GPD training algorithm involves finding a set of pa-
rameters for each class that minimizes the expected value
of . The implied discriminative test is equivalent to
maximizing the likelihood ratio, , since

(4)

This is similar in spirit to the normalized verification function
defined in [15] for speaker verification. In this paper, the
MCE/GPD method will be used for training the filler and
the keyword (i.e., recognition) models. The effect of applying
discriminative training of this nature on both recognition and
verification will be discussed.

III. PERFORMANCE EVALUATION

Statistical hypothesis testing is often evaluated based on
two types of error measurements, namely, false rejection (or
Type I) and false acceptance (or Type II—also referred to as
false alarm). The former type of error occurs when a null
hypothesis (e.g., keyword) is rejected, whereas the latter type
occurs when a nonvalid null hypothesis (e.g., nonkeyword), or
a valid keyword that is incorrectly recognized, is accepted. By
appropriate selection of the critical threshold, it is possible

Fig. 1. Example showing histograms of the likelihood ratioLR(k) when
KWk 2 Ck andKWk 62 Ck.

to provide a trade-off between Type I and Type II errors. For
example, one may choose to have anequal error rate, which
would require setting to provide equal amounts of Type I
and Type II errors. Alternatively, may be chosen to provide
a minimum total error rateof Type I plus Type II errors. Both
of these measurements will be frequently utilized in this paper.

To select an appropriate operating point in utterance veri-
fication, it is conventional to plot a histogram of for
all training samples from class and another histogram for
all training samples from class . An example of such a
representation is shown in Fig. 1. This representation serves as
a way to quantify approximate Type I and Type II errors. The
shaded area to the right of represents the amount of Type II
error and the shaded area to the left ofrepresents the amount
of Type I error. The dashed line corresponds to the point where

.
To provide a more accurate representation of the errors, a

receiver operating characteristic (ROC) curve may be used.
An example is shown in Fig. 2, which displays the detection
rate (1—Type I) versus the false alarm rate (Type II) as
the operating point is varied. This type of representation has
two benefits. First, the diagonal line from the top left to the
bottom right corners of the plot intersects the ROC curve
at the equal error rate point. Second, the performance curve
provides an overall picture of the trade-off between Type I and
Type II errors when varying the operating point. This helps in
selecting an appropriate operating point to satisfy a particular
application requirement. Notice that fewer errors incur when
the performance curve approaches the top left corner point of
the plot.

Due to the fact that ROC curves do not provide the
necessary tool to compare different statistical tests, since
they possess no information that relates to the various
error levels, it is sometimes necessary to have yet another
representation to show the error amount as a function of.
An example of such a representation is shown in Fig. 3. The
two dotted curves represent the accumulated Type I and Type
II errors. The solid curve represents the total error rate. From
this plot, one could deduce the minimum total error rate as
well as the equal error rate. The use of histograms, ROC’s
and error rate curves will be frequently seen in this paper.

A final thought regarding performance evaluation for key-
word spotting and utterance verification is that one should
distinguish between making an error due to out-of-vocabulary
words and an error due to a confusion among valid keywords.
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Fig. 2. Example of a ROC performance curve.

Fig. 3. Example showing the variations of Type I, Type II, and total errors
as a function of�k.

For example, a keyword may be detected as a valid
keyword but identified from class . In this paper, such
errors will be referred to as “putative” errors. Putative errors
can also be of Type I and Type II. When performing utterance
verification, two levels of verification will be carried out. The
first tests whether a valid digit string is being detected. The
second tests for any putative errors. These two tests could
take advantage of different statistical information, however,
only one set of statistics is utilized in this study, as will be
discussed in Sections VI and VII.

IV. SPEECH DATABASE AND FEATURE EXTRACTION

A speaker-independent telephone-based connected digits
database was used in this study to evaluate the verification sys-
tem. This database was collected across two regions, namely,
Long Island, NY, and Boston, MA, over a digital T1 inter-
face. Speech was recorded using four different microphone
handsets, two electret and two carbon button. Digit strings
of lengths 10, 14, 15, and 16 digits, corresponding to credit
card numbers and long-distance telephone numbers, were
collected from 250 adult talkers (125 males and 125 females).
Approximately half of the speakers were used for training
the HMM’s and the other half for testing and evaluating the
various verification techniques. The training set and the testing
set consisted of 2735 and 2842 valid-digit strings, respectively.

