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Although initially introduced and studied in the late 1960s and
early 1970s, statistical methods of Markov source or hidden Markov
modeling have become increasingly popular in the last several
years. There are two strong reasons why this has occurred. First the
models are very rich in mathematical structure and hence can form
the theoretical basis for use in a wide range of applications. Sec-
ond the models, when applied properly, work very well in practice
for several important applications. In this paper we attempt to care-
fully and methodically review the theoretical aspects of this type
of statistical modeling and show how they have been applied to
selected problems in machine recognition of speech.

. INTRODUCTION

Real-world processes generally produce observable out-
puts which can be characterized as signals. The signals can
bediscretein nature(e.g., characters from afinite alphabet,
quantized vectors from a codebook, etc.), or continuous in
nature (e.g., speech samples, temperature measurements,
music, etc.). The signal source can be stationary (i.e., its sta-
tistical properties do not vary with time), or nonstationary
(i.e., the signal properties vary over time). The signals can
be pure (i.e., coming strictly from a single source), or can
be corrupted from other signal sources (e.g., noise) or by
transmission distortions, reverberation, etc.

A problem of fundamental interest is characterizing such
real-world signals in terms of signal models. There are sev-
eral reasons why one is interested in applying signal models.
First of all, a signal model can provide the basis for a the-
oretical description of a signal processing system which can
be used to process the signal so as to provide a desired out-
put. For example if we are interested in enhancing a speech
signal corrupted by noise and transmission distortion, we
can use the signal model to design a system which will opti-
mally remove the noise and undo the transmission distor-
tion. A second reason why signal models are important is
that they are potentially capable of letting us learn a great
deal about the signal source (i.e., the real-world process
which produced the signal) without having to have the
source available. This property is especially important when
the cost of getting signals from the actual source is high.
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In this case, with a good signal model, we can simulate the
source and learn as much as possible via simulations.
Finally, the most important reason why signal models are
important is that they often work extremely well in practice,
and enable us to realize important practical systems—e.g.,
prediction systems, recognition systems, identification sys-
tems, etc., in a very efficient manner.

These are several possible choices for what type of signal
model is used for characterizing the properties of a given
signal. Broadly one can dichotomize the types of signal
models into the class of deterministic models, and the class
of statistical models. Deterministic models generally exploit
some known specific properties of the signal, e.g., that the
signal is a sine wave, or a sum of exponentials, etc. In these
cases, specification of the signal model is generally straight-
forward; all that is required is to determine (estimate) values
of the parameters of the signal model (e.g., amplitude, fre-
quency, phase of asine wave, amplitudes and rates of expo-
nentials, etc.). The second broad class of signal models is
the set of statistical models in which one tries to charac-
terize only the statistical properties of the signal. Examples
of such statistical models include Gaussian processes, Pois-
son processes, Markov processes, and hidden Markov pro-
cesses, among others. The underlying assumption of the
statistical model is that the signal can be well characterized
as a parametric random process, and that the parameters
of the stochastic process can be determined (estimated) in
a precise, well-defined manner.

For the applications of interest, namely speech process-
ing, both deterministic and stochastic signal models have
had good success. In this paper we will concern ourselves
strictly with one type of stochastic signal model, namely the
hidden Markov model (HMM). (These models are referred
to as Markov sources or probabilistic functions of Markov
chains in the communications literature.) We will first
review the theory of Markov chains and then extend the
ideas to the class of hidden Markov models using several
simple examples. We will then focus our attention on the
three fundamental problems’ for HMM design, namely: the

"The idea of characterizing the theoretical aspects of hidden
Markov modeling in terms of solving three fundamental problems
is due to Jack Ferguson of IDA (Institute for Defense Analysis) who
introduced it in lectures and writing.
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evaluation of the probability (or likelihood) of a sequence
of observations given a specific HMM; the determination
of a best sequence of model states; and the adjustment of
model parameters so as to best account for the observed
signal. We will show that once these three fundamental
problems are solved, we can apply HMMs to selected prob-
lems in speech recognition.

Neither the theory of hidden Markov models nor its
applications to speech recognition is new. The basic theory
was published in a series of classic papers by Baum and his
colleagues [1]-[5] in the late 1960s and early 1970s and was
implemented for speech processing applications by Baker
{6] at CMU, and by Jelinek and his colleagues at IBM [7]-[13]
in the 1970s. However, widespread understanding and
application of the theory of HMMs to speech processing
has occurred only within the past several years. There are
several reasons why this has been the case. First, the basic
theory of hidden Markov models was published in math-
ematical journals which were not generally read by engi-
neers working on problems in speech processing. The sec-
ond reason was that the original applications of the theory
to speech processing did not provide sufficient tutorial
material for most readers to understand the theory and to
be able to apply it to their own research. As a result, several
tutorial papers were written which provided a sufficient
level of detail for a number of research labs to begin work
using HMMs in individual speech processing applications
[14]-[19]. This tutorial is intended to provide an overview
of the basic theory of HMMs (as originated by Baum and
his colleagues), provide practical details on methods of
implementation of the theory, and describe a couple of
selected applications of the theory to distinct problems in
speech recognition. The paper combines results from a
number of original sources and hopefully provides a single
source for acquiring the background required to pursue
further this fascinating area of research.

The organization of this paper is as follows. In Section Il
we review the theory of discrete Markov chains and show
how the concept of hidden states, where the observation
is a probabilistic function of the state, can be used effec-
tively. We illustrate the theory with two simple examples,
namely coin-tossing, and the classic balls-in-urns system.
In Section 11l we discuss the three fundamental problems
of HMMs, and give several practical techniques for solving
these problems. In Section IV we discuss the various types
of HMM s that have been studied including ergodic as well
as left-right models. In this section we also discuss the var-
ious model features including the form of the observation
density function, the state duration density, and the opti-
mization criterion for choosing optimal HMM parameter
values. In Section Vwe discuss theissues thatarise inimple-
menting HMMs including the topics of scaling, initial
parameter estimates, model size, model form, missing data,
and multiple observation sequences. In Section VI we
describe anisolated word speech recognizer,implemented
with HMM ideas, and show how it performs as compared
to alternative implementations. In Section V1l we extend
the ideas presented in Section VI to the problem of recog-
nizing a string of spoken words based on concatenating
individual HMMs of each word in the vocabulary. In Section
VIl we briefly outline how the ideas of HMM have been
applied toalarge vocabulary speech recognizer, and in Sec-
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tion IX we summarize the ideas discussed throughout the
paper.

