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High-Performance Connected Digit Recognition
Using Maximum Mutual Information Estimation

Yves Normandin, Régis Cardin, and Renato De Mori, Senior Member, IEEE

Abstract— Hidden Markov Models (HMM?’s) are one of the
most powerful speech recognition tools available today. Even so,
the inadequacies of HMM’s as a ‘‘correct’’ modeling framework
for speech are well known. In this context, it is argued in this
paper that the maximum mutual information estimation (MMIE)
formulation for training is more appropriate than maximum
likelihood estimation (MLE) for reducing the error rate.

Corrective MMIE training is introduced. It is a very efficient
new training algorithm which uses a modified version of a discrete
reestimation formula recently proposed by Gopalakrishnan et
al. Reestimation formulas are proposed for the case of diagonal
Gaussian densities and their convergence properties are experi-
mentally demonstrated. A description of how these formulas are
integrated into our training algorithm is given. Using the MMIE
framework for training, it is shown how weighting the contri-
bution of different parameter sets in the computation of output
probabilities introduces substantial recognition improvements.

Using the TIDIGITS connected digit corpus, a large number
of experiments are performed with the ideas, techniques, and
algorithms presented in this paper. These experiments show that
MMIE systematically provides substantial error rate reductions
with respect to MLE alone and that, thanks to the new training
techniques, these results can be obtained at an acceptable compu-
tational cost. The best results obtained in our experiments were
0.29% word error rate and 0.89% string error rate on the aduit
portion of the corpus.

1. INTRODUCTION

N automatic speech recognition (ASR) systems based on

Hidden Markov Models (HMM’s), the purpose of training
is to find the HMM parameter set © which will result in the
speech decoder with the lowest possible recognition error rate.
The set © includes all transition probabilities and output distri-
bution parameters in all HMM’s used for a given task. Training
is done by maximizing some objective function R(©). There
are two important and difficult problems to consider. The first
one is to determine a meaningful objective function. This
function should be such that, whenever R(©) > R(®), then
© results in a better decoder than ©. Once a function R(©)
has been chosen, the second problem (the estimation problem)
is to find the parameter set © that maximizes it.

By far the most common HMM parameter estimation tech-
nique is maximum likelihood estimation (MLE) [1]. Recently,
a different type of estimation, called maximum mutual infor-
mation estimation (MMIE) has been proposed [2]. There have
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been attempts at empirically justifying the use of MMIE with
simple and well-controlled experiments. Some of them [31,
[4] demonstrate that, for certain types of estimation problems,
MMIE will converge to the optimal decoder even if incorrect
modeling assumptions are made, while MLE will not. These
experiments thus tend to show that MMIE is more robust than
MLE when modeling assumptions are not correct. The fact
that most of HMM’s modeling assumptions about speech are
incorrect could be an argument in favor of MMIE. In some
cases, however, it is also possible that neither MMIE nor MLE
will converge to the optimal decoder, but another type of
estimator will.

It is not clear how these cases relate to speech recognition
problems. In general, optimization algorithms will not con-
verge to the global optimum and it is probably not possible
to get an HMM-based optimal decoder for speech recognition.
Thus the advantage of using MMIE for HMM-based ASR’s
should be assessed by experimentation. Many results reported
in the literature [2], [4]-[6] tend to demonstrate MMIE’s
usefulness, but not conclusively.

We will show in this paper that, at least for the con-
nected digit task on the TIDIGITS corpus [7], MMIE leads
to significant recognition improvements with discrete and
semicontinuous HMM’s (SCHMM’s). In a connected digit
recognition experiment using one discrete model per digit, the
string error rate was reduced from 1.92% to 1.48% by using
MMIE after our standard MLE training. Further improvements
(0.89% string error rate with two models per word) were
obtained by using a new MMIE algorithm especially conceived
for SCHMM’s.

II. RELATION BETWEEN MLE AND MMIE

We assume that the result of a speaker pronouncing a
word sequence (or message) W is an acoustic observation
sequence y = Y, Yo, Yy - Typically, y is the result
of a frame-based analysis pertyormed on the speech signal
produced by the speaker, where y, is the parameter vector
extracted from the lth frame. Let us assume that an HMM-
type model can be built corresponding to any possible word
sequence in the task, and let my, be the model corresponding
to the word sequence w. This model allows the computation
of Po(y|my), the probability that the model m,, produced
y. Generally, Po(y|m,,) is intended as an ‘‘estimate’’ of
the probability P(y|w) that the pronunciation of the word
sequence w resulted in y. The reason for this is that the speech
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decoder with least probability of error P.,' the maximum a
posteriori (MAP) decoder, is given by

P(ylw')P(w')
P(y)
= argmaxP(y[w')P(w') (1)

w = argmaxP(w’|y) = argmax

where P(w’) is the a priori probability of the word sequence
w(this probability is usually provided by a language model).
Even though this “‘estimate’” is, by any standard, quite inac-
curate, it is nonetheless possibie to build very effective speech
recognizers based on (1). That is, assuming that a language
model P(w) is available, recognition is performed by finding
W such that

W = argmax Pg (y|my, ) P(w’). )

Clearly, training should aim at finding the HMM parame-
ter set © such that, whenever w is pronounced, we have
Po(y|mu)P(w) > Po(y|mu:)P(w'), for any W' # w, as
often as possible. Let us assume that training is done using a set
of N independent observation sequences y”,r = 1,2,---, N,
where y™ = g;, y;, ey 3_12r corresponds to the word sequence
w, and L, = Ly, is the length of the observation sequence.
The objective function used in MLE is

N
R(®) = [] Pe(y"|m.) )
r=1

where m, = m,, is the model corresponding to y” and
Pg(y"|m,) is the probability that m, produced y". Thus,
using the models corresponding to the observation sequences,
MLE increases the a posteriori probability of the training data.
It is not intuitive how (3) relates to the objective of reducing
the error rate. This is especially true since the models not
corresponding to the training data are not used for parameter
estimation. A possible argument is that it has been shown that,
if certain assumptions are satisfied, then (3) will in fact produce
the best decoder [8]. However, these assumptions are almost
always violated in practical speech recognition applications.
On the other hand, the objective function used in MMIE is

_N _ 17 _ Po(y"Im,)P(m,)
R(O) = g Po(m,ly") = I=Il S Po (s Pl

4
MMIE increases the a posteriori probability of the model
corresponding to the training data, given the data. Since this
is also the criterion used in MAP decoding, the relationship
between MMIE and error rate is much more intuitive than it
is with MLE.

