
Computer Speech and Language (1997) 11, 43–72

A word graph algorithm for large vocabulary
continuous speech recognition

Stefan Ortmanns, Hermann Ney
Lehrstuhl für Informatik VI, RWTH Aachen, University of Technology,

D-52056 Aachen, Germany

Xavier Aubert
Philips GmbH Forschungslaboratorien, Weißhausstraße 2,

D-52066 Aachen, Germany

Abstract

This paper describes a method for the construction of a word graph
(or lattice) for large vocabulary, continuous speech recognition. The
advantage of a word graph is that a fairly good degree of decoupling
between acoustic recognition at the 10-ms level and the final search at
the word level using a complicated language model can be achieved.
The word graph algorithm is obtained as an extension of the one-pass
beam search strategy using word dependent copies of the word models
or lexical trees.

The method has been tested successfully on the 20 000-word
NAB’94 task (American English, continuous speech, 20 000 words,
speaker independent) and compared with the integrated method. The
experiments show that the word graph density can be reduced to an
average number of about 10 word hypotheses, i.e. word edges in the
graph, per spoken word with virtually no loss in recognition
performance.  1997 Academic Press Limited

1. Introduction

Dynamic programming was already used in the early days of automatic speech re-
cognition (Vintsyuk, 1971; Baker, 1975; Sakoe, 1979; Bridle et al., 1982; Ney, 1982) for
highly constrained small vocabulary tasks. In the last decade, it was successfully
extended to handle high-perplexity natural language speech recognition. Meanwhile,
even for 20 000-word tasks like the Wall Street Journal task, dynamic programming in
one variant or the other has established itself as the most widely used search technique.
Despite these successes, there was always the objection that dynamic programming
produces only the single most likely sentence and nothing else. In particular, in many
recognition tasks, it might be desirable to produce a list of the n best ranking sentence

0885–2308/97/010043+30 $25.00/0/1a960022  1997 Academic Press Limited

44 S. Ortmanns et al.

alternatives or a word graph each edge of which stands for a hypothesis about a spoken
word.

In this paper, we show how the concept of dynamic programming for determining
the single best sentence can be extended in a natural way to produce a word graph.
The main idea of a word graph is to come up with word alternatives in regions of the
speech signal, where the ambiguity in the acoustic recognition is high. The advantage
is that the acoustic recognition is decoupled from the application of the language model
and that a complex language model, in particular a long-span language model, can be
applied in a subsequent postprocessing step. The number of word alternatives should
be adapted to the level of ambiguity in the acoustic recognition. The difficulty in
efficiently constructing a good word graph is the following: the start time of a word
depends in general on the predecessor words. In a first approximation, we limit this
dependence to the immediate predecessor word and obtain the so-called word pair
approximation:

Given a word pair and its ending time, the word boundary between the two
words is independent of the further predecessor words.

This word pair approximation had originally been introduced by Schwartz & Austin
(1991) to efficiently calculate multiple or n-best sentences. The word graph can be
expected to be more efficient than the n-best approach. In the word graph approach,
word hypotheses need to be generated only locally whereas, in n-best methods, each
local alternative requires a whole sentence to be added to the n-best list. To give an
(over) simplified example, suppose we have 10 spoken words and two word hypotheses
for each word position. The n-best method then requires 210=1024 sentence hypotheses,
whereas the word graph approach produces a graph of only 2·10=20 word edges.

There have been a number of attempts at using two explicit levels in search: the first
level producing a short list of either single word or sentence hypotheses, and a second
level where the final decision is taken using a complex language model (Sakoe, 1979;
Schwartz & Austin, 1991; Soong & Huang, 1991; Fissore et al., 1993; Oerder & Ney,
1993; Ljolje et al., 1995). The novel contributions of this paper are the following.

• We give a consistent and formal specification of a word graph. In particular, the
word graph will be defined using a word boundary definition.

• Using this formal specification of a word graph, there is a natural way to control
the trade-off between the accuracy and coverage of the word graph and the cost
of its generation. We argue that in most cases the so-called word pair approximation
is a suitable assumption, as will be confirmed by the experiments, which results in
a very efficient algorithm for word graph construction.

• We show that this word graph concept can be embedded in the successful one-
pass beam search strategy, in particular in the context of a word conditioned
search strategy that makes use of a prefix tree organization of the pronunciation
lexicon. It will be shown that basically only the bookkeeping technique has to be
modified to employ the word conditioned one-pass algorithm for word graph
construction.

• We present experimental results for the 20 000-word North American Business
(NAB’94) task, which demonstrate the high performance and high efficiency of
the word graph method proposed.

45A word graph algorithm for large vocabulary continuous speech recognition

T I. Definitions and explanations of the most common terms

One-pass vs. multi-pass: we call a search a one-pass strategy if there is one single pass over the
input sentence as opposed to a multi-pass or multi-level concept. The one-pass search strategy
is virtually always based on dynamic programming.

Time-synchronous: a search strategy is called time-synchronous if the search hypotheses are
formed in a time-synchronous fashion over the sequence of acoustic vectors. Typically, the
time-synchronous concept goes hand in hand with the one-pass search strategy. An example
of a search strategy that is not necessarily time-synchronous is given by the A∗ search or stack
decoding.

Integrated search: we call a search strategy integrated if all available knowledge sources, e.g.
acoustic–phonetic models, the constraints of the pronunciation lexicon and the language model,
are exploited in the search process at the same time; typically this concept is implemented in
a one-pass strategy.

Word-conditioned vs. time-conditioned: these terms refer to the way in which the search space,
especially in the context of dynamic programming, is structured. In a word-conditioned search,
each search hypothesis is conditioned on the predecessor word. This implies that the optimization
over the unknown ending time of the predecessor word, i.e. the word boundary between the
predecessor word and the word under consideration, has already been carried out in an early
phase of the search procedure. This method is therefore different from a time-conditioned
search, where for each search hypothesis the dependence on the ending time of the predecessor
word is explicitly retained and the optimization over the unknown word boundaries is performed
as a final step of the search.

Single best: by single best, we mean a search concept which determines the single most likely
word sequence. The alternatives are, among others, n-best concepts and word graph methods.

Word graph: the idea here is to organize the high-ranking sentence hypotheses in the form of a
graph whose edges represent the hypothesized single words. Sometimes, the term “word lattice”
is used synonymously. However, in this paper, by the term “word graph” we imply that gaps
or overlaps between word hypotheses are not allowed.

As in Oerder and Ney (1993), we prefer the term “word graph” to “word lattice” to
indicate that when combining word hypotheses, we do not allow overlaps or gaps along
the time axis. The difference to the word graph algorithm in Oerder and Ney (1993) is
that we use a formal specification of word graphs and make explicit use of the word
pair approximation. As a result, we can incorporate the word graph construction into
the standard one-pass algorithm using word conditioned lexical trees, whereas in Oerder
and Ney (1993) the search was based on time-conditioned lexical trees.

A few words about the terminology in the context of the various search concepts
seem appropriate. These special terms do not necessarily have strict mathematical
definitions, but are primarily used to highlight certain aspects of the search strategy
considered. As a result, these terms may have some overlap in their meanings. We try
to give short explanations of the most common terms in Table I.

The organization of the paper is as follows. To lay the ground for the word graph
method, in Section 2, we review the one-pass beam search using a tree organization of
the pronunciation lexicon and extend it from bigram language models to trigram
language models. In Section 3, we present the basic concept for the specification of
word graphs. To this purpose, we introduce the so-called word boundary function.
Using the word pair approximation, we show how this approach can be incorporated
into the one-pass beam search in a natural way, which is to change the bookkeeping
scheme at word boundary hypotheses. In Section 4, we present experimental results on
the NAB’94 20 000-word development using the word graph method designed in Section

46 S. Ortmanns et al.

3. In addition to a trigram language model, we use the word graph method in connection
with a unigram/bigram cache language model. For the case of a trigram language
model, we give a detailed comparison of the word graph method and the integrated
method.

2. Review of the integrated method: one-pass search for the single-best sentence

As will be shown later, the algorithm for constructing a word graph turns out to be
an extension of single-best dynamic programming search. Therefore, in this section, we
review this one-pass single-best integrated search strategy, which as usual is combined
with a beam search concept for removing unlikely search hypotheses. This will be done
first for a bigram language model, and then we will show how to integrate a trigram
language model into such a search concept. Both variants of the integrated search will
be needed later: the bigram version paves the way for the word graph algorithm, and
the trigram version of the integrated search will be used in the experiments to compare
the word graph method and the integrated method.

