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With the advent of essentially unlimited data storage capabili-
ties and with the proliferation of the use of the Internet, it becomes
reasonable to imagine a world in which it would be possible to
access any of the stored information at will with a few keystrokes
or voice commands. Since much of this data will be in the form
of speech from various sources, it becomes important to develop
the technologies necessary for indexing and browsing such audio
data. This paper describes some of the requisite speech and lan-
guage technologies that would be required and introduces an ef-
fort aimed at integrating these technologies into a system, called
Rough’n’Ready, which indexes speech data, creates a structural
summarization, and provides tools for browsing the stored data. The
technologies highlighted in this paper include speaker-independent
continuous speech recognition, speaker segmentation and identifi-
cation, name spotting, topic classification, story segmentation, and
information retrieval. The system automatically segments the con-
tinuous audio input stream by speaker, clusters audio segments from
the same speaker, identifies speakers known to the system, and tran-
scribes the spoken words. It also segments the input stream into sto-
ries, based on their topic content, and locates the names of persons,
places, and organizations. These structural features are stored in a
database and are used to construct highly selective search queries
for retrieving specific content from large audio archives.

Keywords—Audio browsing, audio indexing, information extrac-
tion, information retrieval, named-entity extraction, name spotting,
speaker change detection, speaker clustering, speaker identifica-
tion, speech recognition, story segmentation, topic classification.

I. INTRODUCTION

In a paper on how much information there is in the world,
M. Lesk, director of the Information and Intelligent Systems
division of the National Science Foundation, concludes: “So
in only a few years, we will be able to saveeverything—no

Manuscript received October 20, 1999; revised April 20, 2000. This work
was supported in part by DARPA and monitored by the Air Force Rome
Laboratory under Contract F30602-97-C-0253.

The authors are with BBN Technologies, Cambridge, MA 02138 USA
(e-mail: makhoul@bbn.com; fkubala@bbn.com; tleek@bbn.com; dliu@
bbn.com; lnguyen@bbn.com; schwartz@bbn.com; asrivast@bbn.com).

Publisher Item Identifier S 0018-9219(00)08102-0.

information will have to be thrown out—and the typical piece
of information will neverbe looked at by a human being.” [1]
Much of that information will be in the form of speech from
various sources: television, radio, telephone, meetings, pre-
sentations, etc. However, because of the difficulty of locating
informationinlargeaudioarchives,speechhasnotbeenvalued
as an archival source. But, after a decade or more of steady
advances in speech and language technologies, it is now pos-
sible to start building automatic content-based indexing and
retrieval tools, which, in time, will make speech recordings as
valuable as text has been as an archival resource.

This paper describes a number of speech and language
processing technologies that are needed in developing
powerful audio indexing systems. A prototype system
incorporating these technologies has been built for the
indexing and retrieval of broadcast news. The system,
dubbedRough’n’Ready, provides arough transcription of
the speech that isready for browsing. The technologies
incorporated in this system, and described in this paper,
include speaker-independent continuous speech recognition,
speaker segmentation, speaker clustering, speaker identifica-
tion, name spotting, topic classification, story segmentation,
and information (or story) retrieval. The integration of such
diverse technologies allows Rough’n’Ready to produce a
high-level structural summarization of the spoken language,
which allows for easy browsing of the data.

The system and approach reported in this paper is related
to several other multimedia indexing systems under devel-
opment today. The Informedia system at Carnegie-Mellon
University (CMU) [2]–[4] and the Broadcast News Navi-
gator at MITRE Corporation [5], [6], both have the ability
to automatically transcribe and time-align the audio signal in
broadcast news recordings and to locate proper names in the
transcript and retrieve the audio with information retrieval
techniques. The focus of both systems, however, is on fea-
tures of the video stream. These systems demonstrate that
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cues from the video are very effective in locating the bound-
aries between news stories. They also make extensive use of
the closed-captioned text that accompanies most television
news programming in the United States today.