The difference between MMIE and MLE is quite clear. On
the one hand, MLE training attempts to find the parameter set
© such that Po(y|my,) will approximate P(y|w) as closely
as possible. This “estimate” will then be used to approximate
the MAP decoder based on (1). Arguably, this is quite an
indirect approach, MMIE training, on the other hand, directly

1P. = P(W # w), where it is assumed that w is the word sequence
spoken and W is the word sequence sclected by the recognizer.

Fig. 1.  Looped model used for connected digit recognition performed using
a Viterbi search.

attempts to approximate P(wl|y), the probability used in MAP
decoding. In this context, the parametric family of probability
distributions of interest is Po(my|y), which is expressed as

Po(y|mw)P(w)
> w Po(ylmyw)P(w’)’

Our hypothesis is that Po(m,,|y) in (5) can be a much better
approximation to P(w|m) than Pe(y|m.,, ) can be to P(y|w).
The functions Po(y|m, )} and P(w) are of interest only to the
extent that they are used in (5). In fact, they don’t even have to
be distributions. This is important because modifications will
be introduced to. the expression used to compute Po(y|my )
which will no longer retain the properties of adistribution.

Po(myly) = 5)

III. USE oF MMIE FOR ASR

For several reasons, training HMM’s with MMIE involves a
higher computational complexity than using MLE. Let R(©)
be the MMIE objective function, as expressed in (4). One
thing that makes MMIE computationally more complex is the
sum over w’ in the denominator which can have a very large
number of terms.

Let us define a model mg., such that Pg(y|mg.,) =
2w Po(y|my)P(my,). In some applications (such as con-
nected digit recognition), for which the language model is
very simple (e.g., P(my ) independent from my,), it may be
possible to create a compact model mye,, in which there is
a path corresponding to every path in every possible model
m in the application. One example is the looped model used
for connected digit recognition shown in Fig. 1. In general, if
recognition is performed with a Viterbi search on some model
Mg.n, then the same model could be used for the denominator
of (4); however, such a model could still be much too big for
a practical implementation of MMIE training.

If it is not possible to build a satisfactory Mge, of a
reasonable size, then the denominator of (4) will usually be
approximated by using a much smaller number of component
models [2], [4], [5]. In this case, the sum should be taken over
the most probable models, which can be determined using, for
example, a so-called *“N-best’’ search [9], [10].

Another reason why the practical use of MMIE is difficult
is that there are no reestimation formulas of the type used
with MLE. This may impose the use of general optimization
techniques such as gradient descent, which, because of slow
convergence, are computationally expensive. Indeed, while
MLE training can usually be done with less than four iter-
ations, MMIE could easily require dozens. For example, the
stopping criterion used by Brown [4] in his MMIE training
experiments is when each of 10 consecutive iterations results
in less than a 2% improvement in the objective function. Since
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each MMIE iteration typically requires three times the time of
an MLE iteration, the result is that Brown’s MMIE training
takes around 35 times more time than MLE training [4]. This
might be unaffordable in many cases.

A. A Reestimation Formula for Discrete HMM’s

Let © be the parameter set of the HMMs of a given task in
which discrete HMM’s are used. Let # be one element in the
parameter set ©. For example, § may be the probability of a
particular codeword in one of the HMM’s output distributions,
or it may be the probability of a transition. We are interesting
in finding a way to estimate a new parameter set © such that
R(®") > R(©), with R(©) given in (4). Such a way was
recently proposed by Gopalakrishnan et al. [10] (from IBM),
in the form of the following reestimation-like formula

e(aloga?ge) +D)
T, 0,(61055(9) + D)

where D is a constant to be determined, and the sum is taken
over all parameters belonging to the same distribution as 6. For
example, for a codeword probability, the sum is taken over
all codewords belonging to the same codebook of the same
output distribution. Gopalakrishnan et al. have shown, using a
development based on Baum and Eagon [11], that there is a
value Dy, such that, if D > Dy, (6) is guaranteed to give
R(©') > R(©). Using R(©) in (4), the gradient becomes

_ N 1 8P (y"|m,)
_Z&Mﬂm) o8

r=1

_EumﬂQ%#ﬂ}
> v P(m') Po(y7|m’)

where © is one of the parameters in #. Using mg.,, (7) reduces
to

6=

(6)

dlog R(O)
90

Q)

dlog R(O)
7]

& 1 8Ps(y"|m,)
_Z{Pe(y"lmr) 29

r=1
_ 1 3Pe(yr|mgen) } (8)
PG (yr|mgen) el

From (8), we have, for discrete output probabilities
dlogR(O®) 1

o 8
where cy represents the standard MLE count for parameter
and ¢§°" is the corresponding count obtained using the general
model. That is, if @ is the parameter corresponding to the
probability p(k|b) of codeword k in distribution b, then

N

=3

=1 (t|b.=b) (lly] =k)
N

gen _
cg = E

r=1 (tlb,=b) (I[3] =k)

gen
—cg

&)

Po_i(t,y"|m,)
Po(y"|m,)

P@,l(ty yrlmgen)

10
Po(yimgn) 0

where b; is the output distribution associated to transition ¢,
Po, 1(t,y"|m,) is the probability that y™ was generated by

301

m, using a transition sequence in which ¢ was taken at time
l, and Z(ﬂbtzb) means a sum over all transitions sharing the
output distribution b. Let us define a quantity ¥ ;(t,y") as

_ Pou(t,y"|m,)

Yo tlby) = Tp v my)

Then, from (6) and (11), we obtain

YL 2 (ebe=b) 2tlyy=k) Yo, 1(8, ") + Dp(k|b)

Yo Tl 2 tlbe=by 2ty =k) You(H, ") + D2

(12)
What needs to be determined is the value of D. It is clear
from (12) that the greater D, the less p(k|b) will differ from
p(k|b); thus, for fast convergence, D needs to be as small as
possible. Gopalakrishnan et al. have shown that there is a value
D(©) such that, for any D > D(0), (12) is guaranteed to
converge. However, as we shall see, D(©) is usually so large
that using D > D(O) renders (12) practically useless [12].
For smaller D, there is no theoretically proven convergence;
however, Gopalakrishnan et al. report that using

_ 8log R(©)
D—m(.;a,x{ 50 , 00 +¢

Pe, l(t1 y'rlmgen)

11
Pe(yrlmgen) (b

p(k|b) =

(13)

where ¢ is a small positive constant, results in fast conver-
gence. Even though our experiments using (12) with (13) also
consistently demonstrated convergence, we generally found
that convergence was too slow to be useful. Following an
argument of Merialdo [6], we conjectured that by removing
emphasis from the low-valued parameters in the gradient
vector, convergence could be improved. Merialdo had found
that when a parameter  is very small, the division by 6
in (9) often causes the corresponding gradient coordinate to
have a large magnitude. The consequence is that the search is
often concentrated on coordinates corresponding to very low-
valued parameters; however since these values are small, they
are also unreliably estimated. Merialdo argues that the search
should put more emphasis on better estimated, high-valued
parameters.