This one-pass dynamic programming algorithm provides the basic component of the
search component in many successful systems for both small-vocabulary and large-
vocabulary speech recognition (Cardin et al., 1992; Lee et al., 1992; Ney et al., 1992a;
Alleva et al., 1993; Murveit et al., 1993; Aubert et al., 1994; Gauvain et al., 1994;
Kubala et al., 1994; Woodland et al., 1994; Ortmanns & Ney, 1995).

When applying this algorithm to large-vocabulary recognition, say a 20 000 word-
task, it seems natural and very desirable for efficiency reasons to organize the pro-
nunciation lexicon in the form of a prefix tree, in which each arc represents a phoneme
model, be it context dependent or independent (Ney et al., 1992a; Haeb-Umbach &
Ney, 1994; Ortmanns & Ney, 1995). This idea of using a tree representation was already
suggested in the seventies in the CASPERS system (Klovstad & Mondshein, 1975) and
in the LAFS (lexical access from spectra) system (Klatt, 1980). However, when using
such a lexical tree in the framework of a language model, e.g. a bigram model, and
dynamic programming, there are technical details that have to be taken into account
and require a careful structuring of the search space (Ney et al., 1992a; Haeb-Umbach
& Ney, 1994). Next we will review the full details of the search algorithm for such a
context.

2.1. Word conditioned lexical tree search algorithm

When using a bigram language model in connection with such a tree representation of
the pronunciation lexicon, we face the problem that the identity of the hypothesized
word w is known only when a leaf of the tree has been reached. Therefore the language
model probabilities can only be fully incorporated after reaching the terminal state of
the second word of the bigram. As a result, we can apply the language model probability
only at the end of a tree. To make the application of the dynamic programming
principles possible, we structure the search space as follows. For each predecessor word
v, we introduce a separate copy of the lexical tree so that during the search process we
always know the predecessor word v when a word end hypothesis w is hypothesized.

47A word graph algorithm for large vocabulary continuous speech recognition

A

A

A

A B

C

Sil

B

C

Sil

B

A

B

C

Sil

A

B

C

Sil

A

B

C

Sil

B

CC

A

B

C

Sil

Sil

A

B

C

Sil

A

B

C

Sil

Sil

Acoustic
model

Acoustic
model

Language
model

t t

Figure 1. Bigram language model recombination and intraphrase silence (Sil)
handling for a tree lexicon (three-word vocabulary: A, B, C) using word
conditioned tree copies. –––: Acoustic recombination within a tree copy; –––:
bigram language model recombination; –––: word boundary recombination for
an interphase silence copy; Φ: root of a tree copy; Β: word end.

Fig. 1 illustrates this concept for a three-word vocabulary (A, B, C), where the lexical
tree is depicted in a simplified schematic form. In the set-up of Fig. 1, we apply the
bigram probability p(w|v) when the final state of word w with predecessor v has been
reached, and use the resulting overall score to start up the corresponding lexical tree,
i.e. the tree that has word w as predecessor. To handle intraphrase silence models, we
add a separate copy of the silence model (Sil) to each tree. In addition, we have a
separate copy of the lexical tree for the first word in the sentence; this tree copy is
given silence as predecessor word. As a result of this approach, the silence model copies
do not require a special treatment, but can be processed like regular words of the
vocabulary. However, there is one exception: at word boundaries, there is no language
model probability for the silence models. As shown in Fig. 1, there are two types of
path extensions and recombinations, namely in the interior of the words or lexical trees
and at word boundaries. In the word interior, we have the bold lines representing the

48 S. Ortmanns et al.

transitions in the Hidden Markov models. At word boundaries, we have the thin and
the dashed lines, which represent the bigram language model recombinations. Like the
acoustic recombinations, they, too, are performed each time frame (10 ms). The dashed
lines are related to recombinations for interphrase silence copies. To start up a new
word hypotheses, we have to incorporate the bigram probabilities into the scores
Qv(t,s=Sw) and to determine the best predecessor word v. This best score is then
propagated into the root of the associated lexical tree, which is represented by the
symbol Φ. The symbol Β denotes a word end.

For a quantitative specification of the search procedure, we assume that each arc of
the lexical tree is represented by a Hidden Markov model. We will use the state index
s directly and assume that the lexical structure is captured by the transition probabilities
of the Hidden Markov model. To formulate the dynamic programming approach, we
introduce the following two quantities (Ney, 1993):

Qv(t, s) :=overall score of the best partial path that at time t ends in state
s of the lexical tree for predecessor v.
Bv(t, s) :=starting time of the best partial path that at time t ends in state
s of the lexical tree for predecessor v.

In other words Bv(t, s) is the back pointer which points back to the starting time of
the lexical tree copy for predecessor word v. This back pointer is needed because the
definition of the score Qv(t, s) implies that the optimization over the unknown starting
time of the lexical tree copy for predecessor word v has been carried out. Both quantities
are evaluated using the dynamic programming recursion for Qv(t, s):

Qv(t, s)=max
r

{q(xt, s|r)·Qv(t−1, r)}
(1)

Bv(t, s)=Bv(t−1, rmax
v (t, s)),

where rmax
v (t, s) is the optimum predecessor state for the hypothesis (t, s) and predecessor

word v. q(xt, s|r) is the product of transition and emission probabilities of the Hidden
Markov models used for the context dependent or independent phonemes. The back
pointers Bv(t, s) are propagated according to the dynamic programming decision. Unlike
the predecessor word v, the index w for the word under consideration is only needed
and known when a path hypothesis reaches an end node of the lexical tree: each end
node of the lexical tree is labeled with the corresponding word of the vocabulary.

Using a suitable initialization for r=0, this equation includes the optimization over
the unknown word boundaries. At word boundaries, we have to find the best predecessor
word v for each word w. To this purpose, we define:

H(w; t) :=max
v

{p(w|v)·Qv(t, Sw)}, (2)

where the state Sw denotes the terminal state of word w in the lexical tree. To propagate
the path hypothesis into the lexical tree hypotheses or to start them up if they do not
exist yet, we have to pass on the score and the time index before processing the
hypotheses for time frame t:

49A word graph algorithm for large vocabulary continuous speech recognition

T II. One-pass algorithm (“single-best; lexical
tree; bigram”)

Proceed over time t from left to right

Acoustic level: process states of lexical trees
—Initialization: Qv(t−1, s=0)=H(v; t−1)

Bv(t−1, s=0)=t−1

—Time alignment: Q(t, s) using DP
—Propagate back pointers Bv(t, s)

—Prune unlikely hypotheses
—Purge bookkeeping lists

Word pair level: process word ends
for each pair (w; t) do

H(w; t)=max
v

{p(w|v) Qv(t, Sw)}

v0(w; t)=arg max
v

{p(w|v) Qv(t, Sw)}

—Store best predecessor v0:=v0(w; t)
—Store best boundary s0 :=Bv0

(t, Sw)

Qv(t−1, s=0)=H(v; t−1)
(3)

Bv(t−1, s=0)=t−1.

The details of the algorithm are summarized in Table II.

2.1.1. Garbage collection

For large-vocabulary recognition, it is essential to keep the storage costs as low as
possible. To reduce the memory requirements back pointers and traceback arrays are
needed, whereas the traceback arrays are used to record the decisions about the best
predecessor word for each word start-up. At word boundaries, we store for each word
end hypothesis: word index, ending time of the predecessor word, score and back
pointer. The ending time of the predecessor word is not really needed, but useful for
diagnostic purposes. During the recognition process, many of the hypothesis entries in
the traceback arrays will become obsolete because their path extensions die out over
time due to both the recombination and the pruning of hypotheses. In order to remove
these obsolete hypothesis entries from the traceback arrays, we apply a garbage
collection or purging method as follows. Each entry of the traceback array is extended
by an additional component which is the so-called time stamp as suggested by Steinbiss
(1992). Using the backpointers of the state hypotheses, we perform a traceback for
each state hypothesis and mark the traceback entries reached with the current time
frame as time stamp. Hence, all traceback entries that have a time stamp different from
the current time frame can be re-used to store new hypotheses. Note that this garbage
collection process is controlled using the state hypotheses and reachable traceback entries
only so that the number of dead traceback entries does not matter. In principle, this

50 S. Ortmanns et al.

garbage collection process can be performed every time frame, but to reduce the
overhead, it is sufficient to perform it in regular time intervals, say every 50th time
frame.