Another multimedia system is being developed at CMU
for indexing and browsing meetings from video [7]. In
this domain, no closed-captioning is available, so there is
a stronger reliance on the automatic transcription. But the
video is also exploited to detect speaker changes and to
interpret gestures such as gaze direction and head/hand
movement.

The Rough’n’Ready system, in contrast, has focused
entirely on the linguistic content contained in the audio
signal and, thereby, derives all of its information from
the speech signal. This is a conscious choice designed to
channel all development effort toward effective extraction,
summarization, and display of information from audio. This
gives Rough’n’Ready a unique capability when speech is
the only knowledge source. Another salient feature of our
system is that all of the speech and language technologies
employed share a common statistical modeling paradigm
that facilitates the integration of various knowledge sources.

Section II presents the Rough’n’Ready system and
shows some of its indexing and browsing capabilities. The
remainder of the sections focus on the individual speech and
language technologies employed in the system. Section III
presents the basic statistical modeling paradigm that is
used extensively in the various technologies. Section IV
describes the speech recognition technology that is used
and Section V details the three types of speaker recognition
technologies: speaker segmentation, speaker clustering, and
speaker identification. The technologies presented in the
next sections all take as their input the text produced by the
speech recognition component. Sections VI–IX present the
following technologies in sequence: name spotting, topic
classification, story segmentation, and information retrieval.

II. I NDEXING AND BROWSING WITHROUGH’N’READY

A. Rough’n’Ready System

Thearchitectureof the Rough’n’Ready system [8] is shown
in Fig. 1. The overall system is composed of three subsys-
tems: indexer, server, and browser. The indexer subsystem is
shown in the figure as a cascade of technologies that takes a
single audio waveform as input and produces as output a com-
pact structural summarization encoded as an XML file that is
fed to the server. The duration of the input waveform can be
from minutes to hours long. The entire indexing process runs
in streaming mode in real-time on a dual 733-MHz Pentium
III processor. The system accepts continuous input and incre-
mentallyproducescontent index withanoutput latency of less
than 30 s with respect to the input.

The server has two functions: one is to collect and manage
the archive and the other is to interact with the browser.
The server receives the outputs from the indexer and adds
them incrementally to its existing audio archive. For each
audio session processed by the indexer, the audio waveform
is processed with standard MP3 compression and stored

on the server for later playback requests from the client
(the browser). The XML file containing the automatically
extracted features from the indexer is uploaded into a
relational database. Finally, all stories in the audio session
are indexed for rapid information retrieval.

The browser is the only part of the Rough’n’Ready system
with which the user interacts. Its main task is to send user
queries to the server and display the results in a meaningful
way. A variety of browsing, searching, and retrieving tools
are available for skimming an audio archive and finding in-
formation of interest. The browser is designed as a collection
of ActionX controls, which make it possible to run either as
a standalone application or embedded inside other applica-
tions, such as an Internet browser.

B. Indexing and Browsing

If we take a news broadcast and feed the audio into a
speaker-independent, continuous speech recognition system,
the output would be an undifferentiated sequence of words.
Fig. 2 shows the beginning of such an output for an episode of
a television news program (ABCsWorld News Tonightfrom
January 31, 1998).1 Even if this output did not contain any
recognition errors, it would be difficult to browse it and know
at a glance what this broadcast is about.

Now, compare Fig. 2 to Fig. 3, which is a screen shot
of the Rough’n’Ready browser showing some of the results
of the audio indexing component of the system when ap-
plied to the same broadcast. What was an undifferentiated
sequence of words has now been divided into paragraph-like
segments whose boundaries correspond to the boundaries be-
tween speakers, shown in the leftmost column. These bound-
aries are extracted automatically by the system. The speaker
segments have been identified by gender and clustered over
the whole half-hour episode to group together segments from
the same speaker under the same label. One speaker, Eliza-
beth Vargas, has been identified by name using a speaker-
specific acoustic model. These features of the audio episode
are derived by the system using the speaker segmentation,
clustering, and identification components.