In his gradient descent based MMIE training experiments,
Merialdo improved convergence by replacing (9) by

Olog R(©) co g™
b3l

(14)

zﬂ’eb(ﬂ) Cer 29’66(9) g
where the notation ), cb(s) Means a summation over all
parameters 8’ belonging to the same distribution as §. We nat-
urally thought that (14) could also improve convergence when
(12) is used instead of gradient descent. This proved to be
indeed the case. All our experiments demonstrate that conver-
gence, though not guaranteed at each iteration, is substantially
improved. We also experimented with different variants of (14)
based on the same idea. One example is

dlog R(©) (co + &)
a9 Saelco +c5)
Convergence results using (14) and (15) instead of (9) are illus-

trated in Fig. 2. The application is connected digits recognition
and the training set includes all utterances from 10 male and

gen)

1
= -6—(09—60 a5s)
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Fig. 2. Value of log, oo, R(©) as a function of the iteration number.

10 female adult speakers. As the graph illustrates, (14) quickly
gives a very good estimate. While additional iterations often
produce degradations, the resulting estimates are always much
better than those obtained with (9). Use of (15) results in a
much smoother convergence than (14) which, even though
slightly slower than (14), is still much faster than (9).

B. Corrective MMIE Training

From the above results, we have made the following ob-
servations:

1) As proposed by the IBM researchers, their reestimation
formula does seem to converge. Unfortunately, consid-
ering the computation time required to perform each
MMIE iteration, the convergence is much too slow to
be really useful.

2) By changing the gradient expression in the reestimation
formula, dramatically faster convergence is obtained.
However, the resulting formula appears quite unstable
near the maximum value of the objective function. In
other words, the modified formula appears to be most
effective when the objective function is far from the op-
timum value or, rather, when the need for improvement
is greatest.

Based on these observations, we considered two possible
avenues. The first one would use the reestimation formula with
the Merialdo gradient for the first few iterations and then, when
the value of the objective function appears “good enough,” we
would switch to a smoother reestimation formula. Although
this appeared a natural thing to do, we preferred a different
avenue, based on the following mathematical observation.

Examining expression (7) for the gradient, it can be ob-
served that, when P(m,) > P(m’) for m’ # m,., then the
second term is dominated by the m, contribution and the
difference is very close to zero. In other words, the train-
ing strings which would be correctly recognized (P(m,) >
P(m’) for m’ # m,), should contribute far less to the
MMIE counts than the other strings and could, as a first
approximation, be ignored from the training set (for the
iteration considered). This is interesting for two reasons. First,
since the proportion of incorrectly recognized strings in the
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training set is relatively small, a MMIE training iteration could
be very fast if it used only those strings. Second, because of
its convergence properties, the reestimation formula modified
with the Merialdo gradient should be very effective on training
sets composed only of incorrectly recognized strings.

The result is the Corrective MMIE training algorithm,
which, as will be shown in the experiments, is a fast
and powerful training algorithm. It is initialized with the
HMM’s obtained after a pre-determined number of MLE
iterations. Subsequently, each iteration is a two-step process.
First, recognition is performed on the training set and then
reestimation is done using only those sentences that were
incorrectly recognized. The set of incorrectly recognized
strings is called the reestimation set. The aim is to correct
as many errors as possible from the training set, hoping that
this will improve results on the test set as well. Reestimation
is done using (12)—(14), and the HMM parameters obtained
are smoothed with the ones from the previous iteration using
a weight that is dependent on the number of errors in the
training set.

C. Codebook Exponents

In both the discrete and semicontinuous cases, the output
distributions used in our HMM’s are based on multiple code-
books. This means that the parameters extracted from the
speech frames are in fact made of different parameter sets,
each corresponding to a different codebook. These parameter
sets are assumed independent and, using separate distributions
for each parameter set, output probabilities are computed by
simply multiplying the probabilities obtained with each of
these distributions.

Since the parameter sets are assumed independent, they
should contain complementary information. It seems very
unlikely, however, that all parameter sets contain exactly the
same amount of information about the spoken message. Even
if all parameter sets are useful (and important) for recognition,
some may be more useful than others. Yet, all contribute
equally to the total output probability. The question is what
can be done about this?

As suggested in [5], one answer might be to weigh the
contribution of each parameter set using codebook exponents,?
as follows

NC

b(y) = [ (Pely, 1)),

c=1

(16)

where b is an output distribution, NC is the number of
codebooks, Fc(y [b) is the distribution associated with the
cth parameter set, and A, is the corresponding codebook
exponent. Note that, if A, # 1, then it is no longer true
that fy b(y)dy = 1, which, from a theoretical point of view,
may seem to be a problem. However, remember that the
probabilistic model we are interested in is really Pgo(my|y)
as expressed in (5), which, regardless of A, will still sum

2The term “codebook” is sometimes used to designate the parameter
set quantized by a given codebook. In that context, “codebook exponent”
means that the exponent is applied to the probability of the parameter set
corresponding to a given codebook.
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to 1. Also, it may be argued that in practice, since HMM’s
are anything but an accurate acoustical model of speech, it
can be justified to depart somewhat from a strict probabilistic
framework.

There is an additional advantage to (16). It has often been
found that transition probabilities have negligible effect on the
overall recognition process. Because of that, some systems
simply don’t use them at all. One important reason, however,
why their effect is negligible is that the dynamic range of
transition probabilities is very small compared to that of output
probabilities.> Moreover, as output distributions become more
complex (in number of codebooks, number of parameters, etc),
this difference in dynamic ranges increases. The Acs in (16)
can compensate for the dynamic ranges difference in order to
improve the model.

We treat exponents as a set of parameters separate from
all the other parameters. For every iteration, each of these
two parameter sets is estimated independently, assuming the
other set fixed. Note that even though each estimate sepa-
rately optimizes R(©), this may not be true of the combined
estimate. In practice, however, this does not appear to be a
problem. Exponents are estimated using a simple line search
in the gradient direction. At each iteration, the initial step size
is chosen so that no exponent changes by more than 40% of
its original value. If this doesn’t increase R(©), the step size
is slowly reduced until a value for the exponents is found such
that R(©) is greater than its original value.