1. DISCRETE MARKOV PROCESSES?

Consider a system which may be described at any time
as being in one of a set of N distinct states, S;, S5, * * *, Sn,
as illustrated in Fig. 1 (where N = 5 for simplicity). At reg-

Fig. 1. A Markov chain with 5 states (flabeled S, to S5) with
selected state transitions.

ularly spaced discrete times, the system undergoes achange
of state (possibly back to the same state) according to a set
of probabilities associated with the state. We denote the
time instants associated with state changes as t = 1, 2,
- -+, and we denote the actual state at time t as g,. A full
probabilistic description of the above systemwould, in gen-
eral, require specification of the current state (at time 1), as
well as all the predecessor states. For the special case of a
discrete, first order, Markov chain, this probabilistic
description is truncated to just the current and the pre-
decessor state, i.e.,

Plg, = Si|qr—1 =S8i,9-2= Sk "]
= Plg: = Sjlq;-1 = S}k M

Furthermorewe only consider those processes in which the
right-hand side of (1) is independent of time, thereby lead-
ing to the set of state transition probabilities a;; of the form

a; = Plq; = Slqi-1 = Si),
with the state transition coefficients having the properties

0 (3a)

1=sij=sN 2)

1\

N

since they obey standard stochastic constraints.

The above stochastic process could be called an observ-
able Markov model since the output of the process is the
set of states at each instant of time, where each state cor-
responds to a physical (observable) event. To set ideas, con-
sider a simple 3-state Markov model! of the weather. We
assume that once a day (e.g., at noon), the weather is

2A good overview of discrete Markov processes is in [20, ch. 5].
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observed as being one of the following:

State 1: rain or (snow)
State 2: cloudy
State 3: sunny.

We postulate that the weather on day t is characterized by
a single one of the three states above, and that the matrix
A of state transition probabilities is

04 03 03
A={a} =02 06 02
0.1 0.1 0.8

Given that the weather on day 1 (t = 1) is sunny (state 3),
we can ask the question: What is the probability (according
to the model) that the weather for the next 7 days will be
'‘sun-sun-rain-rain-sun-cloudy-sun - - -*’? Stated more for-
mally, we define the observation sequence O as O = {S,,
S3, 83, 51, $1, 3, Sz, S5} correspondingtot = 1,2, - - -, 8,
and we wish to determine the probability of O, given the
model. This probability can be expressed (and evaluated)
as

P(O|Model) = P[S;, Ss, Sy, Sy, Sy, Ss, Sy Ss|Model]
PIS;]1 - PIS3]S3] + PIS3|Ss] - PIS4|S5]
* PIS1|S1] - PIS5|Sq] - PIS,|Ss] - PIS5|S))

= W3 " a3 " @y ap - an a3 ap - ap
1 - (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)
= 1.536 x 10~*

where we use the notation

= Plg. = S]],

to denote the initial state probabilities.

Another interesting question we can ask (and answer
using the model) is: Given that the model is in a known state,
what s the probability it stays in that state for exactly d days?
This probability can be evaluated as the probability of the
observation sequence

o= {Sn Si Si, v
12 3

1<i=sN “4)

.5, S # S},
d d+1

given the model, which is
P(O|Model, g; = S) = (a)* (1 — a)) = p{d). (5

The quantity pi(d) is the (discrete) probability density func-
tion of duration d in state i. This exponential duration den-
sity is characteristic of the state duration in a Markov chain.
Based on p;(d), we can readily calculate the expected num-
ber of observations (duration) in a state, conditioned on
starting in that state as

d; d§1 dpi(d) (6a)

o

2 d@)® 1 -ap =
d=1

1-a; (6b)
Thus the expected number of consecutive days of sunny
weather, according to the model, is 1/(0.2) = 5; for cloudy

it is 2.5; for rain it is 1.67.

RABINER: HIDDEN MARKOV MODELS

A. Extension to Hidden Markov Models

So far we have considered Markov models in which each
state corresponded to an observable (physical) event. This
model is too restrictive to be applicable to many problems
of interest. In this section we extend the concept of Markov
models to include the case where the observation is a prob-
abilistic function of the state—i.e., the resulting model
(whichis called a hidden Markov model) is a doubly embed-
ded stochastic process with an underlying stochastic pro-
cess that is not observable (it is hidden), but can only be
observed through another set of stochastic processes that
produce the sequence of observations. To fix ideas, con-
sider the following model of some simple coin tossing
experiments.

Coin Toss Models: Assume the following scenario. You
are in a room with a barrier (e.g., a curtain) through which
you cannot see what is happening. On the other side of the
barrier is another person who is performing a coin (or mul-
tiple coin) tossing experiment. The other person will not tell
you anything about what he is doing exactly; he will only
tell you the result of each coin flip. Thus a sequence of hid-
den coin tossing experiments is performed, with the obser-
vation sequence consisting of a series of heads and tails;
e.g., a typical observation sequence would be

O=O10203“'OT
=¥X3¥X3IIIAX3IIX--- K

where 3C stands for heads and 3 stands for tails.