2.1.2. Pruning techniques and language model look-ahead

Since full search is prohibitive, we use the time synchronous beam search strategy,
where at each time frame only the most promising hypotheses are retained (Lowerre
& Reddy, 1980). The pruning approach consists of three steps that are performed every
10-ms time frame (Steinbiss et al., 1994).

• Standard beam pruning or so-called acoustic pruning is used to retain for further
consideration only hypotheses with a score close to the best state hypothesis.
Denoting the best scoring state hypothesis by

QAC(t) :=max
(v,s)

{Qv(t, s)},

we prune a state hypothesis (s, t; v) if:

Qv(t, s)<fAC ·QAC(t).

The so-called beam width, i.e. the number of surviving state hypotheses, is
controlled by the so-called acoustic pruning threshold fAC.

• Language model pruning is applied only to tree start-up hypotheses as follows. At
word ends hypotheses, the bigram probability is incorporated into the accumulated
score, and the best score for each predecessor word is used to start up the
corresponding tree hypothesis or is propagated into this tree hypothesis already
exists. The scores of these tree start-up hypotheses are subjected to an additional
pruning step:

QLM(t) :=maxv{Qv(t, s=0)},

where s=0 is a fictitious state for initialization. Thus a tree start-up hypothesis is
removed if:

Qv(t, s=0)<fLM ·QLM(t),

where fLM is the so-called language model pruning threshold.

• Histogram pruning limits the number of surviving state hypotheses to a maximum
number (MaxHyp). If the number of active states is larger than MaxHyp, only
the best MaxHyp hypotheses are retained and the other hypotheses are removed.
This pruning method is called histogram pruning because we use a histogram of
the scores of the active states (Steinbiss et al., 1994).

The efficiency of these pruning methods can be improved by using the so-called look-

51A word graph algorithm for large vocabulary continuous speech recognition

T III. Typical memory requirements for the search (20 000-word NAB
task; bigram language model)

Type of array Maximum number of Number of bytes
entries

State hypotheses 600 000 7 200 000
Arc hypotheses 200 000 1 600 000
Auxiliary arc hypotheses 65 000 1 040 000
Tree hypotheses 20 000 240 000
Traceback array 200 000 4 000 000

Total 1 085 000 13 820 000

ahead techniques, e.g. language model look-ahead (Odell et al., 1994; Steinbiss et al.,
1994; Antoniol et al., 1995; Renals & Hochberg, 1995; Alleva et al., 1996; Ortmanns
et al., 1996a) and phoneme look-ahead (Ney et al., 1992a; Haeb-Umbach & Ney, 1994).
In this work, we employed only what we call unigram language model look-ahead
(Steinbiss et al., 1994) which works as follows. For each phoneme arc of the lexical
tree, we consider the probabilities of a unigram language model in order to obtain an
estimate of how likely we can reach an end node from the given phoneme arc. This
anticipated language model probability is incorporated into the dynamic programming
equation for computing Qv(t, s) each time a phoneme boundary is hypothesized. When
reaching an end node, we then apply the true probability of the bigram language model
after removing the estimate of the unigram language probability. The experimental
tests show that this unigram language model look-ahead reduces the search effort by
a factor of 4 in combination with the above pruning techniques (Steinbiss et al., 1994;
Ortmanns et al., 1996a).

2.1.3. Dynamic search space and memory requirements

In this subsection, we consider the memory requirement for the word conditioned tree
search method of the present implementation. As we will see later, these memory
requirements will not be increased by the algorithm for word graph construction.

The implementation is based on lists of active hypotheses for states, arcs and trees;
these lists are implemented using static arrays (Ney et al., 1992b; Haeb-Umbach &
Ney, 1994). Using these lists of active hypotheses, the search space is constructed
dynamically during the process of recognition. Although the details of this im-
plementation are out of the scope of this paper, we give a short summary of the memory
requirements. Each entry of the state array consists of three components, namely score,
back pointer and state index, for which all in all 12 bytes are used per entry. The
memory for the arc organization is divided into two parts, one for representing the arc
hypotheses of all active trees (8 bytes per entry) and another auxiliary one for storing
the arc hypotheses during the process of recombining across-phoneme hypotheses
within a given tree (16 bytes per entry). For the tree hypotheses, we always use the
maximum number as array size, which is the vocabulary size; each entry of the tree
hypothesis consists of 12 bytes (tree identifier, pointer into itself and pointer into the
list of arc hypotheses). In addition, we use a traceback array to store the information
at phrase level including word index, score, back pointer, ending time and time stamp
for each surviving word hypothesis, which requires 20 bytes per entry.

Table III gives an overview of the resulting memory costs for the NAB 20 000-word

52 S. Ortmanns et al.

task used in the experiments. For this task, the tree representation of the pronunciation
lexicon consists of about 65 000 phoneme arcs. The maximum number of hypotheses
is limited to 600 000 states and 200 000 arcs, respectively.

2.2. Extension to trigram language models

So far, we have considered the one-pass search approach only in the context of a
bigram language model. To extend the word conditioned tree search method from a
bigram to a trigram language model, we have to take into account that for a trigram
the language model probabilities are conditioned on the previous two words rather
than one predecessor word in the bigram case (Ney, 1993; Odell et al., 1994; Ortmanns
et al., 1996b). Therefore, the incorporation of a trigram into the word conditioned tree
search method requires a restructuring of the search space organization. Fig. 2 illustrates
the search space using a trigram model. For each two-word history (u, v), we introduce
a separate copy of the lexical tree; in Fig. 2, the root of each tree copy is labeled with
its two-word history. As in the case of a bigram language model, the structure of the
search space is defined in such a way that in the search network the probabilities or
costs of each edge depend only on the edge itself (along with its start and end vertex)
and nothing else. This property of the search network allows us to directly apply the
principle of dynamic programming. Note that in comparison with a bigram organized
search space, the size of the potential search space is increased drastically by an
additional factor, which is the vocabulary size. Hence, in order to keep the search effort
manageable, an efficient pruning strategy as described before is even more crucial for
the case of a trigram language model.

For simplicity, in Fig. 2, we omit the silence copies. To allow for intraphrase silence,
we use the same concept as for the bigram language model (Ney et al., 1992a; Haeb-
Umbach & Ney, 1994). For the trigram language model recombinations, we need the
identity of the two non-silence predecessor words, and therefore we need a separate
copy of the silence model for each pair of non-silence predecessor words.

To formulate the dynamic programming approach, we introduce the key quantities
Quv(t, s) and Buv(t, s) which must now depend on the two predecessor words (u, v) to
allow for the application of the trigram language model:

Quv(t, s) :=overall score of the best path up to time t that ends in state s of
the lexical tree for the two-word history (u, v).
Buv(t, s):=starting time of the best path up to time t that ends in state s of
the lexical tree for the two-word history (u, v).

As mentioned in the case of the bigram search, Buv(t, s) is the back pointer which
depends on the starting time of the copy of the lexical tree for the two predecessor
words (u, v), but not on the ending time of the two-word history (u, v).

The dynamic programming recursion within each copy of the lexical tree remains
the same as for the bigram case. So we have the usual dynamic programming recursion
for the word interior:

Quv(t, s)=max
r

{q(xt, s|r)·Quv(t−1, r)}
(4)

Buv(t, s)=Buv(t−1, rmax
uv (t, s)),

53A word graph algorithm for large vocabulary continuous speech recognition

A
AA

A

AA B
C

B
C

Acoustic
model

Acoustic
model

Language
model

A
BA

A

BA B
C

B
C

A
CA

A

CA B
C

B
C

A
AB

A

AB B
C

B
C

A
BB

A

BB B
C

B
C

A
CB

A

CB B
C

B
C

A
AC

A

AC B
C

B
C

A
BC

A

BC B
C

B
C

A
CC

A

CC B
C

B
C

t t

Figure 2. Trigram language model recombination for a tree lexicon (three-word
vocabulary: A, B, C) without intraphrase silence handling. BA: Tree copy of
the two-word history (B, A); –––: acoustic recombination within a tree copy;
–––: trigram language model recombination; Φ: root of a tree copy; Β: word
end.

where rmax
uv (t, s) is the optimum predecessor state for the hypothesis (t, s) and two-word

history (u, v). As before, q(xt, s|r) is the product of transition and emission probabilities.
To perform the recombination across the word boundaries, we define the quantity:

54 S. Ortmanns et al.

T IV. One-pass algorithm (“single best”) using a
trigram language model

Proceed over time t from left to right

Acoustic level: process states of lexical trees
—Initialization: Quv(t−1, s=0)=H(u, v; t−1)

Buv(t−1, s=0)=t−1

—Time alignment: Quv(t, s) using DP
—Propagate back pointers Buv(t, s)

—Prune unlikely hypotheses
—Purge bookkeeping lists

Word pair level: process word ends
For each triple (v, w; t) do

H(v, w; t)=max
u

{p(w|u, v) Quv(t, Sw)}

u0(v, w; t)=arg max
u

{p(w|u, v) Quv(t, Sw)}

—Store best predecessor u0 :=u0(v, w; t)
—Store best boundary s0 :=Bu0v (t, Sw)

H(v, w; t) :=max
u

{p(w|u, v)·Quv(t, Sw)}, (5)

where p(w|u, v) is the conditional trigram probability for the word triple (u, v, w). As
in the case of the bigram language model, to start up the lexical tree hypotheses, we
have to pass on the score and the time index before processing the hypotheses for time
frame t:

Quv(t−1, s=0)=H(u, v; t−1)
(6)

Buv(t−1, s=0)=t−1,

where we have introduced the fictitious state s=0 for initialization. Table IV shows the
details of the algorithm.