The colored words in the middle column in Fig. 3 show
the names of people, places, and organizations—all impor-
tant content words—which were found automatically by the
name-spotting component of the system. Even though the
transcript contains speech recognition errors, the augmented
version shown here is easy to read and the gist of the story is
apparent with a minimum of effort.

Shown in the rightmost column of Fig. 3 is a set of topic la-
bels that have been automatically selected by the topic classi-
fication component of the system to describe the main themes
of the first story in the news broadcast. These topic labels are
drawn from a set of over 5500 possible topics known to the
system. The topic labels constitute a very high-level sum-
mary of the content of the underlying spoken language.

The topic labels shown in Fig. 3 are actually applied by
the system to a sliding window of words; then the resulting

1The data used in the various experiments reported in this paper are
available from the Linguistic Data Consortium, University of Pennsylvania,
http://www.ldc.upenn.edu/.
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Fig. 1. Distributed architecture of the Rough’n’Ready audio indexing and retrieval system.

Fig. 2. Transcription of aWorld News Tonightaudio broadcast as produced by the BBN Byblos
speech recognition system.

sequence of topic labels is used by the story segmentation
component of the system to divide the whole news broadcast
into a sequence of stories. The result of the story segmen-
tation for this episode is shown in Fig. 4, which is another
screen shot of the audio browser.

Breaking a continuous stream of spoken words into a se-
quence of bounded and labeled stories is a novel and pow-
erful capability that enables Rough’n’Ready to effectively
transform a large archive of audio recordings into a collec-
tion of document-like units. In the view of the browser shown

in Fig. 4, an audio archive consisting of 150 h of broadcast
news1 is organized as a collection of episodes from various
content producers. One particular episode (CNNHeadline
Newsfrom January 6, 1998) is expanded to show the se-
quence of stories detected by the system for this particular
episode. Each story is represented by a short list of topic la-
bels that were selected by the system to describe the themes
of the story. The net effect of this representation is that a
human can quickly get the gist of the contents of a news
broadcast from a small set of highly descriptive labels.
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Fig. 3. Elements of the automatic structural summarization produced by Rough’n’Ready from the
text that appears in Fig. 2. Speaker segmentation and identification is shown to the left; names of
people, places, and organizations are shown in color in the middle section; and topics relevant to the
story are shown to the right—all automatically extracted from the news broadcast.

Fig. 4. A high-level organization of an audio archive showing aHeadline Newsepisode as a sequence
of thematic stories, all extracted automatically from the news broadcast.

The first story in the expanded episode in Fig. 4 is about the
fatal skiing accident suffered by Sonny Bono. The three im-
portant themes for this story—skiing, accidents, and Sonny
Bono—have all been automatically identified by the system.
Justas important, thesystemrejectedallof theother5500topic
labels for this story, leaving only the concise list of four topic

labels shown here to describe the story. Note that the system
had never observed these topics together before in its training
set, for Bono died only once. Nonetheless, it was able to se-
lect this very informative and parsimonious list of topics from
a very large set of possibilities at the same time that it was seg-
menting thecontinuouswordstreamintoasequenceofstories.
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The entire audio archive of broadcast news is automat-
ically summarized in the same fashion as the expanded
episode shown in Fig. 4. This means that the archive can
be treated as a collection of textual documents that can be
navigated and searched with the same ease that we associate
with Internet search and retrieval operations. Every word
of the transcript and all of the structural features extracted
by the system are associated with a time offset within the
episode, which allows the original audio or video segment
to be retrieved from the archive on demand. The actual
segment to be retrieved can be easily scoped by the user as
a story, as one or more speaker segments, or as an arbitrary
span of consecutive words in the transcription. This gives
the user precise control over the segment to be retrieved.