D. Continuous Densities

The reestimation formula (6) only applies to discrete dis-
tributions. However, it is known [4] that MMIE can result
in substantially improved recognition results when continuous
HMMs are used. It would thus be useful to have a relation like
the one in (6) for continuous densities. In this subsection the
problem for the case of diagonal covariance Gaussian densities
is considered for the sake of simplicity. Details of mathemati-
cal derivations are presented in [12]. The conclusions derived
here are also applicable to SCHMM’s.

Without loss of generality, 1-D densities will be assumed.
Let b = N(y, s, o) be such a density. b can be approximated
with arbitrary precision by a discrete distribution. Partition the
real axis (domain of the density) into three non-overlapping
intervals I; = (—oo,us — vop), In = [ — vow, o + V0]
and I3 = (ps + voy, +00). Choose v such that all points 37 in
the training data fall in the second interval I5. This is always
possible since the training material is available and the range
of y7 is finite. Now, partition I into M nonoverlapping sub-
intervals Ink,k = 1,---,M of width A = 2vo,/M. This
construction is illustrated in Fig. 3.

Given a continuous random variable Y, we can define a
discrete distribution by the M probabilities az(k) = P(Y, €

3This is similar to the mismatch between acoustic probabilities and language
model probabilities, which requires that the language model contribution to
the log likelihood be multiplied by a certain factor. This factor is usually
determined empirically. MMIE is again a good framework for determining
this factor automatically.
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Fig. 3. Partitioning of a Gaussian density into nonoverlapping intervals.

I5;) and we can set those probabilities to

ab(k) — N(gk’l"'bvab)A
2ok NGk, po, 03)A

an

where §, is the mid-point of the interval I5;. Let the partitions
be the same for all densities and let k(y) be a scalar quantizer
mapping y to its partition, that is, if y € I;, then k(y) = i.
We can find A and v such that a,(k)/A approximates b(y) =
N(y, up,05) with any desired precision. If, in Pe(y”"|m)
and Pe (t,y"|m), we replace N(y, us,03) by as(k(y)), we
get Po,(y"|m) and Pe, (¢, y"|m), where ©4 is a discrete
parameter vector. Observe that

lima_.o Ped,¢(t,y’|m) _ Pe,l(t,y’"|m)

v—o0o Pe,y’lm) = Pe(y"jm)
lima—0 Po,(y"|m)P(m) _ Pe(y"|m)P(m)
v—o00 Po,(y"|mgen) a Po(y"|mgen)

(18)

19

This means that, in the limit, the MLE counts for the discrete
HMM'’s are the same as the ones from the continuous ones
and that R(©,) = R(©). Now, let us concentrate on output
distributions. It is possible to show that, if D is large enough,
the problem of maximizing the quantity introduced in relation
(4) can be converted into the problem of maximizing

N "
5(9)=;‘;(Z > ¥ we.l(t.y’)+oab(k))losz:ﬁ';;.

r=1(1lby=b) ({jy] =k)
(20

The proof is quite lengthy and is given elsewhere [12]. It
is based on an inequality for logarithms which, in order to
be applied, requires all terms to be positive. The constant
D in (20) is used for that purpose. Note that (20) provides
a derivation of the reestimation formula (12) different from
the one used by Gopalakrishnan et al.. Indeed, optimizing
(20) subject to the constraint that Y, d,(k) = 1 gives (12).
The derivation used here, however, allows an extension to be
carried out to the continuous case, as we will see presently.
Suppose as before that ay(k)/A = N(gg, i, 0p), that is,
ap(k)/A is an approximation to a Gaussian density. Then we
know that as A — 0 and v — oo, the discrete counts in
(20) become equal to the continuous ones. Suppose further
that we also want ay(k)/A = N(§k, fls, 63). Then, taking the
derivatives of (20) with respect to /i and &, and making them
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Fig. 4. Value of log; go; R(©) as a function of the iteration number.

equal to zero, we obtain

ﬁ Z,I.Vzl Z(tlthb) El 1/}@,l(ta yr)y‘l" + D“‘b
b — N
Sore1 Leibezp) 2t Yoty ) + D

21

52 = Yoo S (tlbizt) 21 Yoty )i’ + D(on® + ms”) L
Yl Ceipezsy i Yoult,y™) + D

(22)
It can be shown that D — oo as A — 0. This means
that (21) and (22) cannot in practice be used within their
proven convergence region. However, they can be interpreted
as gradients, in the sense that they indicate a direction in which
an infinitesimal step is guaranteed to increase the objective
function.

The value for D used in our experiments with (21) and (22)
is determined as follows. We compute the minimum value
that will ensure a positive variance for all distributions and
we set D to twice that value. Although somewhat arbitrary,
our experiments showed that this performs quite well. Fig. 4
shows an example of convergence when (21) and (22) are used
to reestimate the means and variances of a multiple-codebook,
semicontinuous HMM (codebook probabilities are kept fixed).
The application is the same as the one used for deriving the
results in Fig. 2.

IV. EXPERIMENTAL SETTING AND
SUMMARY OF PREVIOUS RESULTS

The connected digit recognition experiments were per-
formed using the adult speaker portion of the TIDIGITS
connected digit corpus [7]. This large corpus contains utter-
ances from a total of 326 speakers (111 men, 114 women
and 101 children), coming from 21 geographical regions of
the continental United States (approximately 5 men and 5
women and 5 children per region). Only the adult portion of
the corpus is dialectically balanced. The corpus vocabulary
is made of the digits ‘1’ to ‘9”, plus ‘oh’ and ‘zero’, for a
total of 11 words. Each speaker contributes to the corpus with
two repetitions of each digit in isolation and 55 digit strings,
evenly distributed into lengths 2, 3, 4, 5, and 7. This makes
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a total of 77 digit strings, or 253 digits per speaker. Each
string is stored in a separate signal file, with some silence (or
background noise) preceding and following the speech signal.
Approximately half the speakers have been assigned to the
training set, the remaining half make up the testing set.

This corpus contains high quality sound and high signal to
noise ratio (SNR). It was originally sampled at 20 kHz using a
16 bit A/D and a 10 kHz antialiasing filter. It has subsequently
been downsampled by NIST to 10 kHz. The 10 kHz version
was used in the first set of experiments and the 20 kHz version
(from the CD-ROM release) in the second.

There are many dimensions along which recognition per-
formances can be improved. The most important of them
are model selection, model parameter estimation and learning
strategies, and acoustic parameter choice. The effectiveness of
improved learning algorithms and strategies is assessed by the
experiments described in Section V.