In order to provide nonkeyword utterances for training and
verification, about 6000 phonetically rich sentences, modeled
after the TIMIT sentences [14], was collected using the same
recording environment as before. Half of this data was applied
for training the filler model and the other half was used for
testing.

The front-end feature extraction process was conducted as
follows. Input speech, sampled at 8 kHz, was initially preem-
phasized (1-0.95 ) and grouped into frames of 240 samples
with a shift of 80 samples. For each frame, a Hamming
window was applied followed by autocorrelation analysis and
LPC analysis using a tenth-order Durbin’s recursion method
[18]. A 12-dimensional LPC-derived cepstral vector was then
computed and liftered using a weighting of the form

(5)

The first- and second-time derivatives of the cepstrum, the
so-called delta-cepstrum and delta-delta cepstrum, were also
computed. Besides the cepstral-based features, the log of the
energy, normalized by the peak sample, and its first- and
second-order time derivatives, were also computed. Thus, each
speech frame was represented by a vector of 39 features
consisting of 12 cepstrum, 12 delta-cepstrum, 12 delta-delta
cepstrum, 1 energy, 1 delta-energy and 1 delta-delta energy.
Following feature extraction, signal bias removal was applied
for channel normalization [20], [21].

V. TRAINING/RECOGNITION/VERIFICATION SYSTEM

Each keyword (i.e., digit) is modeled by an -state
continuous density left-to-right HMM with mixture
Gaussian state observation. The PDF for the observation vector

from state and HMM is defined as

(6)

where is the mixture weight and is a multivariate
Gaussian distribution with mean and diagonal covariance

.
Training of each keyword model consisted of estimating

the mean, covariance, and mixture weights for each state
using maximum likelihood (ML) estimation (e.g., [17]). In
this study, the state transition probabilities were fixed at 0.5.
For each keyword model, an antikeyword model was also
trained. An antikeyword can be considered as a digit-specific
filler model. It is based on a similar concept to the cohorts
in speaker verification [30]. An antikeyword model is
generally trained on the data of all keywordsbut that of
keyword . Further explanation of this will be provided
in the next section.

Aside from keywords and antikeywords, we also introduced
a general acoustic filler model trained on nondigit speech
data, and a background/silence model trained on the nonspeech
segments of the signal. Therefore, a total of 24 models were
used, corresponding to 11 keywords, 11 antikeywords, filler,
and background/silence. Each model was represented by a ten-
state HMM with 16 Gaussian densities per state, with the



270 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 3, MAY 1997

Fig. 4. Block diagram of the training/recognition/verification system.

Fig. 5. Schematic diagram of the verification test.

exception of the background/silence that included a single state
of 32 Gaussian densities.

A block diagram of the training, recognition, and verifica-
tion system is shown in Fig. 4. A two-pass strategy is adopted
consisting of recognition followed by verification. In the first
pass, recognition is performed via a conventional Viterbi beam
search algorithm, which segments the test utterance into a
string of keyword hypotheses. In the second pass, an utterance-
based confidence measure is constructed by combining the
likelihood scores of all keywords and their corresponding
antikeyword and filler models. In the example shown in Fig. 5,
each antikeyword model is specific to keyword
while the filler model, , is the same for all keywords.
A likelihood ratio test is then performed, and the utterance
as a whole is either accepted or rejected. Further details are
presented in Section VII.

VI. DIGIT-BASED VERIFICATION

Starting with four sets of HMM’s, namely, 11 digits ,
11 digit-specific antidigits , silence/background and
filler , digit verification is carried out by testing the null
hypothesis that a specific digit exists in a segment of speech

versus the alternative hypothesis that the digit is not present.
Based on the likelihood ratio test given in (2), the digit
is accepted or rejected if its likelihood ratio
lies above a specific verification threshold (here,

).
In this study, we considered four different formulations

for the alternative hypothesis [i.e., in (2)]. The
first choice is simply to use the general acoustic filler model

, which is digit independent. This is trained using nondigit
extraneous speech and is the same for all digits. The likelihood
for the alternative hypothesis is defined as

(7)

where is the number of frames allocated for digit. This
type of formulation is believed to improve discrimination
between keywords and out of vocabulary words.