We now turn to the main topic of this paper, which is a
description of the various speech and language technologies
employed in the Rough’n’Ready system, preceded by a brief
exposition of the general modeling paradigm for these tech-
nologies. The descriptions for more recent contributions are
provided in more detail than those that had been under de-
velopment for many years.

III. STATISTICAL MODELING PARADIGM

The technologies described in this paper follow the same
statistical modeling paradigm shown in Fig. 5. There are two
parts to the system: training and recognition. Given some sta-
tistical model of the data of interest, the recognition part of
the system first analyzes the input data into a sequence of fea-
tures, or feature vectors, and then performs a search for that
output sequence that maximizes the probability of the output
sequence, given the sequence of features. In other words, the
output is chosen to maximize outputinput model , the
probability of the output, given the input and the statistical
model. The training program estimates the parameters of the
statistical model from a corpus of analyzed training data and
the corresponding ground truth (i.e., the desired recognized
sequence for that data). The statistical model itself is speci-
fied by the technology developer.

Some of the properties of this approach are as follows.

1) A rigorous probabilistic formalism, which allows for
the integration of information from different knowl-
edge sources by combining their probabilities.

2) Automatic training algorithms for the estimation of
model parameters from a corpus ofannotatedtraining
data (annotation is the process of providing ground
truth). Furthermore, the annotation is affordable, re-
quiring only domain knowledge, and can be performed
by students or interns.

3) Language-independent training and recognition,
requiring only annotated training data from a new
language. The training and recognition components
generally remain the same across languages.

4) State-of-the-art performance.
5) Robust in the face of degraded input.

We will see below how this paradigm is put to work in the
different technologies.

Fig. 5. The statistical modeling paradigm employed in the speech
and language technologies presented in this paper.

IV. SPEECHRECOGNITION

Automatic transcription of broadcast news is a chal-
lenging speech recognition problem because of frequent and
unpredictable changes that occur in speaker, speaking style,
topic, channel, and background conditions. The transcription
in Rough’n’Ready is created by the BBN Byblos large-vo-
cabulary speaker-independent speech recognition system
[9]. Over the course of several years of participation in the
DARPA Broadcast News evaluations, the Byblos system
has evolved into a robust state-of-the-art speech recognition
system capable of transcribing real-life broadcast news
audio data [10].

The Byblos system follows the statistical paradigm in
Fig. 5. In the analysis part, the system computes mel-warped
cepstral coefficients every 10 ms, resulting in a feature vector
of 15 coefficients as a function of time. To deal effectively
with the continuous stream of speech in broadcast news,
the data are divided into manageable segments that may
depend on speaker or channel characteristics (wide-band
for the announcer’s speech or narrow-band for telephone
speech). Segmentation based on speaker, described in the
next section, is followed by further segmentation based on
detected pauses [11].

The overall statistical model has two parts: acoustic
models and language models. The acoustic models, which
describe the time-varying evolution of feature vectors
for each sound or phoneme, employ continuous-density
hidden Markov models (HMMs) [12] to model each of the
phonemes in the various phonetic contexts. The context of
a phoneme model can extend to as many as two preceding
and following phonemes. Weighted mixtures of Gaussian
densities—the so-called Gaussian mixture models—are
used to model the probability densities of the cepstral
feature vectors for each of the HMM states. If desired, the
models can be made gender-dependent and channel-spe-
cific, and can also be configured to capture within-word and
cross-word contexts. To deal specifically with the acoustics
of spontaneous speech, which is prevalent in broadcast news,
algorithms are developed that accommodate pronunciations
typical of spontaneous speech—including those of very
short duration—as well as special acoustic models for pause
fillers and nonspeech events, such as music, silence/noise,
laughter, breath, and lip-smack [13].
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The language models used in the system are-gram lan-
guage models [14], where the probability of each word is a
function of the previous word (for a bigram language model)
or the previous two words (for a trigram language model).
Higher order models typically result in higher recognition
accuracy, but at a slower speed and with larger storage re-
quirements.