Given the above scenario, the problem of interest is how
do we build an HMM to explain (model) the observed
sequence of heads and tails. The first problem one faces is
deciding what the states in the model correspond to, and
then deciding how many states should be in the model. One
possible choice would be to assume that only asingle biased
coin was being tossed. In this case we could model the sit-
uation with a 2-state model where each state corresponds
to a side of the coin (i.e., heads or tails). This model is
depicted in Fig. 2(a).3 In this case the Markov model is
observable, and the only issue for complete specification
of the model would be to decide on the best value for the
bias (i.e., the probability of, say, heads). Interestingly, an
equivalent HMM to that of Fig. 2(a) would be a degenerate
1-state model, where the state corresponds to the single
biased coin, and the unknown parameter is the bias of the
coin.

A second form of HMM for explaining the observed
sequence of coin toss outcome is given in Fig. 2(b). In this
case there are 2 states in the model and each state corre-
sponds to a different, biased, coin being tossed. Each state
is characterized by a probability distribution of heads and
tails, and transitions between states are characterized by a
state transition matrix. The physical mechanism which
accounts for how state transitions are selected could itself
be a set of independent coin tosses, or some other prob-
abilistic event.

A third form of HMM for explaining the observed
sequence of coin toss outcomes is given in Fig. 2(c). This
model corresponds to using 3 biased coins, and choosing
from among the three, based on some probabilistic event.

*The model of Fig. 2(a) is a memoryless process and thus is a
degenerate case of a Markov model.
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URN 1

P{RED) = by(1)
P(BLUE) = by(2)
P(GREEN) =by(3)
P(YELLOW) = b,(4)

)

URN 2

P(RED) = bp(1)
P(BLUE) = bp(2)
P(GREEN) = by(3)
PIYELLOW) = by(4)

GEY

S —
URN N

P(RED)  =by(1)
P(BLUE) = by(2)
PIGREEN) = by(3)
PIYELLOW) = by(4)

P{H) 1= P(H)
1-P(H)
(@)
1 Pty 2 O*HHTTHTHHTTH...
HEADS TAILS s=11221211224...
Oy G22
1G4y
(b U 2 O*HHTTHTHHTTH...
22 s=21122212212...
P(H) = Py P(H) =P,

P(T)=1-P, P(T)=1-P,

Qyy dz2

O=HHTTHTHHTTH...

(c) S231233142313..,

P(H) P, P, Py
PIT) 1-Py 1-P, 1-P3

Fig. 2. Three possible Markov models which can account
for the results of hidden coin tossing experiments. (a) 1-coin
model. (b) 2-coins model. (c) 3-coins model.

Given the choice among the three models shown in Fig.
2 for explaining the observed sequence of heads and tails,
a natural question would be which model best matches the
actual observations. It should be clear thatthe simple 1-coin
model of Fig. 2(a) has only 1 unknown parameter; the 2-coin
model of Fig. 2(b) has 4 unknown parameters; and the 3-coin
model of Fig. 2(c) has 9 unknown parameters. Thus, with
the greater degrees of freedom, the larger HMMs would
seem to inherently be more capable of modeling a series
of coin tossing experiments than would equivalently smaller
models. Although this is theoretically true, we will see later
in this paper that practical considerations impose some
strong limitations on the size of models that we can con-
sider. Furthermore, it might just be the case that only a sin-
gle coin is being tossed. Then using the 3-coin model of Fig.
2(c) would be inappropriate, since the actual physical event
would not correspond to the model being used—i.e., we
would be using an underspecified system.

The Urn and Ball Model*: To extend the ideas of the HMM
to a somewhat more complicated situation, consider the
urn and ball system of Fig. 3. We assume that there are N
(large) glassurnsinaroom. Within each urntherearealarge
number of colored balls. We assume there are M distinct
colorsof theballs. The physical process for obtaining obser-
vations is as follows. A genie is in the room, and according
to some random process, he (or she) chooses an initial urn.
From this urn, a ball is chosen at random, and its color is
recorded as the observation. The ball is then replaced in the
urn from which it was selected. A new urn is then selected

“The urn and ball model was introduced by Jack Ferguson, and
his colleagues, in lectures on HMM theory.
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P{ORANGE) = by (M) P(ORANGE) = bp(M) P(ORANGE) = by(M)

0= {GREEN, GREEN, BLUE, RED, YELLOW, RED, ....... , BLUE}

Fig. 3. An N-state urn and ball model which illustrates the
general case of a discrete symbol HMM.

according to the random selection process associated with
the current urn, and the ball selection process is repeated.
This entire process generates a finite observation sequence
of colors, which we would like to model as the observable
output of an HMM.

It should be obvious that the simplest HMM that cor-
responds to the urn and ball process is one in which each
state corresponds to a specific urn, and for which a (ball)
color probability is defined for each state. The choice of
urns is dictated by the state transition matrix of the HMM.

B. Elements of an HMM

The above examples give us a pretty good idea of what
an HMM is and how it can be applied to some simple sce-
narios. We now formally define the elements of an HMM,
and explain how the model generates observation
sequences.

An HMM is characterized by the following:

1) N, the number of states in the model. Although the
states are hidden, for many practical applications there is
often some physical significance attached to the states or
to sets of states of the model. Hence, in the coin tossing
experiments, each state corresponded to a distinct biased
coin. In the urn and ball model, the states corresponded
to the urns. Generally the states are interconnected in such
a way that any state can be reached from any other state
(e.g., an ergodic model); however, we will see later in this
paper that other possible interconnections of states are
often of interest. We denote the individual states as S = {S;,
Sy - -+, Sy}, and the state at time t as q,.

2) M, the number of distinct observation symbols per
state, i.e., the discrete alphabet size. The observation sym-
bols correspond to the physical output of the system being
modeled. For the coin toss experiments the observation
symbols were simply heads or tails; for the ball and urn
model they were the colors of the balls selected from the
urns. We denote the individual symbols as V = {v;, v,,
ce e, vyl

3) The state transition probability distribution A = {a;}
where

a; = Plqe+q = Sjlq: = S},

For the special case where any state can reach any other
state in a single step, we have a; > 0 for all j, j. For other
types of HMMs, we would have a; = 0 for one or more (i,
J) pairs.