The next two choices for the alternative hypothesis intro-
duce a digit-specific antidigit model in order to provide better
detection of near misses in digit recognition. We first consid-
ered using a type of a geometric mean of all competing digit
models. For digit model , for example, the corresponding
antidigit function would be

(8)

where is the total number of digit models (i.e., 11), is
a positive constant, and .
This type of discrimination is believed to improve detection
of near misses in digit recognition. Therefore, digit strings with
possible putative errors could be detected. One would notice
that the alternative hypothesis in (8) is somewhat similar to
the concept of cohorts in speaker recognition [30]. It is also
similar to the antidiscriminant function defined in minimum
error discriminative training (see Section VIII) [6], [7], [12],
[15]. In this formulation, if is set to infinity, then only the
first competing digit (i.e., second best) would be considered.

The obvious problem with the antidigit function in (8) is that
-best digit scores would be needed for each digit hypothesis

in order to compute the geometric average. If computational
cost is an issue, then this type of formulation would pose a
problem. To obtain a valid approximation of the same function
without having to compute likelihood of all competing digits,
we have trained 11 digit-specific antidigit models using
the same ML training procedure for obtaining the digit models.
Each model, , is trained on all digits except of the data for
digit

(9)

By using the function in (9), an antidigit score becomes avail-
able without having to compute a word-best hypothesis but
at the expense of increasing the number of models. Therefore,
there is a choice of either more computation when applying

, or more memory when applying .
The next choice of an antidigit function is to combine

both and the best of or ,
so that to achieve improved discrimination between keyword
and nonkeyword models as well as reasonable detection of
putative errors. Although there are many ways for constructing
such a function, a simple average was chosen thus defining the
alternative hypothesis for digit as

or (10)

where is a weighting that has been set to 0.5 in this study.
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Fig. 6. Histograms for digit 9 using a likelihood ratio distance based on
G
(1)
9 (O; �).

In order to compare the above four criteria for representing
the alternative hypothesis, one can construct two histograms
for each keyword consisting of in-class and out-class likeli-
hood ratio scores (as suggested in Fig. 1). The overlap between
each two histograms corresponds to the amount of confusion
of the keyword with all other keywords and nonvocabulary
words. We will consider the digit “9” as an example. Fig. 6
shows the two histograms computed using . The
histogram on the right represents the distribution of the training
samples from the digit 9. Similarly, the histogram on the left
represents the distribution of the training samples that are not
from the digit 9 (i.e., this involves the rest of the digits as
well as the nonvocabulary words). From this representation,
approximate Type I and Type II errors can be computed for
each digit for a given choice of (see Fig. 1).

By changing the value of for digit 9, a ROC curve can be
constructed as shown in Fig. 7. This representation is useful
since it provides an overall picture of the amounts of error
that would be incurred when operating at different verification
thresholds. For example, the equal error rate point for the digit
9 is 1.9% when setting to 3.1. The minimum total error rate
is 3.3% when setting to 2.8.3 If a new operating point, say
4.3, is established, then the Type I and Type 2 errors become,
5.0 and 0.7, respectively. Ideally, one would like to have a
minimal change in the error rate when varying the operating
point slightly. This touches the issue of robustness, which is
addressed in [19] and [23].

With the aid of histograms and ROC curves, we now need to
determine which of the antidigit functions presented in (7) to
(11) is best suited for digit verification. A series of experiments
was performed. The first experiment compared and

. Recall that both measures incorporate the concept
of digit-specific antidigit model with the former requiring the
computation of an -best digit hypothesis ( was set to 4)
and the latter requiring the construction of an antidigit HMM.
Fig. 8 shows the ROC curves of the two functions for the digit

3Note that different operating points may be needed to achieve equal error
rate and minimum total error rate.