As the vocabulary of the corpus is small and the per-
formance of the baseline system used for comparison is
already good, a very low error rate is achieved not only by
improved learning methods but also by the use of more and
better acoustic information and by the introduction of more
detailed models. These aspects are experimentally investigated
in Section VI

Following other researchers [13]-[16], experiments were
performed only on the adult portion of the corpus containing
225 speakers (111 men and 114 women), 112 of which (55
men, 57 women) are used for training and 113 (56 men,
57 women) for testing. This is the standard set used by
most researchers, which makes result comparisons relatively
meaningful. In our 10 kHz version of the corpus, out of a
total of 17325 signal files, 20 contained errors and could not
be used. Of these, 8 were in the training set and 12 in the
testing set. As a result, our training set contained 8616 digit
strings (28302 digits) and our test set contained 8689 digit
strings (28 543 digits).

There are usually two types of recognition experiments per-
formed with the TIDIGITS connected digit corpus. In the first
type, known-string-length recognition, the number of digits in
each digit string is assumed to be known a priori. In this case,
the number of errors is computed by comparing in sequence
the digits in the true and the recognized strings and counting
the number of mismatches. Thus, all recognition errors are
assumed to be substitution errors. In the second, more difficult
type, unknown-string-length recognition, the string length is
assumed to be unknown. This means that the true and the
recognized strings do not necessarily contain the same number
of digits. The number of errors is computed by first doing an
optimal dynamic programming based alignment between the
true and the recognized strings [17). This alignment produces
three types of errors: insertions, deletions and substitutions. In
both cases, results are usually reported in terms of word and
string error rates (or recognition rates).

Only unknown length recognition experiments were per-
formed. The word error rate is computed with the following

4Note that our scoring algorithm was compared to the NIST scoring
algorithm, and they were found to give identical results.
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TABLE 1 TABLE II

PREVIOUSLY REPORTED RESULTS ON THE TIDIGITS CONNECTED DiGIT CORPUS BASELINE SYSTEM PARAMETER SETS
Year Comments Word String . Codebook

Name Description Size
1985 Kopec & Bush (isolated) 2.0 -
1986 Bush & Kopec (unknown length) - 35 MCC 6 mel scaled FFT based cepstral coefficients 128
1986 Bush & Kopec (known length) - 2.2 AMCC The time derivatives of MCC 128
1987 Bush & Kopec (complete corpus) 15 4.0 E and AE The signal energy and its time derivative 32
1988 Rabiner et al. - 4.96
1989 Rabiner et al. - 4.84
1989 Doddington 0.5 1.5 TABLE III
1991 Wilpon et al. - 1.4 COMPOSITION OF WORD MODELS

1 w-ax + n-tail 7 s + eh + v-7 + ax + n-tail
. 2 t+uw 8 ey + pau + t-8
expression 3 th+riy 9 n-head + ay + n-tail
4 f+owr ow ow
word error rate = 5 f+ay+v-5 zero  z + iy-r-ow
insertions + deletions + substitutions 6 s+ihk+pau +k-s
x 100%

total number of words

and the string error rate is computed with the following relation

string error rate =
number of strings with one or more errors
total number of strings

x 100%.

Experiments with the TIDIGITS corpus have been reported in
the literature since the corpus was made available. In 1985,
Kopec and Bush [18] reported a 2% error rate using only the
isolated digits in the adult portion of the corpus. In 1986, Bush
and Kopec [14] reported results on connected digit recognition
experiments using about half of the adult portion of the corpus.
Separating male and female talkers, they achieved 3.5% and
2.2% string error rate for unknown length and known length
recognition, respectively.

In the following year, the same authors reported results
obtained using the entire adult portion of the corpus. Using
separate models for male and female talkers, they achieved a
4% string error rate (around 1.5% word error rate).

In 1988, Rabiner ez al. [19] reported a 2.94% string error
rate on the same task. This result was obtained using four
models per digit and Gaussian mixture distributions. In the
following year performance increased to 2.84% string error
rate after experimenting with different clustering procedures.

Remarkable improvements were obtained by Doddington
[15] and Wilpon et al. [20]. Doddington achieved a 1.5% string
(0.5% word) error rate using phonetically sensitive discrimi-
nants. His system used an 18-element feature vector obtained
from a 32-element feature vector via principal component
analysis. He used separate male and female models in which
each state corresponds, on average, to one frame of speech.
For each state, a linear discriminant transformation matrix
was computed using “in-class data” and “confusion data.”
The resulting complexity is about equivalent to a single full
covariance density per state. Wilpon et al. obtained 1.4% string
error rate using higher order spectral and energy features,
and models using Gaussian mixture distributions with a large
number of mixture components.

These previously reported results are summarized in Table I.

V. EXPERIMENTAL COMPARISON OF
DIFFERENT LEARNING PROCEDURES

A baseline system was developed in order to quantify
the advantages obtained by the use of the new training
methods. The baseline system is a standard HMM-based
system with discrete output distributions and one model per
digit. It uses three codebooks, corresponding to the sets of
acoustic parameters [12], [21], [22], shown in Table II.

In the experiments described in this Section, the 10 KHz
version of the TIDIGITS corpus was used and analysis was
performed without prior endpoint detection, using a frame rate
of 10 ms, a preemphasis coefficient of 0.95 and a Hamming
window of 256 samples. The codebooks were created using
the entire training set of the corpus.

Experiments were performed only on strings of unknown
length. This was done by applying the Viterbi algorithm on
the loop of all digits model in parallel as shown in Fig. 1. The
word models are built from a set of unit models, using the
lexical representation described in Table III.

The units used in Table III were empirically chosen because
they correspond to a phonemic representation with a reason-
able selection of allophones taking into account significant
context dependencies. They may be viewed as word-dependent
units. Another design decision concerns the topology of the
models and the tying of probability distributions. Model dura-
tion information can be taken into account by suitably crafting
model topology.

Unit models are assembled with three basic components
called: nucleus, head/tail, and silence. The topology of the
three basic components is shown in Fig. 5. Within a basic com-
ponent, all probability distributions are tied. The construction
of a word model is performed by concatenation of the basic
components. Table IV shows the number of basic components
per model.