1=<ij=<N. )
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4) The observation symbol probability distribution in
state j, B = {b;(k)}, where

bik) = Plviattlg,=S), 1<j

A

N
1= k = M. 8
5) The initial state distribution = = {=;} where
m=Pgy=S5], 1=<i=<N. )

Given appropriate values of N, M, A, B, and 7, the HMM
can be used as a generator to give an observation sequence

0=0,0, -0y (10)

(where each observation O, is one of the symbols from V,
and T is the number of observations in the sequence) as
follows:

1) Choose an initial state g, = S; according to the initial
state distribution =.

2) Sett=1.

3) Choose O, = v according to the symbol probability
distribution in state S, i.e., b;(k).

4) Transit to a new state q,,, = §;according to the state
transition probability distribution for state S, i.e., a;;.

5) Sett =t + 1; return to step 3)if t < T; otherwise ter-
minate the procedure.

The above procedure can be used as both a generator of
observations, and as a model for how a given observation
sequence was generated by an appropriate HMM.

It can be seen from the above discussion that a complete
specification of an HMM requires specification of two
model parameters (N and M), specification of observation
symbols, and the specification of the three probability mea-
sures A, B, and 7. For convenience, we use the compact
notation

A=(A B, 7 (11)

to indicate the complete parameter set of the model.

C. The Three Basic Problems for HMMSs®

Given the form of HMM of the previous section, there are
three basic problems of interest that must be solved for the
model to be useful in real-world applications. These prob-
lems are the following:

Problem 1: Given the observation sequence O = O, O,
+++ Oy, and a model A = (A, B, 7), how do
we efficiently compute P(O|N), the proba-
bility of the observation sequence, given the
model?

Problem 2: Given the observation sequence O = O, O,
+ + + Oy, and the model A\, how do we choose
a corresponding state sequence Q = g, g,
- - - grwhich is optimal in some meaningful
sense (i.e., best ““explains” the observa-
tions)?

Problem 3: How do we adjust the model parameters \
= (A, B, 7) to maximize P(O|\?

*The material in this section and in Section II1 is based on the
ideas presented by Jack Ferguson of IDA in lectures at Bell Lab-
oratories.

RABINER: HIDDEN MARKOV MODELS

Problem 1 is the evaluation problem, namely given a
modeland asequence of observations, how dowe compute
the probability that the observed sequence was produced
by the model. We can also view the problem as one of scor-
ing how well a given model matches a given observation
sequence. The latter viewpoint is extremely useful. For
example, if we consider the case in which we are trying to
choose among several competing models, the solution to
Problem 1 allows us to choose the model which best
matches the observations.

Problem 2 is the one in which we attempt to uncover the
hidden part of the model, i.e., to find the “correct” state
sequence. It should be clear that for all but the case of
degenerate models, there is no “correct” state sequence
to be found. Hence for practical situations, we usually use
an optimality criterion to solve this problem as best as pos-
sible. Unfortunately, as we will see, there are several rea-
sonable optimality criteria that can be imposed, and hence
the choice of criterion is a strong function of the intended
use for the uncovered state sequence. Typical uses might
be to learn about the structure of the model, to find optimal
state sequences for continuous speech recognition, or to
get average statistics of individual states, etc.

Problem 3 is the one in which we attempt to optimize the
model parameters so as to best describe how a given obser-
vation sequence comes about. The observation sequence
used to adjust the model parameters is called a training
sequence since it is used to “train’’ the HMM. The training
problem is the crucial one for most applications of HMMs,
since it allows us to optimally adapt model parameters to
observed training data—i.e., to create best models for real
phenomena.

To fix ideas, consider the following simple isolated word
speech recognizer. For each word of a W word vocabulary,
we want to design a separate N-state HMM. We represent
the speech signal of a given word as a time sequence of
coded spectral vectors. We assume that the coding is done
using a spectral codebook with M unique spectral vectors;
hence each observation is the index of the spectral vector
closest (in some spectral sense) to the original speech sig-
nal. Thus, for each vocabulary word, we have a training
sequence consisting of a number of repetitions of
sequences of codebook indices of the word (by one or more
talkers). The first task is to build individual word models.
This task is done by using the solution to Problem 3 to opti-
mally estimate model parameters for each word model. To
develop an understanding of the physical meaning of the
model states, we use the solution to Problem 2 to segment
each of the word training sequences into states, and then
study the properties of the spectral vectors that lead to the
observations occurring in each state. The goal here would
be to make refinements on the model (e.g., more states,
different codebook size, etc.) so as to improve its capability
of modeling the spoken word sequences. Finally, once the
set of W HMMs has been designed and optimized and thor-
oughly studied, recognition of an unknown word is per-
formed using the solution to Problem 1 to score each word
model based upon the given test observation sequence,
and select the word whose model score is highest (i.e., the
highest likelihood).

In the next section we present formal mathematical solu-
tions to each of the three fundamental problems for HMMs.
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We shall see that the three problems are linked together
tightly under our probabilistic framework.

I1l.  SOLUTIONS TO THE THREE BAsiC PROBLEMS OF HMMs
A. Solution to Problem 1

We wish to calculate the probability of the observation
sequence, O = O, 0, - - Oy, given the model \, i.e., P(O|N).
The most straightforward way of doing this is through
enumerating every possible state sequence of length T (the
number of observations). Consider one such fixed state
sequence

Q=q¢1q9: """ qr (12)

where g, is the initial state. The probability of the obser-
vation sequence O for the state sequence of (12) is

;
POIQ, N = [1;[1 P(Odq:, N (13a)

where we have assumed statistical independence of obser-
vations. Thus we get

P(O|Q, N) = by (Oy) * be(O,) -+ by (Op.  (13b)

The probability of such a state sequence Q can be written

as
P(Q|)\) = 7rq1a‘h‘72a‘h<h e a‘h—ﬂr' a4

The joint probability of O and Q, i.e., the probability that
Oand Qoccur simultaneously, is simply the product of the
above two terms, i.e.,

PO, QIN = P(O|Q, N P(Q, N (15)

The probability of O (given the model)is obtained by sum-
ming this joint probability over all possible state sequences

q giving
P(OIN

% P(O|Q, N P(Q|N (16)

2wy bg(O) ag.qba(O)
9192 " " .97 @GP g\ MV Cq49,7 g\ 2

: aQT—1QerT(QT)‘ 17)

The interpretation of the computation in the above equa-
tion is the following. Initially (at time t = 1) we are in state
q, with probability 7,,, and generate the symbol O (in this
state) with probability b, (O4). The clock changes from time
ttot + 1(t = 2) and we make a transition to state g, from
state g, with probability a, 4., and generate symbol O, with
probability bg,(O,). This process continues in this manner
until we make the list transition (at time 7) from state gr_+
to state g7 with probability a, . and generate symbol O
with probability by (Oy).