Fig. 7. ROC performance curve for digit 9 using a likelihood ratio distance
based onG(1)

9 (O; �).

Fig. 8. ROC performance curves for digit “9” using likelihood ratio distances
based onG(2)

9 (O; �) andG(3)
9 (O; �).

9. Although the curves are quite comparable, using a likelihood
ratio score based on versus results in
a smaller error rate. A similar observation was noticed when
we evaluated on the remaining set of digits. For this reason,
we opted to use , which will avoid the additional
computational effort needed to perform word-best but at
the expense of nearly doubling the number of models.

The second experiment was performed to verify the role
of introducing a digit-specific antidigit model. We evaluated
the two functions and since the former
considers a filler model only and the latter uses both the filler
and the antidigit function of . Upon examination
of the histograms of these two functions in Fig. 9, it appears
that is able to provide a better class separation
than , resulting in lower Type I and Type II errors.
The two corresponding ROC curves for the two functions are
shown in Fig. 10. Again, the advantages of representing the
alternative model by an antikeyword, versus the use of a filler
model alone, is clearly demonstrated.
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Fig. 9. Histograms for digit “9” using likelihood ratio distances based on
G
(1)
9 (O; �) andG(4)

9 (O; �).

Fig. 10. ROC performance curves for digit “9” using likelihood ratio dis-
tances based onG(1)

9 (O; �) andG(4)
9 (O; �).

Fig. 11 gives the equal error rates for all the eleven digits
when utilizing a likelihood ratio distance based on either

or . Clearly, for almost all digits, it
is safe to conclude that digit-specific antidigits are somewhat
complementary to a general acoustic filler model. Combining
the scores of both sets of models in a geometric average has
resulted in an improved performance and consequently lower
both the Type I and Type II errors. A similar trend was found
when plotting the minimum total error rate for all digits. It
should be noted that these results are substantially better than
those obtained when using absolute likelihood scores only (i.e.,
with no alternative hypothesis). The equal error rate when
using absolute likelihood scores, averaged over all digits, was
about 6.5% higher in value than the results shown in Fig. 11.

Throughout the rest of the paper, digit verification will
be conducted using a likelihood ratio test with the antidigit
function .4 Since the objective of this study is to

4For simplicity of notation,G(4)
k

(O; �) will be written asGk(O; �) for
the remainder of the paper.

Fig. 11. Equal error rates for all the digits using likelihood ratio distances
based onG(1)

k
(O; �) andG(4)

k
(O; �).

perform utterance verification rather than keyword rejection,
it is essential to define an utterance-based likelihood measure.
This problem will be dealt with in the next section.

VII. U TTERANCE-BASED VERIFICATION

There are several advantages in using utterance verification
(or rejection) in connected digits recognition. The first is veri-
fying whether the recognized digit string is avalid digit string.
This enables rejection of strings that contain nonvocabulary
words or noise. The second is verifying whether a valid digit
string is acorrect digit string. This is a more difficult task
than the previous one, since it is dependent on the reliability
of the recognizer. Detecting incorrectly recognized digit strings
improves the performance and the usability of the recognition
system. The third determines which parts of the valid digit
string is reliable. The system may prompt the user to provide
only the part of speech that is unreliable, for example, “please
repeat the first three digits.” Therefore, different string-level
tests need to be investigated.

In this study, we do not consider verification of partial
information. A digit string is either totally accepted or rejected
based on its confidence score. Two approaches for computing
the confidence score have been investigated. In the first ap-
proach, the utterance confidence measure relies on individual
digit scores, such that an utterance is rejected if the test on
any detected digit

(11)

where

(12)

(i.e., reject if any one detected digit falls below a critical
threshold, ). This measure can be relaxed by allowing a
string to be rejected only if the likelihood ratio scores of
multiple digits fall below a specified critical threshold.