To handle the search efficiently, we have to identify the tree hypotheses by their two-
word history. In the case of a bigram language model, an array-based method with
indirected pointers (Ney et al., 1992b) is used. Due to the size of the array needed,
namely 20 0002 for a 20 000-word vocabulary, this method is not viable for a trigram
language model. Instead, a hashing approach is used (Ortmanns et al., 1996b). The
index of the hash table is computed from a bijective function of the word pair index
(u,v), e.g. f(v, w)=W ·v+w, where W is the vocabulary size. This hashing method was
found to cause only negligible overhead.

55A word graph algorithm for large vocabulary continuous speech recognition

3. Word graph method

3.1. Word graph specification

In this section, we will formally specify the word graph construction problem and pave
the way for the word graph algorithm. We start with the fundamental problem of word
graph construction:

Hypothesizing a word w and its ending time t, how can we find a limited number of
“most likely” predecessor words? This task is difficult since the start time of word w
may very well depend on the predecessor word under consideration, which results in
an interdependence of start times and predecessor words.

In view of the most successful one-pass beam search strategy, what we want to achieve
conceptually, is to keep track of word sequence hypotheses whose scores are very close
to the locally optimal hypothesis, but that do not survive due to the recombination
process.

The basic idea is to represent all these word sequences by a word graph, in which
each edge represents a word hypothesis. Each word sequence contained in the word
graph should be close (in terms of scoring) to the single-best sentence produced by the
one-pass algorithm. In the one-pass algorithm for computing the single-best sentence,
we have computed the hypotheses in a time-synchronous fashion and have propagated
the hypotheses from left to right over the time axis. We will use the same principle of
time synchrony for the word graph generation. To this purpose, we introduce the
following definitions.

h(w; s, t) :=Pr(xt
s+1|w)=probability that word w produces the acoustic vectors

xs+1 . . .xt.
G(wn

1; t) :=Pr(wn
1)·Pr(xt

1|wn)=(joint) probability of generating the acoustic vectors
x1 . . .xt and a word sequence w1 . . .wn with ending time t.

Using these definitions, we can isolate the probability contributions of a particular
word hypothesis with respect to both the language model and the acoustic model. This
decomposition can be visualized as follows.

x1, . . . , . . .xs

G(wn−1
1 ; s)

xs+1, . . . ,xt

h(wn; s, t)
xt+1, . . . , . . . ,xT

. . .

From this decomposition, it is clear that the score G(wn
1; t) can be computed from the

score G(wn−1
1 ; t) by optimizing over the unknown word boundary s:

G(wn
1; t)=maxs{Pr(wn|wn−1

1)·G(wn−1
1 ; s)·h(wn; s, t)} (7)

=Pr(wn|wn−1
1)·max

s
{G(wn−1

1 ; s)·h(wn; s, t)}, (8)

where we have used the conditional probability Pr(wn|wn−1
1) of the language model. To

construct a word graph, we introduce a formal definition of the word boundary
s(wn

1; t) between the word hypothesis wn ending at time t and the predecessor sequence
hypothesis wn−1

1 :

56 S. Ortmanns et al.

s(t; wn
1) :=arg max

s
{G(wn−1

1 ; s)·h(wn; s, t)}. (9)

It should be emphasized that the language model probability does not affect the optimal
word boundary according to Equation (8) and is therefore omitted in the definition of
the word boundary function s(wn

1; t). Thus far we have considered the most general
case in two aspects: first, the word boundary function was not constrained in any way.
Second, the language model was not constrained in any way. We will first narrow down
the language model to the widely used m-gram language models and come back to the
word boundary function later.

Exploiting an m-gram language model p(um|um−1
1), we can recombine word sequence

hypotheses at the phrase level if they do not differ in their final (m−1) words. Therefore
it is sufficient to distinguish partial word sequence hypotheses wn

1 only by their final
words um

2 :=wn
n−m+2. The corresponding score is denoted by H(um

2 ; t) and is defined as
the joint probability of generating the acoustic vectors x1 . . .xt and a word sequence
with ending sequence um

2 and ending time t:

H(um
2 ; t):=max

wn
1

{Pr(wn
1)·Pr(xt

1|w
n
1): wn

n−m+2=um
2 }, (10)

where, as expressed by the notation, the final portion um
2 of the word sequence wn

1 is
not subjected to the maximization operation. Note that the quantity H(um

2 ; t) is similar
to the definition introduced for the single-best one-pass algorithm in Section 3. Using
the above definition, we can write the dynamic programming equation at the word
level:

H(um
2 ; t)=max

u1

Ĥ(um
2 ; t) (11)

with Ĥ(um
1 ; t) :=p(um|um−1

1) H(um−1
1 ; s(t; um

1)) h(um; s(t; um
1),t). (12)

Here we have used the function s(t; um
1) to denote the word boundary between um−1

and um for the word sequence with final portion um
1 and ending time t. Note that we

have included the language model to achieve a better pruning strategy. For the word
boundary itself, we have to use the quantity H(um

2 ; t) rather than G(wn
1; t):

s(t; um
1):=arg max

s
{H(um−1

1 ; s) h(um; s, t)}. (13)

3.2. Word pair approximation

So far this has been just a notational scheme for the word boundary function
s(t; um

1). The crucial assumption now is that the dependence of the word boundary
s(t; um

1) can be confined to the final word pair um
m−1. The justification is that the other

words have virtually no effect on the position of the word boundary between words
um−1 and um (Schwartz & Austin, 1991). This so-called word pair approximation is

57A word graph algorithm for large vocabulary continuous speech recognition

w

vv v

a b

um

um–1

um–2

t

w

v

v v

a b

um

um–1

um–2

t

Time

Time

Figure 3. Illustration of the word pair approximation for two cases: (a) good
example: the predecessor word um−1 :=v of word um :=w is sufficiently long; (b)
bad example: the predecessor word um−1 :=v of word um :=w is too short.

illustrated in Fig. 3. For a word hypothesis w and an ending time hypothesis t, this
figure shows the time alignment path for the word w=um itself and its predecessor
words um−1

m−2 to illustrate the definition of the word boundary s(t; um
1). In general, this

boundary, i.e. the start time word w as given by time alignment, will depend on the
immediate predecessor word um=v. The question of whether this dependence reaches
beyond the immediate predecessor word is illustrated by showing a good [Fig. 3(a)]
and a bad [Fig. 3(b)] example. For simplification, we have assumed that the reference
models of the predecessor words um=a and um=b have the same length. From this
figure, it is obvious that the assumption of the word pair approximation is satisfied if
the predecessor word um−1 is sufficiently long: all time alignment paths then are
recombined before they reach the final state of the predecessor word. In formulae, we
express the word pair approximation by the equation:

s(t; um
1)=const(um−2

1) or s(t; um
1)=s(t;um

m−1), (14)

58 S. Ortmanns et al.

i.e. the word boundary function does not depend on um−2
1 . Assuming the word pair

approximation, we have the following algorithm for word graph construction:

• At each time frame t, we consider all word pairs um
m−1=(v, w). Using a beam search

strategy, we will limit ourselves to the most probable word pairs.
• For each triple (t; v, w), we have to keep track of:

—the word boundary s(t; v, w)
—the word score h(w; s(t; v, w), t).

• At the end of the speech signal, the word graph is constructed by tracing back
through the bookkeeping lists.

As long as only a bigram language model is used, the word pair approximation is still
exact (assuming a conservatively large pruning threshold). An even further simplification
is the single word approximation used in Steinbiss (1991) to produce a list of n-best
sentences.