A little thought should convince the reader that the cal-
culation of P(O|N), according to its direct definition (17)
involves on the order of 2T - N7 calculations, since at every
t=1,2,---,T, there are N possible states which can be
reached (i.e., there are N7 possible state sequences), and
for each such state sequence about 2T calculations are
required for each term in the sum of (17). (To be precise,
we need (2T — 1)N' multiplications, and N7 — 1 additions.)
This calculation is computationally unfeasible, even for
small values of N and T; e.g., for N = 5 (states), T = 100
(observations), there are on the order of 2 - 100 - 5'® ~ 1072
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computations! Clearly a more efficient procedure is
required to solve Problem 1. Fortunately such a procedure
exists and is called the forward-backward procedure.

The Forward-Backward Procedure [2], [3]°: Consider the
forward variable «,(i) defined as

ali) = PO, 0, - O, q; = SiN (18)

i.e., the probability of the partial observation sequence, O,
O, - * O, (until time t) and state S at time t, given the model
\. We can solve for «,(i) inductively, as follows:

1) Initialization:

oq(i) = mb(O,), 1=<i=<sN. (19)
2) Induction:
N
ar+1(i) = |:i§1 ax(i)ai,‘]b/(or+1), 1<t=sT-1
1<j=<N. (20)
3) Termination:
N
PO = 2 arli). @1)

Step 1) initializes the forward probabilities as the joint prob-
ability of state S; and initial observation O,. The induction
step, which is the heart of the forward calculation, is illus-
trated in Fig. 4(a). This figure shows how state S; can be

Sq ay

S2 92

(@) .

t t+1
a, (i) ay 44t

STATE
T

(b)

OBSERVATION, t

Fig. 4. (a) lllustration of the sequence of operations
required for the computation of the forward variable a, , (j ).
(b) Implementation of the computation of a,(i) in terms of
a lattice of observations t, and states i.

®Strictly speaking, we only need the forward part of the forward-
backward procedure to solve Problem 1. We will introduce the
backward part of the procedure in this section since it will be used
to help solve Problem 3.
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reached at time t + 1 from the N possible states, S;, 1 < i
=< N, attimet. Since a(i) is the probability of the joint event
that O, O, - - - O, are observed, and the state at time t is S;,
the product o,(i) a; is then the probability of the joint event
that O, O, - - * O, are observed, and state S; is reached at
time t + 1 via state S, at time t. Summing this product over
all the N possible states S;, 1T < i < N at time tresults in the
probability of S;at time t + 1with all the accompanying pre-
vious partial observations. Once this is done and §;is known,
it is easy to see that «, 1(j) is obtained by accounting for
observation Oy, in state , i.e., by multiplying the summed
quantity by the probability b;(O; , 1). The computation of (20)
is performed for all states j, 1 < j < N, for a given t; the
computation is then iterated fort =1,2, - - -, T — 1. Finally,
step 3) gives the desired calculation of P(O|)) as the sum
of theterminal forward variables a(i). This is the case since,
by definition,

ar(i) = P(O, O, - -+ Or, gy = SN (22)

and hence P(O|N) is just the sum of the a(i)’s.

If we examine the computation involved in the calcula-
tionof a(j),1 = t = T,1 < j < N, we see that it requires
on the order of N2T calculations, rather than 27N7 as
required by the direct calculation. (Again, to be precise, we
need N(N + 1)(T — 1) + N multiplications and N(N — 1)(T
— 1) additions.) For N = 5, T = 100, we need about 3000
computations for the forward method, versus 10’ com-
putations for the direct calculation, a savings of about 69
orders of magnitude.

The forward probability calculation is, in effect, based
upon the lattice (or trellis) structure shown in Fig. 4(b). The
key is that since there are only N states (nodes at each time
slot in the lattice), all the possible state sequences will re-
merge into these N nodes, no matter how long the obser-
vation sequence. At time t = 1 (the first time slot in the lat-
tice), we need to calculate values of a4(i), 1 < i < N. Attimes
t=2,3,---,T weonly need to calculate values of a,(j),
1 =< j = N, where each calculation involves only N previous
values of a;_;(i) because each of the N grid points is reached
from the same N grid points at the previous time slot.

Inasimilar manner,” we can consider a backward variable
B(i) defined as

Bi) = P(Or+1 Opy2 -+ - Oflg, = 5;, N (23)

i.e., the probability of the partial observation sequence from
t + 1to the end, given state S; at time t and the model \.
Again we can solve for 8.(i) inductively, as follows:

1) Initialization:

By =1, 1=i=<N. 4)

2) Induction:
N

Bui) = }; b0y 1) Brialj),

t=7T-1,T-2,---,1,1=<i=<N. (25

The initialization step 1) arbitrarily defines 8(i) to be 1 for
alli. Step 2), which isillustrated in Fig. 5, shows that in order
to have been in state S; at time t, and to account for the

7Again we remind the reader that the backward procedure will
be used in the solution to Problem 3, and is not required for the
solution of Problem 1.
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t
By ti)

t+1
By g th

Fig. 5. lllustration of the sequence of operations required
for the computation of the backward variable B,(i).

observation sequence from time t + 1 0n, you have to con-
sider all possible states S; at time t + 1, accounting for the
transition from §; to §; (the a; term), as well as the obser-
vation O, ., in state j (the b;(O,, ;) term), and then account
for the remaining partial observation sequence from state
j (the B, +(j) term). We will see later how the backward, as
well as the forward calculations are used extensively to help
solve fundamental Problems 2 and 3 of HMMs.