We used hand-segmented labeled speech utterances from
78 speakers of the training set and their corresponding labels
to bootstrap the training procedure. Bootstrap consists of
individually training each unit with four iterations of MLE
training. It was found that bootstraping, by properly initializing
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TABLE IV
MobDEL COMPOSITION

Model Head Nucleus Tail Silence | Model Head Nucleus Tail Silence
w-ax 1 6 1 n-tail 1 3 1
t 1 3 1 uw 1 8 1
th 1 2 1 r-iy 1 S 1
f 1 2 1 ow-r 1 11 1
ay 1 8 1 v-5 1
S 1 3 1 ih-k 1 3 1
k-s 1 3 2 eh 1 4 1
ax 1 1 1 v-7 1
ey 1 7 1 t-8 1
n-head 1 2 1 ow 1 8 1
z 1 2 1 iy-r-ow 1 10 1
pau 1 sil 1 1

Y

00\‘0/’0

Nucleus

Silence

Fig. 5. Basic components of unit models.

the unit models, consistently produces improved recognition
rates. However, it does not seem that a large amount of data
is necessary for bootstraping since no significant performance
variation was observed when only 14 (male-only) speakers
were used instead of 78.

After bootstraping, three iterations of MLE training are
performed on the entire training set. For each digit string,
the corresponding model is built with optional silence at
the beginning and end, and with an optional pause between
each digit. The Baum-Welch algorithm [1] is applied to the
generated model, using the observation sequence from the
corresponding speech utterance.

Then, the corrective MMIE training algorithm introduced
in Section III is applied. In each iteration, recognition is
performed on the training set and MMIE training is applied
only to the incorrectly recognized strings. The obtained pa-
rameters (@ymig) are smoothed with those from the previous
iteration(©,1q), as follows

Onew = @O0id + (1 — @)OnmmIE (23)

where a, the smoothing constant, should be a function of the
number of errors in the training set. The idea of smoothing is
that, since each training iteration is done using only a small
fraction of the entire training set, it appears prudent to keep a
memory of the models from the previous iteration. This is done
because the assumption that correctly recognized strings in the
training set will not affect reestimation is only approximately
true. In practice, we start with o = 0.0 for the first iteration,
and increase it by 0.1 at each iteration either until it reaches
0.9 or until the number of errors in the training set becomes
too small.

Finally, in order to see whether the initial codebook ex-
ponent values are important, the whole experiment is done
once again, but this time using the last exponents obtained as
initial values. This is what we call the second training phase.
The initial models are the same as the ones used in the first
phase. The only difference is that, during bootstraping and
MLE training, the exponents used are different from 1.0. Note
that, even though MLE training does not modify codebook
exponents, it nonetheless takes advantage of “better” exponent
values.

Training of semicontinuous HMM’s is similar. To compute
the initial tied mixtures components, all frames from the
training set are assigned to the closest codeword in the
codebook. Then, for each codeword, means and variances are
computed using all frames assigned to it. During MLE training,
the mixture component parameters are updated as proposed
in [12). During MMIE training, the mixture parameters are
updated as described in Section III.

A. Results with Discrete HMM's

Table V reports the error rates and the detail on the number
of word errors due to insertions, deletions and substitutions
for the entire test set. The row labeled MLE refers to experi-
ments with parameters estimated after three iterations of MLE
training with exponents all equal to 1.0.

The row labeled MMIE refers to experiments with HMM’s
trained with the standard MLE procedure followed by nine
iterations of corrective MMIE training (with the codebook
exponents fixed at 1.0). The row labeled MMIE + exponents
is similar except that the codebook exponents are now trained.
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TABLE V
FIRST PHASE RESULTS: PERCENT RECOGNITION ERRORS (IN THE FIRST
COLUMN FOR WORDS AND THE SECOND COLUMN FOR STRINGS) AND
ABSOLUTE ERRORS ON THE TEST SET WITHOUT EXPONENT (FIRST TWO
LINES) AND AFTER EXPONENT TRAINING DURING MMIE TRAINING

Training Method Word String Ins Del Subs

MLE 1.36 3.90 50 112 225

MMIE 0.92 2.79 40 56 166

MMIE + exponents 0.85 2.58 38 42 163
TABLE VI

SECOND PHASE RESULTS: PERCENT RECOGNITION ERRORS ON
THE TEST SET WITH TRAINING DONE USING, AS INITIAL
EXPONENTS, THOSE OBTAINED AT THE END OF THE FIRST PAss
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TABLE VIIL
FRAME-DEPENDENT CODEBOOK EXPONENTS OBTAINED
AT THE END OF THE FIRST TRAINING PHASE

Exponents (Phase 1)

Category Ci—-Cs AC) —ACs E AE

Sonorant/nasal 0.6679 1.0585 0.7903

Silence/noise 0.9822 0.9794 1.0432

Fricative/plosive 0.8559 1.0814 0.8277

Context-independent 0.7072 1.0282 0.7577
TABLE IX

PERCENT OF RECOGNITION ERRORS ON THE TEST SET OBTAINED USING
MLE TRAINING WITH DIFFERENT INITIAL CODEBCOK EXPONENTS

Training Method Word String ins del subs Type of Experiment Word String
MLE 1.21 348 50 89 207 MLE 1.36 3.90
MMIE + exponents 0.75 2.23 36 38 140 MLE + FI exponents 1.21 3.48
MLE + FD exponents 1.14 322
TABLE VII
TABLE X

CobEBOOK EXPONENTS OBTAINED AFTER THE
FIRST AND THE SECOND TRAINING PHASE

Exponents
Phase C,—-Cs AC) — ACs E& AE
1 0.7072 1.0282 0.7577
2 0.4858 0.9719 0.6535

The exponents obtained at the end of nine training iterations
are shown in Table VII. We can see that they are quite
different from their initial value of 1.0. The exponents weigh
the contribution of each codebook in the output probability.
Their values may be considered good indicators of the relative
usefulness of each parameter set. They may also compensate
for differences in the dynamic range of probabilities from one
codebook to another. Since they are not normalized, they also
weigh the contribution of output probabilities with respect to
that of transition probabilities.

Table VI reports the results obtained during the second pass
of training. The difference with the first pass is that the initial
exponents used (for MLE and MMIE training) are the ones
obtained at the end of the first training pass. The exponents
obtained at the end of the second training pass are shown
in Table VIL It appears from these values that, at least for
the digit task, discrimination is improved by emphasizing the
dynamic acoustic parameters.

The advantages of corrective MMIE training are evident
from Tables V and VI supporting the value of the theoretical
considerations made in Section III. The errors on the training
set were reduced to a few units after corrective MMIE training,
showing that such a procedure has also performed a sort of
ad hoc adaptation of the models to a number of special cases.
Nevertheless, the results on the test set show that corrective
MMIE training, while providing adaptation to some specific
cases, has also produced a generalization better than the one
achievable with MLE training (at least for the size of the
vocabulary and the composition of the available training set).