3.3. Word graph generation algorithm

The computation of the word boundary function s(t; v, w) has not yet been specified.
In principle, it can be computed using either the so-called two-level algorithm (Sakoe,
1979) or the one-pass algorithm described before, which both compute only the best
single word sequence. However, to apply beam search, it is more convenient to use the
one-pass algorithm. Since the hypotheses must be distinguished by the predecessor
word, we have to use the word conditioned variant of the one-pass algorithm as
presented in the preceding section.

To extend the one-pass word conditioned algorithm into an algorithm for word
graph construction, we have only to add the two equations for calculating the word
boundary function s(t; v, w) and the word score h(w; s, t). The word boundaries are
obtained using the back pointers at the word ends:

s(t; v, w)=Bv(t, Sw).

For each predecessor word v along with word boundary s=s(t; v, w), the word scores
are recovered using the equation:

h(w; s, t):=
Qv(t, Sw)
H(v; s)

,

where we obtain H(w; t) as usual:

H(w; t)=max
v

{p(w|v)·Qv(t, Sw)}. (15)

59A word graph algorithm for large vocabulary continuous speech recognition

T V. One-pass algorithm for word graph con-
struction (“single best” and “word graph”)

Proceed over time t from left to right
Acoustic level: process states of lexical trees

—Initialization: Qv(t−1, s=0)=H(v; t−1)
Bv(t−1, s=0)=t−1

—Time alignment: Qv(t, s) using DP
—Propagate back pointers Bv(t, s)

—Prune unlikely hypotheses
—Purge bookkeeping lists

Word pair level: process word ends
Single-best: for each pair (w; t) do

H(w; t)=max
v

{p(w|v) Qv(t, Sw)}

v0(w; t)=arg max
v

{p(w|v) Qv(t, Sw)}

—Store best predecessor v0 :=v0(w; t)
—Store best boundary s0 :=Bv0

(t, Sw)

Word graph: for each triple (t; v, w) store
—Word boundary s(t; v, w) :=Bv(t, Sw)
—Word score h(w; s, t) :=Qv(t, Sw)/H(v; s)

Phrase level search (optional)

The details of the algorithm are summarized in Table V. The operations are organized
in two levels: the acoustic level and the word pair level. At the end of the utterance,
the word graph is constructed by tracing back through the bookkeeping lists. A third
level, the phrase level, has been included for the final recognition. Depending on whether
the phrase-level recognition is carried out in a time-synchronous fashion or not, we
can distinguish the following two strategies in using a trigram or higher m-gram
language model.

• Extended one-pass approach: the word pair approximation serves only as a sim-
plification in the one-pass strategy in order to avoid the large number of copies
of the lexical tree as required by the language model.

• Two-pass approach: first, a word graph is constructed. Then, at the so-called phrase
level, the best sentence is computed using a more complex language model.

From the concepts developed so far, it should be obvious that there is only a gradual
difference between these two strategies.

What has to be added to the single-best one-pass strategy, is the bookkeeping at the
word level: rather than just the best surviving hypothesis, the algorithm has to memorize
all the word sequence hypotheses that are recombined into just one hypothesis to start
up the next lexical tree (or word models). In the single-best method, only the surviving
hypothesis [v0, s0] has to be kept track of.

60 S. Ortmanns et al.

Sil

A A A A A A

C C C C C C

B B B B

C

Sil

Sil

Sil

Time

Figure 4. Example of a word graph (three-word vocabulary: A, B, C).

An example of a word graph for a three-word vocabulary A, B, C (including silence
at the sentence beginning and end) is shown in Fig. 4. The edges stand for word
hypotheses, where the circles along with the word name denote the word end. Note
the following properties, which are a result of the word graph algorithm.

• There is a maximum for the number of incoming word edges in any node, namely
the vocabulary size which is the maximum number of possible predecessor words.

• There is no maximum for the number of outgoing word edges; this effect is due
to the fact that, even for the same predecessor word, a word can have different
ending time hypotheses.

There are two refinements of the word graph method which suggest themselves: (1)
For short words or function words like articles and prepositions, the quality of the
word pair approximation might be questionable, and word triples or higher word m-
tuples might be used instead in these cases. (2) Long words with identical ending
portion may waste search effort and could be merged when forming word pairs in the
word graph algorithm. In both cases, the obvious remedy is to make the word copies
dependent on a suitably defined history using the phonetic script of the predecessor
words.

So far, we have not considered the handling of intraphrase silence in the presentation
of the algorithm. As in the case of the bigram language model, we make the silence
hypotheses dependent on the (non-silence) predecessor words. The effect of these silence
copies on the word graph construction is illustrated in Fig. 5. A word v and the
associated silence copy vSil are treated as one single unit. However, due to this trick,
the information of whether there has been a silence portion vSil between the word w
and the predecessor word v is lost and cannot be recovered easily.

3.4. Word graph pruning

The word graph generated by the acoustic recognition process can be very large. To
reduce the size of the word graph, pruning methods can be used in a similar manner
as described in Section 2.1.2 without significantly increasing the word error rate. During
the acoustic recognition process, only the most likely word hypotheses (w; t) have to
be retained at every time frame t. Therefore, we have to determine the score of the
best word hypothesis Hmax(t) as follows:

61A word graph algorithm for large vocabulary continuous speech recognition

w

v

Time t

Sil
v

w

v

Time t

Sil
v

Figure 5. Intraphrase silence handling in the word graph construction.

Hmax(t)=max
w

{H(w; t)}, (16)

where H(w; t) is:

H(w; t)=max
v

{p(w|v) ·H(v; s(t; v, w)) ·h(w; s(t; v, w), t)}. (17)

The pruning of the word graph is based on the usual concept of beam search: hypotheses
(w; t) with a score relatively close to best word hypothesis are retained as active, the
others are pruned. In formulae, we have:

p(w|v) ·H(v; s(t; v, w)) ·h(w; s(t; v, w), t)<fLAT ·Hmax(t). (18)

fLAT<1 denotes the word graph pruning threshold. This pruning method can also be
combined with histogram pruning to limit the maximum number of word hypotheses
per time frame. In order to keep the storage costs for the word graph small, a garbage
collection is performed after pruning in a similar way as described in a previous section.

62 S. Ortmanns et al.

T VI. Word graph rescoring: search algorithm at
phrase level (second pass) using an m-gram language

model

Input: set of word boundaries s(t; um
1)

and of word scores h(um; s, t)
Proceed over time t from left to right

Process each word pair um
m
−1 in the graph

Get word boundaries s(t; um
1) and scores h(um; s,

t)
Process each word sequence um

1

Ĥ(um
1 ; t) :=p(um|um

−11)·H(um−1
1 ; s)·h(um; s, t)

H(um
2 ; t)=max

u1

Ĥ(um
1 ; t)

B(um
2 ; t)=argmax

u1

Ĥ(um
1 ; t)

Traceback: use back pointers {B(um
2 ; t)}

3.5. Word graph rescoring

Given a word graph and an m-gram language model, the second-pass of the word
graph method can be carried out at the word level using a left-to-right dynamic
programming algorithm as given by Equation (12). The implementation of this algorithm
is fairly straightforward. Of course, the list (or set) of hypothesized word sequences
um

1 should be represented in an efficient way. The algorithm for the search through the
graph are summarized in Table VI. The cost of this search through the word graph
depends on the type and complexity of the language model. This second step of the
recognition operation is often referred to as rescoring. As we will show in the experiments,
for a trigram language model as it is used in the tests on the NAB task, the cost of the
rescoring is typically less than 1% of the effort for constructing the word graph (using
a bigram language model).

4. Experimental results

4.1. Recognition task and database

The experimental tests were carried out on the ARPA North American Business
(NAB’94) H1 development corpus including 310 sentences with 7387 words by 10 male
and 10 female speakers. The number of spoken words which were out-of-vocabulary
words relative to the 20 000-word vocabulary was 199. The training of the emission
probability distributions of the underlying Hidden Markov models was performed on
the so-called WSJ0 and WSJ1 training data as described in Dugast et al. (1995). In
the experiment we used about 290 000 Laplacian mixture densities (with a single pooled
vector of absolute deviations) for each gender. In all the recognition experiments, we

63A word graph algorithm for large vocabulary continuous speech recognition

T VII. Some statistics about the NAB’94 H1 development test set (OOV=
out-of-vocabulary)

Vocabulary size Spoken words OOV words Test set perplexity

Bigram Trigram

19 977 7387 199 198·1 130·2

used the official 20 000-word trigram language model for the NAB’94 task (Rosenfeld,
1995). The test conditions are summarized in Table VII.