Again, the computation of 8(i), 1=t < T,1 =< i < N,
requires on the order of N*T calculations, and can be com-
puted in a lattice structure similar to that of Fig. 4(b).

B. Solution to Problem 2

Unlike Problem 1for which an exact solution can be given,
there are several possible ways of solving Problem 2, namely
finding the “optimal” state sequence associated with the
given observation sequence. The difficulty lies with the def-
inition of the optimal state sequence; i.e., there are several
possible optimality criteria. For example, one possible opti-
mality criterion is to choose the states g, which are indi-
vidually most likely. This optimality criterion maximizes the
expected number of correct individual states. To imple-
ment this solution to Problem 2, we define the variable

) = Pq, = SO, N (26)

i.e., the probability of being in state S; at time ¢, given the
observation sequence O, and the model \. Equation (26) can
be expressed simply in terms of the forward-backward
variables, i.e.,
o adi) Bi(i) ai) B(i)
Yeli) = PON X 27)
2 i) ()

since (i) accounts for the partial observation sequence O,
O, - -+ O, and state S; at t, while §,(i) accounts for the
remainder of the observation sequence O, O, - * Oy,
given state S; at t. The normalization factor P(O|N\) = £V,
a,(i), B(i) makes v,(i) a probability measure so that

N
Z v = 1. 28)
Using v,(i), we can solve for the individually most likely
state q, at time ¢, as

qr = argmax [y ()], 1=t=<T (29)

1=sisN
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Although (29) maximizes the expected number of correct
states (by choosing the most likely state for each ¢), there
could be some problems with the resulting state sequence.
For example, when the HMM has state transitions which
have zero probabilty (a; = 0 for some i and j), the “optimal”’
state sequence may, in fact, not even be a valid state
sequence. This is due to the fact that the solution of (29)
simply determines the most likely state at every instant,
without regard to the probability of occurrence of
sequences of states.

One possible solution to the above problem is to modify
the optimality criterion. For example, one could solve for
the state sequence that maximizes the expected number of
correct pairs of states (q;, g,.+), or triples of states (q,,
g:+1,Gr+2), €tc. Although these criteria might be reasonable
for some applications, the most widely used criterion is to
find the single best state sequence (path), i.e., to maximize
P(Q|O, M) which is equivalent to maximizing P(Q, O|\). A
formal technique for finding this single best state sequence
exists, based on dynamic programming methods, and is
called the Viterbi algorithm.

Viterbi Algorithm [21], [22]: To find the single best state
sequence, Q = {q q; - - - qr}, for the given observation
sequence O = {O; O, - - - Oy}, we need to define the
quantity

0i) = max  Plgiq; - q=1i,0,0, " OfN
G1.G2," " .G

(30)

i.e., 8,(i) is the best score (highest probability) along a single
path, at time t, which accounts for the first t observations
and ends in state S;. By induction we have

6¢+1(j) = [max ddi)ayl * bUO; ). @M

To actually retrieve the state sequence, we need to keep
track of the argument which maximized (31), for each t and
j. We do this via the array y,(j). The complete procedure
for finding the best state sequence can now be stated as
follows:
1) Initialization:

() = mb(Oy), 1=<i=<N (32a)

¥ai) = 0. (32b)

2) Recursion:

A
A

8(j) = max [8,_4()a1b(O), 2 T
1sisN
1<j=N (33

vdlj) = argmax [6:- () a;), 2=t=sT
1=<j=<N. (33b)
3) Termination: (34a)
P* = max [67()]
q7 = argmax (7). (34b)

4) Path (state sequence) backtracking:

Gf = Vea@liy), t=T-1T-2---,1. (35
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It should be noted that the Viterbi algorithm is similar
(except for the backtracking step) in implementation to the
forward calculation of (19)-(21). The major difference is the
maximization in (33a) over previous states which is used in
place of the summing procedure in (20). It also should be
clear that a lattice (or trellis) structure efficiently imple-
ments the computation of the Viterbi procedure.

C. Solution to Problem 3 [1]-[5]

The third, and by far the most difficult, problem of HMMs
is to determine a method to adjust the model parameters
(A, B, m) to maximize the probability of the observation
sequence given the model. There is no known way to ana-
lytically solve for the model which maximizes the proba-
bility of the observation sequence. In fact, given any finite
observation sequence as training data, there is no optimal
way of estimating the model parameters. We can, however,
choose N = (A, B, m) such that P(OJ\) is locally maximized
using an iterative procedure such as the Baum-Welch
method (or equivalently the EM (expectation-modification)
method [23]), or using gradient techniques [14]. In this sec-
tion we discuss one iterative procedure, based primarily on
the classic work of Baum and his colleagues, for choosing
model parameters.

In order to describe the procedure for reestimation (iter-
ative update and improvement) of HMM parameters, we
first define &,(i, j), the probability of being in state S; at time
t, and state S; at time t + 1, given the model and the obser-
vation sequence, i.e.