The second approach for utterance verification computes a
string-based confidence measure by averaging the likelihood
scores of all detected digits. Thus, for a-digit string, we
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Fig. 12. ROC performance curves forS(1)(O; �) andS(2)(O; �).

have the following:

(13)

where is a positive constant. There are two advantages of
using this measure compared to . First, it provides
string verification statistics based only on one distribution
rather than one per digit. Second, this measure weights the
contributions of all the digits within a given string based on
the selected value of (note that can be digit specific). This
is believed to be important since digit strings with multiple
putative errors would be more easily detected with this type of
formulation. Also, a putative error causes almost all neighbor-
ing segmentations to be changed and consequently affecting

more than . If then
(i.e., the lowest score). Currently,is set to

unity.
The two utterance verification functions defined in (11)

and (13) have been evaluated on the testing database. Let
us first consider a combined error measure including both
nonvocabulary words and putative errors. By varying the
critical threshold for each function, a ROC performance curve
is obtained as shown in Fig. 12. This figure demonstrates that

achieves a lower error rate than at all
threshold values. The equal error rates for and

are at 2.5% and 2.3%, respectively. This amounts
to a reduction of 8%.

Let’s now consider putative errors only. Assuming that
nonvocabulary words never existed then the baseline string
recognition performance of the system withno rejection is
91.0%. If utterance verification is to be employed using either

or , then it would be expected for the
string recognition performance to improve when raising the
rejection rate. Fig. 13 shows this exact behavior. Note that the
rejection rate refers to the total rejection of correct digit strings
and putative errors. The string recognition performance refers
to the accuracy on the remaining digit strings after rejection.
For example, at a rejection rate of 5%, it is possible to improve
the string accuracy from 91.0% to 93.5% using ,

Fig. 13. String recognition performance as a function of rejection rate.

TABLE I
PERFORMANCE RESULTS WHEN APPLYING EITHER S(1)(O; �) ORS(2)(O; �)

FOR UTTERANCE VERIFICATION AT THE POINT OF MINIMAL ERRORRATE

and from 91.0% to 93.7% using . Although this
difference in performance is not significant (about 0.2% at
a rejection rate of 5%), it is sufficient to prefer
over . Furthermore, it is expected that a larger
improvement using can be achieved when selecting
a more appropriate value forin (13). This is currently under
investigation.

Table I summarizes the results when using either functions
for verification at the point of minimal error rate. This is
achieved by selecting an operating point for each function
to best minimize the combined Type I and Type II errors.
With a suitable operating point, it is clear that rejection of
nonvocabulary strings is not a problem with performance that
exceeds 99% (see column 5).

Since has consistently shown improved perfor-
mance over , yet providing a single string likelihood
distribution versus one per digit, this measure will be used in
all remaining experiments.5

VIII. D ISCRIMINATIVE TRAINING

In Section II, we showed that the Bayes decision rule and
the likelihood ratio test are not guaranteed to be optimal
when applied for verification of HMM-based speech recog-
nition systems. To alleviate this problem, we motivated the
use of discriminative hypothesis testing, where a class of
discriminant function is used to perform classification and
hypothesis testing. One such class of discriminant functions
based on minimum classification error (MCE) and generalized
probabilistic descent (GPD) is reported in this section. The
technique of MCE/GPD, proposed by Katagiriet al. [13] and
Juang and Katagiri [12], has been extensively used in the

5For simplicity of notation,S(2)(O; �) will be written asS(O; �) for the
remainder of the paper.
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area of speech recognition [6], [7] and speaker recognition
[15]. In this study, we investigate the effect of this training
paradigm for both recognition and verification. The training
objective function will be formulated at thestring level in
order to consider all three types of errors, namely, insertions,
deletions, and substitutions.

Unlike ML estimation, which maximizes a likelihood func-
tion of a sequence of observations given a set of HMM’s, in
MCE/GPD the goal is to minimize the expected loss function

(14)

where is a smooth function which is typically set to a
sigmoid, and is amisclassificationmeasure for string
class . A three-step procedure is applied for estimating the
expected loss function . The first step formulates the
misclassification distance for string

(15)

The discriminant function, , for the correct class
is defined as , and the antidiscriminant function,

is defined as

(16)
can be considered as some type of a geometric

mean of the likelihoods of the competing classes to. In
the current study, was estimated using a four-best
string hypothesis decoder [8]. Thus, the number of competing
classes, , is three when the correct string is among the
top four candidates and is four, otherwise. Note that the
distance in (15) is negative if is correctly classified and
positive otherwise.