4.2. Results for the word graph method

In this subsection, we report on recognition experiments using the word graph method.
To give a quantitative specification of the size of the word graphs used and the
recognition results, we introduce the following terminology:

• For a spoken sentence, the word graph density (WGD) is defined as the total
number of word graph edges divided by the number of actually spoken words.
Similarly, the node graph density (NGD) and the boundary graph density (BGD)
denote the number of nodes and of different word boundaries, respectively, per
spoken word.

• The graph word error rate (GER) is computed by determining that sentence through
the word graph that best matches the spoken sentence where the matching criterion
is defined in terms of word substitutions (SUB), deletions (DEL) and insertions
(INS). This measure provides a lower bound of the word error rate for this word
graph and gives a better measurement of the word graph quality than the graph
sentence error rate. The graph word error rate (GER) is to be distinguished from
the standard recognition word error rate (WER).

To study the effect of the word graph size on the recognition performance, a
conservatively large word graph was computed using the word graph algorithm described
and stored on disk for each test sentence. The word graph had been constructed using
a bigram language model with a test set perplexity of PPbi=198·1. On average, the
search space consisted of 27 672 active states, 7674 active arcs and 115 active trees per
time frame during the first pass of the two-pass search strategy and results in a word
error rate of 16·5%. When generating the word graph, the maximum number of word
end hypotheses per time frame was limited to 1000. Then by varying the so-called word
graph pruning threshold fLAT, the size of the word graph was reduced and the effect on
the graph word error rate and the recognition word error rate was measured. For the
recognition test, a full search through the word graph was performed using a trigram
language model (perplexity of 130·2), i.e. no pruning was applied. In all tests, we used
only a scaling factor for the logarithms of the language model probabilities; there was
no word penalty used although it could slightly decrease the word error rate. For

64 S. Ortmanns et al.

23030
Time

W
or

d
in

de
x

100 200

PICTURE

THIS

AS

WRONG

WHEN

IT

A

Sil

A

Sil

WHAT

THE

WITH WITH

IS

HIS

SPLIT

SHARE

Figure 6. Word graph for the spoken sentence: WHAT IS WRONG WITH
THIS PICTURE?

illustration purposes, two examples of word graphs are shown in Figs 6 and 7 as
computed on the corpus. The layout of the word graphs is the same as that in Fig. 4:
the horizontal axis is the time axis; along the vertical axis, the figures show the various
word hypotheses in the word graph. Note that, due to the definition of the vertical
axis, vertical distances do not indicate any acoustic similarities between words.

Table VIII summarizes the results for the obtained for the word graph method under
the above conditions. In the actual implementation, we use the logarithms of the
probabilities rather than the probabilities themselves; therefore, Table VIII reports the
values of the logarithm FLAT (in relative units) of the pruning threshold fLAT. For various
values of the pruning threshold, the table shows the word graph size in terms of word
graph density (WGD), number of word graph nodes (NGD) and number of word
boundaries (BGD). In addition, the table reports the graph word error rate and the
recognition word error rate, both of which are given in terms of word deletions,
insertions and substitutions. For the smallest word graph with WGD=1·26, there is

65A word graph algorithm for large vocabulary continuous speech recognition

0
Time (10 ms)

W
or

d
in

de
x

100 200

SAVED

BE

NETWORK

IN

TENNIS

Sil Sil

CAN

CHEMIST

BE

SAVE

TWO

CHINA'S

CANVAS
THIS

AS

MISS

AND

TO

HIS
ITS

JANICE
CANADA'S

KANSAS

KEN

Figure 7. Word graph for the spoken sentence: CAN THIS NETWORK BE
SAVED?

virtually no difference between the graph word error rate of 16·3% and the recognition
word error rate of 16·4%. These error rates are close to the bigram word error rate of
16·5% as it must be the case. By using the largest word graph with WGD=1467·21,
the recognition error rate is reduced down to 14·3%, whereas the graph word error
rate is affected much more: it goes down from 16·3% to 4·2%. Here, we have to keep
in mind that the two error rates cannot be decreased below 2·7%, the out-of-vocabulary
rate. As far as the recognition word error rate is concerned, we see that the minimum
of 14·3% is already achieved for a word graph density (WGD) of 10·67. In contrast
with this result, for the graph word error rate, there is a steady improvement down to
4·2% by increasing the word graph density. Evidently the explanation is that the acoustic
and language model probabilities are not good enough to achieve the possible minimum
of 4·2%.

To illustrate the usefulness of the word graph approach, an additional recognition
experiment was carried out using a language model that has been extended by a cache

66 S. Ortmanns et al.

T VIII. Recognition results for the word graph method (trigram language model with PPtri=
130·2; OOV rate: 2·7%; word graph generation: 27 672 states, 7674 arcs, 115 trees)

Graph density Graph word error rate Recognition word error rate

FLAT WGD NGD BGD DEL–INS–SUB GER [%] DEL–INS–SUB= WER [%]
TOTAL

300 1476·21 181·80 19·67 9– 38–262 4·2 120–202–733=1055 14·3
150 1415·89 175·93 19·25 9– 38–262 4·2 120–202–733=1055 14·3
100 684·47 104·22 14·50 13– 38–263 4·3 120–202–733=1055 14·3
90 460·42 77·35 12·31 12– 38–270 4·3 120–202–733=1055 14·3
80 269·17 51·75 9·84 15– 44–272 4·5 120–202–733=1055 14·3
70 137·39 31·43 7·42 19– 51–282 4·8 120–202–733=1055 14·3
60 60·15 17·20 5·33 23– 56–301 5·1 122–201–730=1053 14·3
50 25·22 8·98 3·77 40– 64–325 5·8 124–200–732=1056 14·3
40 10·67 4·79 2·66 50– 81–368 6·8 122–202–735=1059 14·3
30 4·53 2·75 2·01 84– 94–445 8·4 135–191–754=1080 14·6
20 2·40 1·83 1·60 113–129–543 10·6 147–184–762=1093 14·8
10 1·56 1·41 1·36 156–160–700 13·8 173–180–801=1154 15·6
5 1·36 1·29 1·28 168–177–788 15·3 181–190–831=1202 16·3
1 1·26 1·25 1·24 167–192–845 16·3 167–195–851=1213 16·4

Abbreviations: WGD: word graph density; NGD: number of word graph nodes; BGD: number of word
boundaries; DEL: word deletions; INS: word insertions; SUB: word substitutions; WER: word error rate.

T IX. Recognition results for the word graph method using a unigram/bigram cache model

Language model PP DEL–INS–SUB=TOTAL WER [%]

Bigram: 198·1 179–195–846=1220 16·5without cache
with cache: unsupervised 178·0 190–179–835=1204 16·3

supervised 171·2 194–179–806=1179 16·0
Trigram: without cache 130·2 120–202–733=1055 14·3

with cache: unsupervised 117·1 127–182–713=1032 14·0
supervised 113·2 128–194–699=1021 13·8

Abbreviations: PP: perplexity; DEL: word deletions; INS: word insertions; SUB: word substitutions; WER:
word error rate.

model. The so-called cache model can be considered as a short-term memory where
the probability of the most recent unigrams and bigrams is increased (Kuhn & De
Mori, 1990; Generet et al., 1995). In the recognition experiments, we combined the
baseline bigram/trigram model with this cache model. The cache was used as follows.
The cache was initialized, i.e. reset, each time a new speaker started. After each
recognition of a sentence, the cache was updated. This was performed in two variants,
namely unsupervised and supervised. In the unsupervised variant, the recognized words
were used to fill the memory of the cache model. In the supervised variant, the cache
was updated using the actually spoken words. Limiting the number of words in the
cache to the most recent M words did not improve the perplexity; so the cache as it
was used here is simply a memory of all previous words, either spoken or recognized.
The perplexities PP and recognition results are shown in Table IX. In the bigram case,

67A word graph algorithm for large vocabulary continuous speech recognition

T X. Recognition results for the integrated method (trigram language model with PPtri=
130·2) as a function of the acoustic pruning threshold fAC

Average number of active

fAC States Arcs Trees Word ends DEL–INS–SUB= WER [%]
TOTAL

80 4714 1392 29 80 128–211–757=1096 14·8
100 18 734 5430 70 294 120–206–721=1047 14·2
120 48 940 13 877 112 702 120–204–717=1041 14·1
130 67 541 18 764 130 953 120–201–712=1033 14·0
140 86 772 23 688 145 1223 121–200–709=1030 13·9

Abbreviations: DEL: word deletions; INS: word insertions; SUB: word substitutions; WER: word error
rate.

the word error can be decreased by the use of the cache model from 16·5% to 16·3%
and 16·0% for the unsupervised and the supervised variant, respectively. When using a
trigram language model, the cache model results in a similar improvement. All these
improvements tend to be small, which is a natural result of the fact that the cache
model leads only to a slight improvement of the perplexity (see Table IX). Nevertheless,
there is a consistent improvement in the word error rates, which result in another
example of the usefulness of the word graph method.