PERCENT OF RECOGNITION ERRORS ON THE TEST SET OBTAINED UsING MMIE
TRAINING WITH DIFFERENT INITIAL CODEBOOK EXPONENTS. EXCEPT IN THE
FIRST ROW, EXPONENTS ARE MODIFIED DURING MMIE TRAINING

Phase 1 Phase 2
Type of Experiment Word String ‘Word String
MMIE 0.92 2.79 - -
MMIE + FI exponents 0.85 2.58 0.75 2.23
MMIE + FD exponents 0.78 2.36 0.73 2.16

In order to verify whether different codebook exponents
should be used with different types of sounds, a recurrent
neural network (RNN) of the type described in [21] has been
used to label the speech frames as one of three categories:
sonorant/nasal, silence/noise, and fricative/plosive. Then, for
each frame, the exponents used are made dependent on the
category in which the frame is classified by the RNN (see
(12D).

Table VIII shows the frame-dependent (FD) codebook expo-
nents obtained at the end of the first phase, for each of the three
categories. We can see that there are noticeable differences
between the categories. In particular, the silence/noise category
puts almost equal weights on all parameter sets, which is quite
different from the frame-independent (FI) codebook exponents
obtained in the previous experiment.

Table IX compares the recognition results obtained on the
test set when MLE training is used with different exponent
values. Table X compares the recognition results obtained
after MMIE training, using the different types of codebook
exponents.

As a final experiment with discrete HMM’s, we used an
RNN with four outputs describing the following phonetic
classes:

¢ silence and noise

« fricatives and plosives

¢ nasals

« vowels, liquids, and glides.
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The four outputs of this RNN and a set of energy contour
descriptors [21] were used as additional observations for the
HMM’s. With such an addition, a word error rate of 0.65% and
a string error rate of 1.98% was obtained with discrete HMM’s.
The use of RNN’s eliminated certain errors and introduced
new ones in minor quantities. The net benefit introduced by
this RNN tends to vanish if additional acoustic features are
introduced as parameters or better HMM’s (like SCHMM'’s)
are used. For these new models, better RNN’s should be
designed in order to expect a benefit from their use. As these
RNN'’s are not available yet, their use was not extended to
SCHMM’s.

B. Results with Semicontinuous HMM’ s

All SCHMM experiments reported here assume diagonal co-
variance Gaussian densities. Since the cepstral coefficients are
relatively uncorrelated [23], this assumption seems reasonable
and reduces both the number of parameters to estimate and the
computation time. SCHMM distributions are computed using
the following relation

NC K.-1
oy =[] D Pely |k)pe(klb)
c=1 k=0
where NC is the number of codebooks and K. is the number
of mixture components in the cth codebook. Unless specified
otherwise, however, all semicontinuous experiments (training
and recognition) were performed by considering only the three
most probable components (densities) in the mixture. Thus,
referring to equation (24), we assume Fe(y_|k) = 0 if k is not
one of the three most probable mixture components. This may
affect performance but it substantially reduces the execution
time.

Semicontinuous HMM’s have been trained following the
steps used in the discrete case. That is, use initial models with
uniform distributions (mixture weights) and initial mixtures
components as described above, and perform bootstraping fol-
lowed by MLE training (using the same number of iterations).
This has the advantage of jointly optimizing (with MLE) the
codebook probabilities and the mixture parameters.

In addition to experiments performed using, as before, one
model per unit, MMIE training with multiple models per unit
was also considered. We chose to use male and female models,
thus doubling the total number of models. Note, however, that
the same tied mixture components are used for both male and
female models. Since the information about the speaker sex is
available in the corpus, bootstraping and MLE training used
this information.

Table XI shows how the recognition rate on the test set
changes as the number of MLE training iterations increases.
This experiment seemed relevant since our other experiences
with semicontinuous HMM’s (in particular for wordspotting
applications) tend to show that SCHMM s require more MLE
training iterations than do discrete HMM’s. This may be
explained by the fact that the continuous mixture compo-
nents are shared by all distributions. In this case, however,
the performance flattens out rather quickly and very little
improvement is observed after the fifth iteration.

(24)

TABLE X1
ERROR RATE ON THE TEST SET wiTH SCHMM's
AFTER ADDITIONAL MLE TRAINING ITERATIONS

Iteration Word String Ins Del Sub
3 0.75 2.36 39 77 99
4 0.74 2.27 39 75 96
5 0.70 2.18 38 72 91
6 0.72 221 39 72 94
7 0.73 2.23 40 69 99
8 0.71 2.16 38 69 95
9 0.72 2.19 38 67 100
pou p...
5.m 9.m 6m
. pau pau
c sil C/ \}C ::/‘ \}: sil
pau pau
5. 9. 6.0
Fig. 6. Model myw for w = 5-9-6.
£
e Ty
O30 ovo O—Le0
© ©

Fig. 7. Model wgen used for training with separate male and female models.

Earlier, we presented the results of a MMIE convergence
experiment with the reestimation formulas for continuous den-
sities proposed in this paper. We now look at whether their use
can translate into better recognizers. This is also an opportunity
to further compare the performance of semicontinuous and
discrete HMM’s,

It is not immediately clear, however, how MMIE training
should be done when several models per unit are used, espe-
cially when, as is our case, the clusters (male and female) are
determined a priori and the information about each speaker’s
cluster is available from the corpus. The question is whether
or not we should enforce the sex of speakers in the training
process. If we did, it would, in effect, add gender recognition
to the problem of digit recognition. Since this is not useful
for our purpose, we decided not to use the information about
sex during MMIE training. Suppose one of the digit training
sequences contains w=5-9-6. Then the “good” model used for
training is the one illustrated in Fig. 6. In all cases, the model
Mg, will be the one illustrated in Fig. 7.

Table XII summarizes the experimental results with
SCHMM'’s. Note that, in order to get the MMIE results, only
the second training phase was used in this case. The initial
exponents used for this second phase were those obtained
with one model per unit. Note also that the MMIE results
are given after the standard nine iterations and the number of
MLE iterations is given, both for the MLE results and for the
MMIE results (in which case it indicates the number of MLE
iterations performed before MMIE training).
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TABLE XII
ERROR RATE ON THE TEST FOR DIFFERENT EXPERIMENTS WITH SCHMM s

. # MLE .
Experiment models Iterations Word String Ins Del Sub
MLE 1 3 122 351 47 99 202
MMIE + exponents 1 3 066 201 47 30 112
MLE 2 3 075 236 39 77 9
MLE 2 9 072 219 38 67 100
MMIE + exponents 2 3 049 151 45 16 78
TABLE XIII

SUMMARY OF THE ERROR RATES OBTAINED IN THE FIRST SET OF EXPERIMENTS
Experiment Word String
Discrete MLE 1.36 3.90
Discrete MMIE 0.92 2.79
Discrete MMIE + FI exponents 0.75 2.23
Discrete MMIE + FD exponents 0.73 2.16
SCHMM MLE 1.22 3.51
SCHMM MMIE + exponents 0.66 2.01
SCHMM 2 models MLE 0.72 2.19
SCHMM 2 models MMIE + exponents 0.49 1.51

C. Summary of Results

Table XIII summarizes the results obtained in the different
experiments described in this section. These results exhibit
a clear superiority of semicontinuous HMM’s over discrete
HMM’s and, in both cases, the usefulness of MMIE for
training HMM’s.