The next step is to approximate the misclassification error
count. This is achieved using a smooth and differentiable 0-1
sigmoid function of the form

(17)

where and are constants which control the slope and the
shift of the smoothing function, respectively.

The third and final step in MCE/GPD training involves
finding the set of parameters that minimize the expected
value of the loss function, i.e., , in (17). The parameter
set (i.e., mixture means, variances and gains) is updated at
every iteration according to

(18)

where is a learning rate and is a positive definite matrix.
Details of the derivation of the HMM parameters using the
MCE/GPD technique are available in [7] and [12]. Throughout

Fig. 14. Histograms showing the distribution of the string-based likelihood
ratio scores, based onS(O; �), before and after MCE/GPD training.

all our experiments, MCE/GPD was only applied for training
the filler and the keyword models. At the time of writing
this paper the digit-specific antidigit models were not trained
with this technique. Training of these models would require a
somewhat different paradigm as shown in [22] and [34].

In the results reported by Liuet al. [15], it was shown that
MCE/GPD training helped in pulling apart the in-class/out-
class histograms of speaker verification scores, thus causing
lesser Type I and Type II errors. This property was also
observed in our study. Fig. 14 shows the two histograms
for the in-class/out-class string likelihood scores, based on
(13), when applying ML training (dotted lines) and following
MCE/GPD training (solid line). Clearly, the discriminative
training technique has provided a better separation of the
two distributions, a feature that is more apparent in the left
distribution representing the incorrect class.

Naturally, since the histograms are less overlapped than
those previously obtained with ML training, a decrease in the
error rate would be expected. Fig. 15 shows the variation of the
total Type I and Type II errors for ML and MCE/GPD training
when changing the critical threshold between1 and 5. The
total error rate plot following MCE/GPD training is shifted
toward the origin and is clearly less sensitive to variations in
the critical threshold. For example, to obtain less than a 10%
total error rate for ML training, the critical threshold can be set
anywhere between 1.5 and 5.2. For the same total error rate of
10%, the critical threshold following MCE/GPD training can
be set anywhere between0.7 and 4.3. The larger dynamic
range in setting the critical threshold provides some degree
of robustness to any possible acoustic mismatch between the
training model and the testing data [19], [23].

Since the rejection rate of nonvocabulary word strings is
in excess of 99%, it appears that the major challenge in
utterance verification is the rejection of putative errors. When
considering valid digit strings only, Fig. 16 shows the string
recognition performance as a function of rejection rate. At
a rejection rate of 5%, for example, the string recognition
performance improves from 93.6% following ML training to
96.1% following MCE/GPD training. This corresponds to a
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Fig. 15. Combined Type I and Type II errors with ML training and following
MCE/GPD training.

Fig. 16. String recognition performance as a function of rejection rate when
introducing MCE/GPD training.

reduction in string error rate by about 39% which is consistent
even up to a 10% rejection rate.

IX. DISCUSSION

As the demand for speech recognition technologies in-
creases, the need for the development of systems that are
robust to speaking style, accents, environmental mismatch,
disfluency, etc., is becoming increasingly essential. In these
circumstances, utterance verification plays an important role
in maintaining an acceptable error rate and in providing a
desirable trade-off between false alarm rate and false rejection
rate.

The work presented in this paper is a first step toward our
vision of atotally robust utterance verification system. Robust
verification is a subject that demands considerable attention.
In a separate publication [19], [23], we show that utterances
recorded under different environmental conditions require dif-
ferent operating points in order to satisfy a given optimality
criterion. Experimentally, it is shown that the ROC statistics
based on a particular training or evaluation set would not work

optimally under mismatched testing conditions. Methods to
alleviate this problem are reported in [19] and [23].