4.3. Results for the integrated method

To verify the viability and the quality of the word graph method, in particular of the
word pair approximation, we carried out another series of experiments, in which we
used the integrated search method in combination with a trigram language model. In
particular, we investigated the recognition accuracy as a function of the search effort
by varying the acoustic pruning threshold fAC, while keeping the other two pruning
parameters fLM and MaxHyp fixed. Table X shows the results of the recognition
experiments. In addition to the word errors, Table X shows the search space, which is
given in terms of the average number (per time frame) of active states, of active arcs,
of active trees and of active word ends. From the table, it can be seen that by increasing
the average number of active states per time frame from 4714 to 48 940 the word error
rate is reduced from 14·8% to 14·1%. To further reduce the word error rate to 13·9 we
have to double the average number of state hypotheses. Nevertheless, the actual search
space is still manageable and is nine orders of magnitude lower than the potential size
of the search space which is

20 0002 trees · 65 000 arcs/tree · 6 states/arc=1·56×1014 states.

This result demonstrates the efficiency of the beam search concept in the integrated
search method.

4.4. Comparison: word graph method vs. integrated method

The results of the word graph method will now be compared with the results of the
integrated search method. To this purpose, we consider the best results obtained for

68 S. Ortmanns et al.

T XI. Comparison of the integrated method with the word graph
method (NAB’94 H1 development set, 310 sentences=7387 words)

Word errors

Number of: Sentences Integrated/word graph

With identical score 277 898/898
With better score 32 121/146
With worse score 1 11/11

Total 310 1030/1055

T XII. Three test sentences, for which the integrated method worked better than the word
graph method (NAB’94 H1 development set, 310 sentences=7387 words)

Spoken sentence: . . . A FEW MUTUAL FUND INVESTORS INTO MODELS OF
.. .

Word graph method: . . . A FEW MUTUAL FUND INVESTORS IN TWO MODELS
OF .. .

Integrated method: . . . A FEW MUTUAL FUND INVESTORS INTO MODELS OF
.. .

Spoken sentence: . . . WHEN YOU BUY A MUTUAL FUND FROM YOUR
BROKER

Word graph method: . . . WHEN YOU BUY A MUTUAL FUND FROM A
BROKER

Integrated method: . . . WHEN YOU BUY A MUTUAL FUND FROM YOUR
BROKER

Spoken sentence: . . . I ALMOST WISH I HADN’T SEEN THIS PART
Word graph method: . . . I ALMOST WISH I HADN’T SEEN AS PART
Integrated method: . . . I ALMOST WISH I HADN’T SEEN THIS PART

each of the two methods in the case of a trigram language model (see Tables VIII and
X). The integrated method produces 1030 word errors in comparison with 1055 word
errors obtained for the word graph method. However, we have to take into account
that search and recognition errors are not the same thing. Therefore, we have compared
the recognition score of each sentence for the two methods. The results are summarized
in Table XI. Out of the 310 test sentences, there were 277 sentences with identical scores
for the two methods. There were 32 sentences for which the integrated method produced
a better score than the word graph method, and there was only one sentence for which
the opposite result was true. To see in which cases the word graph approach runs into
problems, we selected three sentences for which the integrated method produced less
errors than the word graph method. Table XII shows these three sentences with the
recognition results for the integrated method and for the word graph method. As can
be expected, the word graph method seems to run into problems for short words. In
the examples shown in Table XII, the recognition errors are related to the word pairings
“in two–into”, “your–a”, “this–as”.

The overall result of the comparison of the word graph method with the integrated
method can be summarized as follows. For about 90% of the sentences, there was no

69A word graph algorithm for large vocabulary continuous speech recognition

T XIII. Computational effort for the word graph method and the integrated
method

Word graph method Integrated method

Search space: states/arcs/trees 16274/4516/41 32291/9413/108

Word error rate 81/519=15·6% 80/519=15·4%

Time (s) (%) (s) (%)

Log-likelihood computation 14 830 78·2 15 174 67·2
Acoustic search 3603 19·0 6576 29·1
Lang. model recombination 139 0·7 621 2·7
Word graph rescoring 210 1·1 — —
Other operations 177 1·0 208 1·0

Overall recognition 18 959 100·0 22 579 100·0
Real time factor 90 — 107 —

Subset of NAB’94 H1 development set: 20 speakers (10 male and 10 female speakers),
20 sentences=519 spoken words (21 OOV words)=211 s, PPbi=201·3, PPtri=134·1.

The experiments were run on an SGI workstation (Indy R4400, SpecInt’92: 94).

degradation in terms of search errors by the word graph method. Considering the
recognition errors, the result is even more remarkable: there was only a relative increase
by 2·4% in the word error rate over the best result of the integrated method, namely
from 1030 to 1055 word errors. To obtain these error rates, the search effort in terms
of state hypotheses was increased by more than a factor of 3 for the integrated method
in comparison with the word graph method. At the same time, we have to keep in
mind that the integrated method does not offer the flexibility of the word graph method.
In another experiment (Aubert & Ney, 1995), the word graph method has been tested
successfully on a 64 000-word task. All these experiments indicate that the word pair
approximation works very well. Even for very short predecessor words, there are only
a few exceptional cases in which the word pair approximation deteriorates the recognition
performance in comparison with the much more costly integrated search method.

Finally, we will consider and compare a breakdown of the computational cost of the
two methods. To measure the computational cost of the recognition, the exact times
of the various operations were measured for recognition tests on a subset of the NAB’94
H1 development corpus which contained every first sentence of the 20 speakers. The
results are shown in Table XIII. The computation times are given for each of the
three operations: log-likelihood calculation, acoustic search and the language model
recombinations. Due to the high cost of the log-likelihood calculation, the overall result
differs only by about 25% for the two methods. The cost for the search itself, i.e. the
time for the acoustic search and the language model recombinations, is nearly halved
by the word graph method. Therefore, in cases where the computation time is an issue,
a separate processor for calculating the log-likelihoods is highly desirable. Obviously,
the word graph rescoring is applied only in the case of the word graph method and
requires only 1·1% of the overall time. For the experiments, which were performed on
an SGI workstation Indy R4400, the response times were 90 and 107 times real time
for the word graph method and the integrated method, respectively.

70 S. Ortmanns et al.

To reduce the computational cost of the log-likelihood calculations, fast techniques
for the log-likelihood calculations (Bocchieri, 1993; Beyerlein & Ullrich, 1995) are
currently being studied. In addition, the search effort can be further decreased by using
the so-called look-ahead techniques, both at the acoustic–phonetic level, e.g. a phoneme
look-ahead (Haeb-Umbach & Ney, 1994), and in the context of the bigram language
model (Odell et al., 1994; Renals & Hochberg, 1995; Alleva et al., 1996; Ortmanns et
al., 1996a).

5. Summary

This paper has presented a consistent and formal framework for the definition and
generation of word graphs for large-vocabulary continuous-speech recognition. It has
been shown that the resulting algorithm can be formulated as an extension of the single-
best one-pass dynamic programming algorithm and results in a very straightforward and
efficient implementation. In addition, we have used the so-called word pair ap-
proximation in the construction of word graphs and studied its viability in recognition
experiments. These experiments on the NAB’94 20 000-word task have demonstrated
that the word graph method in combination with the word pair approximation is able
to produce very high quality word graphs. When using a trigram language model, the
word graph method performed virtually as well as the fully integrated method, which
is less flexible and computationally much more expensive.

The work carried out at RWTH Aachen was in part supported by Philips Research Laboratories
Aachen.

References
Alleva, F., Huang, X. & Hwang, M.-Y. (1993). An improved search algorithm using incremental

knowledge for continuous speech recognition. Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, Minneapolis, MN, Vol. II, pp. 307–310.

Alleva, F., Huang, X. & Hwang, M.-Y. (1996). Improvements on the pronunciation prefix tree search
organization. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Atlanta, GA, pp. 133–136.