£, j) =P =S, Gr41 = S/loz N. (36)

The sequence of events leading to the conditions required
by (36) is illustrated in Fig. 6. It should be clear, from the

Si

a(i)

t+1 t+2

|
|
|
|
|9ijP {01 44
|
|
!
|
t—1 t I
|

Fig. 6. lllustration of the sequence of operations required
for the computation of the joint event that the system is in
state S; at time t and state S; at time t + 1.

definitions of the forward and backward variables, that we
can write £(i, j) in the form
i) agb{(Oys 1) By i)

P(O|N

_ (i) 3;b[(Oy 1 1) Brsa()) (37)

N
/§1 i) ail'b/(otﬂ) Be+al))

£, ) =

Mz

I

i=1
where the numerator term is just P(q, = S, G¢+1 = S;, O[N)
and the division by P(O|N) gives the desired probability
measure.
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We have previously defined «,(i) as the probability of
being in state §; at time ¢, given the observation sequence
and the model; hence we can relate v,(i) to &,(i, j) by sum-
ming over j, giving

N
vi) = i; £, j). (38)

If we sum (i) over the time index t, we get a quantity which
can be interpreted as the expected (over time) number of
times that state S, is visited, or equivalently, the expected
number of transitions made from state S, (if we exclude the
time slot t = T from the summation). Similarly, summation
of £,(i, j) over t(from t = 1tot = T — 1) can be interpreted
as the expected number of transitions from state S, to state
S;. That is

T-1

rZ1 7:{i) = expected number of transitions from §;

(39a)

-1
121 £, j) = expected number of transitions from §; to ;.

(39b)

Using the above formulas (and the concept of counting
event occurrences) we can give a method for reestimation

lihood estimate of the HMM. It should be pointed out that
the forward-backward algorithm leads to local maxima
only, and that in most problems of interest, the optimi-
zation surface is very complex and has many local maxima.

The reestimation formulas of (40a)-(40c) can be derived
directly by maximizing (using standard constrained opti-
mization techniques) Baum’s auxiliary function

QM N = g P(Q|O, N log [P(O, QN)] @1

over \. It has been proven by Baum and his colleagues (6],
[3] that maximization of Q(\, \) leads to increased likeli-
hood, i.e.

max [Q(\, N)] = P(O[N) = P(O|N. 42
A

Eventually the likelihood function converges to a critical
point.

Notes on the Reestimation Procedure: The reestimation
formulas can readily be interpreted as an implementation
of the EM algorithm of statistics [23] in which the E (expec-
tation) step is the calculation of the auxiliary function Q(\,
), and the M (modification) step is the maximization over
\. Thus the Baum-Welch reestimation equations are essen-
tially identical to the EM steps for this particular problem.

Animportantaspectof the reestimation procedure is that
the stochastic constraints of the HMM parameters, namely

of the parameters of an HMM. A set of reasonable reesti- A
} Lw=1 (43a)
mation formulas for 7, A, and B are i=1
7; = expected frequency (number of times) in state S; at time (t = 1) = v4(/) (40a)

expected number of transitions from state S; to state S;

3 =
T-1
21 A )

~{H

7
¥:(i)
g

t=

expected number of transitions from state S,

(40b)

—= .. _ expected number of times in state j and observing symbol v,

T

2 ¥dj)
t=1
s.t. O = vk

-
> Yj)
t=1

If we define the current model as N\ = (A, B, 7), and use
that to compute the right-hand sides of (40a)-(40c), and we
define the reestimated model as X = A, B, 7), as determined
from the left-hand sides of (40a)-(40c), then it has been
proven by Baum and his colleagues [6], [3] that either 1) the
initial model X defines a critical point of the likelihood func-
tion, in which case N = \; or 2) model \ is more likely than
model \ in the sense that P(O|\) > P(O|)), i.e., we have
found a new model A from which the observation sequence
is more likely to have been produced.

Based on the above procedure, if we iteratively use X in
place of A and repeat the reestimation calculation, we then
can improve the probability of O being observed from the
model until some limiting point is reached. The final result
of this reestimation procedure is called a maximum like-
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expected number of times in state j

(40¢)

N
a3, =1 1=i=<N (43b)

M
2 bky=1 1=js=N (43c)

are automatically satisfied at each iteration. By looking at
the parameter estimation problem as a constrained opti-
mization of P(O|M) (subject to the constraints of (43)), the
techniques of Lagrange multipliers can be used to find the
values of ;, a;;, and b;tk) which maximize P (we use the nota-
tion P = P(O|N) as short-hand in this section). Based on set-
ting up a standard Lagrange optimization using Lagrange
multipliers, it can readily be shown that Pis maximized when
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the following conditions are met:

aP
" om,
M= (442)
il

m
1 ka‘ﬂ'k

z

k

It

L 0P
" day;
N
aP
2, 2 g

(44b)

ap
58 .
bik) = . (440)

M oP
1:21 b ab,(6)

By appropriate manipulation of (44), the right-hand sides of
each equation can be readily converted to be identical to
the right-hand sides of each part of (40a)-(40c), thereby
showing that the reestimation formulas are indeed exactly
correct at critical points of P. In fact the form of (44) is essen-
tially that of a reestimation formula in which the left-hand
side is the reestimate and the right-hand side is computed
using the current values of the variables.

Finally, we note that since the entire problem can be set
up as an optimization problem, standard gradient tech-
niques can be used to solve for “optimal” values of the
model parameters [14]. Such procedures have been tried
and have been shown toyield solutions comparable to those
of the standard reestimation procedures.

IV. Types oF HMMs

Until now, we have only considered the special case of
ergodic or fully connected HMM:s in which every state of
the model could be reached (in a single step) from every
other state of the model. (Strictly speaking, an ergodic
model has the property that every state can be reached from
every other state in a finite number of steps.) As shown in
Fig. 7(a), for an N = 4 state model, this type of model has
the property that every a; coefficient is positive. Hence for
the example of Fig. 7a we have

Ay Az A3 Ay
axy ap ap3 an
az asp az diy
Ag1 A A3 Ay

For some applications, in particular those to be discussed
later in this paper, other types of HMMs have been found
to account for observed properties of the signal being mod-
eled better than the standard ergodic model. One such
model is shown in Fig. 7(b). This model is called a left-right
model or a Bakis model [11], [10] because the underlying
state sequence associated with the model has the property
that as time increases the state index increases (or stays the
same), i.e., the states proceed from left to right. Clearly the
left-right type of HMM has the desirable property that it can
readily model signals whose properties change over time—
e.g., speech. The fundamental property of all left-right
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(@

Fig. 7. lllustration of 3 distinct types of HMMs. (a) A 4-state
ergodic model. (b) A 4-state left-right model. (c) A 6-state par-
allel path left-right model.