To find the best scoring word sequence, the Byblos system
employs a multipass recognition search strategy [15], [16]
that always starts with an approximate but fast initial forward
pass—thefast-matchpass—which narrows the search space,
followed by other passes that use progressively more accu-
rate models that operate on the smaller search space, thus re-
ducing the overall computational cost. For Rough’n’Ready,
the system employs two passes after the fast-match pass: the
first is a backward pass (from the end of an utterance to the
beginning), which generates a list of the top-scoringN-best
word-sequence hypotheses (N is typically anywhere between
100 and 300), and the last pass performs a restoring of the
N-best sequence, as described below. The final top-scoring
word sequence is given as the recognized output.

The fast-match pass, which is performed from the be-
ginning to the end of each utterance, is a time-synchronous
search that uses the Single-Phonetic-Tree algorithm [17]
with a robust phonetically tied mixture (PTM) acoustic
model and an approximate word bigram language model.
The output is a word graph with word ending times that
are used to guide the next pass. In a PTM acoustic model,
all states of the HMMs of all context-dependent models of
a phoneme are tied together, sharing a Gaussian mixture
density of 256 components; only the mixture weights vary
across states. TheN-best generation pass with a trace-
back-based algorithm [16] uses a more accurate within-word
state-clustered tied-mixture (SCTM) acoustic model and
a word trigram language model. Corresponding states of
the HMMs of all models of a phoneme are clustered into a
number of clusters sharing a mixture density of 64 Gaussian
components. A typical SCTM system usually uses about
3000 such clusters. The final pass rescores theN-best
hypotheses using a cross-word SCTM acoustic model and
a word trigram language model and then selects the most
likely hypothesis as the recognition output.

Unsupervised adaptation of the Byblos system to each
speaker can be performed to improve recognition accuracy.
The process requires the detection of speaker-change bound-
aries. The next section describes the speaker segmentation
used in the Rough’n’Ready system to compute those bound-
aries. The adaptation performed in Byblos is based on the
maximum-likelihood linear regression (MLLR) approach
developed at the University of Cambridge [18].

In practical applications, such as Rough’n’Ready, it is im-
portant that the speech transcription be performed as fast as
possible. In addition to the search strategy described above,
further speedups have been necessary to bring the compu-
tation down to real-time. Major speedup algorithms in the
last few years include Fast Gaussian Computation (FGC),
Grammar Spreading, and-Best Tree Rescoring [19].

Since the number of Gaussians associated with each HMM
state is very large (typically around 250 000), Gaussian com-
putation is a major bottleneck. Byblos’ FGC implementation
is a variation of a decision-based FGC developed at IBM
[20]. Conceptually, the whole acoustic space can be parti-
tioned through a decision tree into smaller regions such that,
for each region, and for any codebook of Gaussians, there
is only a short list of Gaussians that can cover that region.
During recognition, the decision tree is used to determine the
small acoustic region that corresponds to each input feature
vector, where only a few Gaussians are used to calculate the
likelihood. FGC speeds up the fast-match by a factor of three
and theN-best generation by a factor of 2.5, with almost no
loss in accuracy.

Beam search algorithms can be tuned to run very fast
by narrowing the beams. However, aggressive narrow
beams can often prematurely prune out correct theories at
word boundaries due to the sudden change in likelihood
scores caused by the language model score applied at these
boundaries. To ameliorate this effect, we have developed
an algorithm that “spreads” the language model probabil-
ities across all the phonemes of a word to eliminate these
large score spikes [19]. When the decoder is at a word
boundary transition, say, from to , instead of using the
bigram probability , we use the probability ratio

. Then we compensate for the division
by by multiplying the scores between phone–phone
transitions in by , where is the number of
phones in . We call this process “grammar spreading,”
and we find that it allows us to use a much narrower beam
in the backward pass, thus saving a factor of two in compu-
tation with no loss in accuracy.