At present, we are investigating several different avenues to
improving the verification performance. The first involves the
development of a string-based likelihood ratio distance. Recall
that the function, defined in (13), is basically a geometric
average of digit likelihood ratio scores. Since the use of
likelihood ratio distances, as opposed to likelihood distances,
has resulted in a tremendous improvement in performance, it is
believed that extending our formulation to include an antistring
discriminant function would provide equal benefits.

Another avenue to minimizing false rejection errors and
false alarms is to apply discriminative training to the digit-
specific antidigit models. This would require a modification
of the MCE formulation to accommodate for antikeyword
models. Combining such an approach with MCE training in
a two-pass strategy is expected to give a desired trade-off
between a reduced Type I and Type II errors and a minimum
string error rate [22], [34].

An effective approach to improving the performance of ut-
terance verification systems is to introduce additional features,
besides the likelihood scores, to help detect nonvocabulary
words and putative errors more accurately. One example is to
use state durational information that is known to be effective
in detecting extraneous speech [32]. A different strategy to
improving the verification performance is to use context-
dependent subword units instead of the whole word models.
From our experience, these types phonological units result in
an improved performance in connected digits recognition. At
the time of writing this paper, a verification system tailored
toward subword units was under study [22], [34].

Finally, to provide a user-friendly speech recognition sys-
tem, verification of partial information is essential. Users of
a speech recognition system are typically impatient when
being prompted to repeat their 16-digit credit card number,
for example, more than once. Being asked to repeat a portion
of the digit string is commonly more acceptable. Current study
is focused on evaluating the success rate of the proposed
verification system in identifying unreliable parts of a spoken
digit string.

X. SUMMARY AND CONCLUSION

This paper presented an HMM-based system for connected
digits recognition/verification. A two-pass strategy was
adopted, consisting of recognition followed by verification.
In the first pass, recognition was performed via a conventional
Viterbi beam search algorithm. In the second pass, an
utterance-based confidence score was computed and applied
for verification.

For digit verification, we tested the null hypothesis that
a specific digit exists in a segment of speech versus the
alternative hypothesis that the digit was not present. Several
formulations were investigated for the alternative hypothesis
based on likelihood distances of digit-specific antidigit models
and a general acoustic filler model. It was demonstrated that
incorporating a geometric average that combined the scores of
both sets of models resulted in reduced equal error rates.
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TABLE II
STRING RECOGNITION PERFORMANCE AT DIFFERENTREJECTION RATES

For utterance verification, two approaches were investigated
based on the likelihood ratio scores of digits. The first was to
reject the digit string if the score of any detected digit falls
below a specified digit-specific critical threshold. The second
approach was to combine the likelihood scores of all detected
digits using a type of a geometric average and then to reject
the digit string if its confidence score falls below a specific
string verification threshold. The latter approach was shown to
give improved performance for connected digits as well as to
provide a single string-based likelihood distribution as opposed
to one distribution per digit. When evaluating the utterance
verification system on a speaker-independent connected-digits
database, the string error rate reduced by about 29% at 5%
rejection rate. The string recognition performance at different
rejection rates is shown in Table II. For rejection of nonvocab-
ulary word strings, the proposed system rejected over 99.9%
of the utterances.

In this paper, we illustrated that the Bayes decision rule and
the likelihood ratio test are not guaranteed to be optimal when
applied to verification of HMM-based speech recognition
systems. To alleviate this problem, we investigated the use
of discriminative hypothesis testing in the framework of min-
imum classification error training. A string-based MCE/GPD
method was applied for training the filler and keyword models.
Since the keyword models were used in both recognition
and verification, it was established from our experimental
results that MCE/GPD training helped not only to reduce the
recognition error rate but also the verification error rate. Using
this discriminative training method with a specific operating
point, the string error rate was reduced by a further 39% at
5% rejection rate (see Table II). It was interesting to note that
a similar reduction in error rate was also achieved at higher
rejection rates.

In summary, the proposed utterance verification system re-
jected over 99.9% of nonvocabulary word strings and reduced
the string error rate for valid digit strings by about 57% at 5%
rejection. The application of this technique under mismatched
environmental conditions is reported in [19] and [23].
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