VI. EXPERIMENTS WITH IMPROVED
MODELS AND NEW ACOUSTIC PARAMETERS

A second set of experiments was performed with improved
models and new and more informative acoustic features. For
this purpose, the 20 kHz version of the TIDIGITS corpus was
used with higher order spectral and energy features whose
introduction is motivated by recent results demonstrating their
usefulness for speech recognition [20]). The 20 kHz version
of the corpus, now available on CD-ROM, did not contain
any corrupted signal files, as did the previous versions. The
higher sampling frequency allowed the addition of filters to
the mel-scaled filter bank.

Word HMM'’s are described by a sequence of unit symbols.
Each unit symbol corresponds to a component HMM. The
choice of basic units is somehow arbitrary and, for this
particular task, a set of word-dependent units was chosen. The
structure of these units is a standard 4-state, left-right HMM
in which output probability distributions, associated with the
transitions, are tied to the departure state of the transition. The
topology is shown in Fig. 8. The number on each arc indicates
the tying of the output distribution.

The system once again uses both a silence model, for
background noise, and a pause model, for short between-word
pauses (which are often contaminated by breath noise). The
topology of the “silence” and “pause” model is shown in
Fig. 9.

309

Fig. 8. Unit model.

TABLE XIV
NuMBER OF UNIT MoDELS USED FOR EACH WORD IN THE VOCABULARY
Digit # Digit #
1 6 2 6
3 6 4 7
5 7 6 8
7 9 8 5
9 6 oh 5
zero 9

0

Y
OO

Fig. 9. Silence and pause models.

TABLE XV
AUGMENTED PARAMETER SET

Name Description COd?bOOk
Size
MCC: 12 mel scaled FFT based cepstral coefficients 256
AMCC: The time derivatives of MCC 256
AAMCC:  The time derivatives of AMCC 256
E: The signal energy 32
AE: The time derivative of the signal energy E 32
AAE: The time derivative of the AE 32

Six codebooks were now used with the new baseline system,
corresponding to the parameter sets in Table XV.

Analysis was performed without prior endpoint detection,
using a frame rate of 10 ms, preemphasis of 0.95 and a
Hamming window of 512 sample points. The codebooks were
created using the entire training set of the corpus.

The addition of new features and the use of better topologies
resulted in an enhancement of the performances in all the
experiments. As the error rate gets small, the advantages of
using MMIE, while still remaining evident, decreases.

A. Results

Training was done as before by bootstrapping, followed by
standard MLE training, followed by corrective MMIE training
with codebook exponents training. Results appear in Tables
XV and XVI. BOOTSTRAP refers to the error rates obtained
on the test set after bootstrapping, MLE refers to those after
six iterations of MLE training, while MMIE refers to those
after four iterations of corrective MMIE training.
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TABLE XVI
RECOGNITION ERRORS WITH DISCRETE HMM’s, SIX PARAMETER
SETS, ONE MODEL PER WORD AND 20 kHz SAMPLING

One Model Two Models
Word String Word String
BOOTSTRAP 0.66 1.92 0.45 1.37
MLE 6 0.61 1.77 043 1.29
MMIE 4 0.50 1.48 0.41 121
TABLE XVII

RECOGNITION ERRORS WITH SEMICONTINUOUS HMM’’s, SIx
PARAMETER SETS, TWo MODELS PER WORD AND 20 kHz SAMPLING

One Model Two Models
Word String Word String
BOOTSTRAP 0.48 1.49 0.40 1.22
MLE 6 0.40 1.20 0.34 1.01
MMIE 4 0.35 1.00 0.29 0.89

B. Discussion of Errors

An analysis of the errors make evident some typical prob-
lems. Most deletions and insertions involve the digit ‘oh’
which is also often confused with ‘4’ and ‘2’. This indicates
a difficulty of the system in distinguishing the weak fricative
‘t> and the ‘t’ of ‘2’ from the background noise.

In some cases, ‘5°, ‘oh’, and ‘8’ become ‘9’. These errors,
as well as less frequent errors involving ‘9’, show a weakness
in the system in recognizing nasality.

Other frequent errors involve the word ‘8’, frequently
deleted or inserted. This fact, as well as confusions between
‘4’ and ‘5’, ‘2’, and ‘3’ show that the system is weak
in characterizing certain types of coarticulations involving
complex dynamics of the vocal tract.

Perhaps some of the above mentioned problems could be
solved by increasing the size and the variety of the training set.
Some benefits could also be achieved by speaker adaptation,
when possible, because in many cases a type of error appears
only for one speaker of the test set. Other possibilities worth
investigating in the future are the use of new input parameters,
extracted, for example, by connectionist models, or the use of
specialized post processors in a system that computes new
probabilities and updates the order of the N-best candidates
proposed by the actual system.

VII. CONCLUSION

A number of conclusions can be derived from the ex-
periments described in this paper. First, at least for small
vocabularies, using MMIE following MLE can result in signif-
icantly improved recognition rates, compared to MLE alone.

Second, suitably chosen multiple parameter sets that can
be used under the assumption of statistical independence give
better performances than a single set especially if probabilities
of each set are weighted.

Third, SCHMM’s trained with the algorithm proposed in
this paper give systematically better results than discrete

HMM'’s. Nevertheless, the results of discrete HMM’s are good
enough to justify the use of these models in a practical system
because the time of recognition with these models is much
lower than the complexity of the other models considered in
this paper.

We have introduced an efficient new training algorithm,
“corrective MMIE training,” which has allowed us to obtain
these improvements with a small number of iterations, each of
which is usually faster than a standard MLE training iteration.
This algorithm is the result of a modification that we intro-
duced into a reestimation formula for discrete distributions
proposed by Gopalakrishnan et al., and of the idea of only
using errors in the training set for reestimating the HMM
parameters. Taken separately, none of these ideas would have
performed very well; however, taken together they led to
systematically fast convergence in practice.
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