Antoniol, G., Brugnara, F., Cettolo, M. & Federico, M. (1995). Language model representations for
beam-search decoding. Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Detroit, MI, Vol. 1, pp. 588–591.

Aubert, X. & Ney, H. (1995). Large vocabulary continuous speech recognition using word graphs.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Detroit,
MI, pp. 49–52.

Aubert, X., Dugast, C., Ney, H. & Steinbiss, V. (1994). Large vocabulary continuous speech recognition of
Wall Street Journal corpus. Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Adelaide, Australia, Vol. II, pp. 129–132.

Baker, J. K. (1975). Stochastic modeling for automatic speech understanding. In Speech Recognition,
(D. R. Reddy, ed.) pp. 512–542. Academic Press, New York, NY.

Beyerlein, P. & Ullrich, M. (1995). Hamming distance approximation for a fast log-likelihood computation
for mixture densities. Proceedings of the European Conference on Speech Communication and
Technology, Madrid, Spain, pp. 1083–1086.

Bocchieri, E. (1993). Vector quantization for the efficient computation of continuous density likelihoods.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Minneapolis, MN, Vol. II, pp. 692–695.

Bridle, J. S., Brown, M. D. & Chamberlain, R. M. (1982). An algorithm for connected word recognition.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Paris,
France, pp. 899–902.

Cardin, R., Normandin, Y. & De Mori, R. (1992). High performance connected digit recognition using
codebook exponents. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, San Francisco, CA, Vol. I, pp. 505–508.

71A word graph algorithm for large vocabulary continuous speech recognition

Dugast, C., Kneser, R., Aubert, X., Ortmanns, S., Beulen, K. & Ney, H. (1995). Continuous speech
recognition tests and results for the NAB’94 corpus. Proceedings of the ARPA Spoken Language
Technology Workshop, Austin, TX, pp. 156–161.

Fissore, L., Giachin, E., Laface, P. & Massafra, P. (1993). Using grammars in forward and backward
search. Proceedings of the European Conference on Speech Communication and Technology, Berlin,
Germany, pp. 1525–1528.

Gauvain, J. L., Lamel, L. F., Adda, G. & Adda-Decker, M. (1994). The LIMSI speech dictation system:
evaluation on the ARPA Wall Street Journal task. Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, Adelaide, Australia, Vol. I, pp. 557–560.

Generet, M., Ney, H. & Wessel, F. (1995). Extensions of absolute discounting for language modeling.
Proceedings of the European Conference on Speech Communication and Technology, Madrid, Spain, pp.
1245–1248.

Haeb-Umbach, R. & Ney, H. (1994). Improvements in time-synchronous beam search for 10 000-word
continuous speech recognition. IEEE Transactions on Speech and Audio Processing, 2, 353–356.

Klatt, D. H. (1980). SCRIBER and LAFS: two new approaches to speech analysis. In Trends in Speech
Recognition (W. A. Lea, ed.), pp. 529–555. Prentice-Hall, Englewood Cliffs, NJ.

Klovstad, J. W. & Mondshein, L. F. (1975). The CASPERS linguistic analysis system. IEEE Transactions
on Acoustics, Speech and Signal Processing 23, 118–123.

Kubala, F., Anastasakos, A., Makhoul, J., Nguyen, L. & Schwartz, R. (1994). Comparative experiments
on large vocabulary speech recognition. Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, Adelaide, Australia, Vol. I, pp. 561–564.

Kuhn, R. & De Mori, R. (1990). A cache-based natural language model for speech recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12, 570–583.

Lee, C.-H., Giachin, E., Rabiner, L. R., Pieracini, R. & Rosenberg, A. E. (1992). Improved acoustic
modeling for large vocabulary continuous speech recognition. Computer Speech and Language, 6,
103–127.

Ljolje, A., Riley, M., Hindle, D. & Pereira, F. (1995). The AT&T 60 000 word speech-to-text system.
Proceedings of the ARPA Spoken Language Systems Technology Workshop, Austin, TX, pp. 162–165.

Lowerre, B. T. & Reddy, R. (1980). The HARPY speech understanding system. In Trends in Speech
Recognition (W. A. Lea, ed.), pp. 340–360. Prentice-Hall, Englewood Cliffs, NJ.

Murveit, H., Butzberger, J., Digalakis, V. & Weintraub, M. (1993). Large-vocabulary dictation using SRI’s
decipher speech recognition system: progressive-search techniques. Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Minneapolis, MN, Vol. II, pp.
319–322.

Ney, H. (1982). Connected utterance recognition using dynamic programming. Fortschritte der
Akustik—FASE/DAGA’82, Federation of Acoustic Societies of Europe/Deutsche Arbeitsgemeinschaft fuer
Akustik, Goettingen, Germany, pp. 915–918.

Ney, H. (1993). Search strategies for large-vocabulary continuous-speech recognition. NATO Advanced
Studies Institute, Bubion, Spain, June–July 1993. In Speech Recognition and Coding—New Advances
and Trends (A. J. Rubio Ayuso & J. M. Lopez Soler, eds.), pp. 210–225. Springer, Berlin.

Ney, H., Haeb-Umbach, R., Tran, B.-H. & Oerder, M. (1992a). Improvements in beam search for 10 000-
word continuous speech recognition. 1992 IEEE International Conference on Acoustics, Speech and
Signal Processing, San Francisco, CA, pp. 13–16.

Ney, H., Mergel, D., Noll, A. & Paeseler, A. (1992b). Data driven organization of the dynamic
programming beam search for continuous speech recognition. IEEE Transactions on Signal Processing,
SP-40, 272–281.

Odell, J. J., Valtchev, V., Woodland, P. C. & Young, S. J. (1994). A one-pass decoder design for large
vocabulary recognition. Proceedings of the ARPA Spoken Language Technology Workshop, Plainsboro,
NJ, pp. 405–410.

Oerder, M. & Ney, H. (1993). Word graphs: an efficient interface between continuous speech recognition
and language understanding. Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Minneapolis, MN, Vol. II, pp. 119–122.

Ortmanns, S. & Ney, H. (1995). Experimental analysis of the search space for 20 000-word speech
recognition. Fourth European Conference on Speech Communication and Technology, Madrid, Spain, pp.
901–904.

Ortmanns, S., Ney, H. & Eiden, A. (1996a). Language-model look-ahead for large vocabulary speech
recognition. Proceedings of the International Conference on Spoken Language Processing, Philadelphia,
PA, pp. 2095–2098.

Ortmanns, S., Ney, H., Seide, F. & Lindam, I. (1996b). A comparison of time conditioned and word
conditioned search techniques for large vocabulary speech recognition. Proceedings of the International
Conference on Spoken Language Processing, Philadelphia, PA, pp. 2091–2094.

Renals, S. & Hochberg, M. (1995). Efficient search using posterior phone probability estimates.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Detroit,
MI, Vol. 1, pp. 596–599.

72 S. Ortmanns et al.

Rosenfeld, R. (1995). The CMU statistical language modeling toolkit and its use in the 1994 ARPA CSR
evaluation. Proceedings of the ARPA Spoken Language Technology Workshop, Austin, TX, pp. 47–50.

Sakoe, H. (1979). Two-level DP matching—a dynamic programming-based pattern matching algorithm for
connected word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-27,
588–595.

Schwartz, R. & Austin, S. (1991). A comparison of several approximate algorithms for finding multiple
(N-best) sentence hypotheses. Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, Toronto, Canada, pp. 701–704.

Soong, F. K. & Huang, E.-F. (1991). A tree-trellis fast search for finding the N-best sentence hypotheses.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto,
Canada, pp. 705–708.

Steinbiss, V. (1991). A search organization for large vocabulary recognition based upon N-best decoding.
Proceedings of the 2nd European Conference on Speech Communication and Technology, Genova, Italy,
Vol. 3, pp. 1217–1220.

Steinbiss, V. (1992). Personal communication. Philips Research Laboratories, Aachen, Germany.
Steinbiss, V., Tran, B.-H. & Ney, H. (1994). Improvements in beam search. Proceedings of the International

Conference on Spoken Language Processing, Yokohama, Japan, pp. 2143–2146.
Vintsyuk, T. K. (1971). Elementwise recognition of continuous speech composed of words from a specified

dictionary. Cybernetics 7, 133–143.
Woodland, P. C., Odell, J. J., Valtech, V. & Young, S. J. (1994). Large vocabulary continuous speech

recognition using HTK. Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Adelaide, Australia, Vol. II, pp. 125–128.

(Received 24 July 1996 and accepted for publication 11 November 1996)