HMM s is that the state transition coefficients have the prop-
erty

a; =0, j<i (45)
i.e., no transitions are allowed to states whose indices are

lower than the current state. Furthermore, the initial state
probabilities have the property

0, i#1
1r,-={ (46)
1, i=1

since the state sequence must begin in state 1(and end in
state N). Often, with left-right models, additional con-
straints are placed on the state transition coefficients to
make sure that large changes in state indices do not occur;

hence a constraint of the form
a; =0 j>i+A (47)

is often used. In particular, for the example of Fig. 7(b), the
value of A is 2, i.e., no jumps of more than 2 states are
allowed. The form of the state transition matrix for the
example of Fig. 7(b) is thus

an ap a;p 0
0 an apn ay
0 0 ay ay

0 0 0 ay

It should be clear that, for the last state in a left-right model,
that the state transition coefficients are specified as

ayy =1 (48a)
i < N. (48b)

ay; =0,
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Although we have dichotomized HMMs into ergodic and
left-right models, there are many possible variations and
combinations possible. By way of example, Fig. 7(c) shows
across-coupled connection of two parallel left-right HMMs.
Strictly speaking, this model is a left-right model (it obeys
all the a;; constraints); however, it can be seen that it has
certain flexibility not presentin astrictleft-right model (i.e.,
one without parallel paths).

It should be clear that the imposition of the constraints
of the left-right model, or those of the constrained jump
model, essentially have no effect on the reestimation pro-
cedure. This is the case because any HMM parameter set
to zero initially, will remain at zero throughout the rees-
timation procedure (see (44)).

A. Continuous Observation Densities in HMMs [24]-[26]

All of our discussion, to this point, has considered only
the case when the observations were characterized as dis-
crete symbols chosen from a finite alphabet, and therefore
we could use adiscrete probability density within each state
of this model. The problem with this approach, at least for
some applications, is that the observations are continuous
signals (or vectors). Although it is possible to quantize such
continuous signals via codebooks, etc., there might be seri-
ous degradation associated with such quantization. Hence
itwould be advantageous to be able to use HMMs with con-
tinuous observation densities.

In order to use a continuous observation density, some
restrictions have to be placed on the form of the model
probability density function (pdf) to insure that the param-
eters of the pdf can be reestimated in a consistent way. The
most general representation of the pdf, for which a rees-
timation procedure has been formulated [24]-[26], is a finite
mixture of the form

M
bj0) = 21 CmIUO, Bjm, U, 1=<j<N (49

where Oisthe vectorbeing modeled, c;,, is the mixture coef-
ficient for the mth mixture in state j and 9 is any log-con-
cave or elliptically symmetric density [24] (e.g., Gaussian),
with mean vector p;, and covariance matrix U, for the mth
mixture component in state j. Usually a Gaussian density
is used for 3. The mixture gains c;, satisfy the stochastic
constraint

Cim =1, 1<j=<N (50a)

Cim = 0, 1=j=sN1=m=sM (50b)
so that the pdf is properly normalized, i.e.,

g bix) dx =1, 1<j=<N. (51)

The pdf of (49) can be used to approximate, arbitrarily
closely, any finite, continuous density function. Hence it
can be applied to a wide range of problems.

It can be shown [24]-[26] that the reestimation formulas
for the coefficients of the mixture density, i.e., Cims Wi, and
Uy, are of the form

% ydj, b
t=1

T M
DIRDIEIA )

t=1k=

i = (52)

-
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T

g"‘ Ydj, k) - Oy

B = =7 (53)
X vk, k)
t=1

_ t§:1 Yij, k) * (O, — l‘,k)(ot - pl-k)'

Ui == 7 (54)

Z i, k)

t=1
where prime denotes vector transpose and where v,(j, k)
is the probability of being in state j at time t with the kth
mixture component accounting for O, i.e.,

at(j) Bt(l)
N
2 aj) B

j=1

ik IUO,, m, Up)
¥elj, k) = N 1k tr Mjks Y

mz=:1 C/'mguon l"jm' U}m)

(The term «,(j, k) generalizes to v,(j) of (26) in the case of
a simple mixture, or a discrete density.) The reestimation
formulafor a;is identical to the one used for discrete obser-
vation densities (i.e., (40b)). The interpretation of (52)-(54)
is fairly straightforward. The reestimation formula for ¢y is
the ratio between the expected number of times the system
is in state j using the kth mixture component, and the
expected number of times the system is in state j. Similarly,
the reestimation formula for the mean vector p; weights
each numerator term of (52) by the observation, thereby
giving the expected value of the portion of the observation
vector accounted for by the kth mixture component. A sim-
ilar interpretation can be given for the reestimation term
for the covariance matrix Uj.

B. Autoregressive HMMS [27], [28]

Although the general formulation of continuous density
HMMs is applicable to a wide range of problems, there is
one other very interesting class of HMMs that is particularly
applicable to speech processing. This is the class of auto-
regressive HMMs [27], [28]. For this class, the observation
vectors are drawn from an autoregression process.

To be more specific, consider the observation vector O
with components (xo, X1, Xy, * * *, X¢-+). Since the basis prob-
ability density function for the observation vector is Gauss-
ian autoregressive (or order p), then the components of O
are related by

P
O, = - % a0 + & (55)
iz
wheree,, k=0,1,2,- - - ,K — Tare Gaussian, independent,
identically distributed random variables with zero mean and
variance ¢, and a;, i = 1,2, - - - , p, are the autoregression

or predictor coefficients. It can be shown that for large K,
the density function for O is approximately

f(0) = (27a) ™ exp {—% 50, a)} (56)
where
P
80, a) = r,(0) r(0) + 2 _;1 1) r(i) (57a)
a =[1,ay,a, ", a (57b)

267