Finally, the N-best rescoring pass is also sped up by a
factor of two by using a Tree Rescoring algorithm [19] in
which all N hypotheses are arranged as a tree to be rescored
concurrently to eliminate redundant computation.

When we run Byblos on a 450-MHz Pentium II processor
at three times real-time (3 RT), the word error rate on the
DARPA Broadcast News test data, using a 60 000-word vo-
cabulary, is 21.4%. The error rate decreases to 17.5% at 10

RT and to 14.8% for the system running at 230RT [10].

V. SPEAKER RECOGNITION

One of the major advantages of having the actual audio
signal available is the potential for recognizing the sequence
of speakers. There are three consecutive components to the
speaker recognition problem: speaker segmentation, speaker
clustering, and speaker identification. Speaker segmentation
segregates audio streams based on the speaker; speaker clus-
tering groups together audio segments that are from the same
speaker; and speaker identification recognizes those speakers
of interest whose voices are known to the system. We de-
scribe each of the three components below.

A. Speaker Segmentation

The goal of speaker segmentation is to locate all the
boundaries between speakers in the audio signal. This is a
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difficult problem in broadcast news because of the presence
of background music, noise, and variable channel condi-
tions. Accurate detection of speaker boundaries provides the
speech recognizer with input segments that are each from
a single speaker, which enables speaker normalization and
adaptation techniques to be used effectively on one speaker
at a time. Furthermore, speaker change boundaries break
the continuous stream of words from the recognizer into
paragraph-like units that are often homogeneous in topic.

We have developed a novel two-stage approach to speaker
change detection [21]. The first stage detects speech/non-
speech boundaries (note from Fig. 1 that, at this point in the
system, speech recognition has not taken place yet), while
the second stage performs the actual speaker segmentation
within the speech segments. Locating nonspeech frames re-
liably is important since 80% of the speaker boundaries in
broadcast news occur within nonspeech intervals.

To detect speech/nonspeech boundaries, we perform a
coarse and very fast gender-independent phoneme recogni-
tion pass of the input. We collapse the phoneme inventory
into three broad classes (vowels, fricatives, and obstruents),
and we include five different models for typical nonspeech
phenomena (music, silence/noise, laughter, breath, and
lip-smack). Each phone class is modeled with a five-state
HMM and mixtures of 64 Gaussian densities. The model
parameters are estimated reliably from only 20 h of acoustic
data. The resulting recognizer performs the speech/non-
speech detection at each frame of the input reliably over
90% of the time.

The second stage performs the actual speaker segmenta-
tion by hypothesizing a speaker change boundary at every
phone boundary that was located in the first stage. The time
resolution at the phone level permits the algorithm to run
very quickly while maintaining the same accuracy as hy-
pothesizing a boundary at every frame. The speaker change
decision takes the form of a likelihood ratio test where the
null hypothesis is that the adjacent segments are produced
from the same underlying distribution. Given two segments

and
with feature vectors and , respectively, we assume that

and were produced by Gaussian processes. Since the
means of the two segments are quite sensitive to background
effects, we only use the covariances for the generalized like-
lihood ratio, which takes the form [22]

(1)

where is the union of and and is the maximum-
likelihood estimate of the covariance matrix for each of the
processes. It is usually the case that the more data we have
for estimating the Gaussians, the higheris [22]. To alleviate
this bias, a normalization factor is introduced, so the ratio test
changes to

(2)

where is determined empirically and is usually greater
than one. This normalized likelihood ratio is similar to the
Bayesian information criterion used in [23]. However, in
our case, we can make use of the extra knowledge that a
speaker change is more likely to happen during a nonspeech
interval in order to enhance our decision making. The final
test, therefore, takes the following form.

1) During nonspeech regions: if , then the seg-
ments and are deemed to be from the same speaker,
otherwise not, where is a threshold that is adjusted
such that the sum of false acceptance and false rejec-
tion errors is a minimum.

2) During speech regions: the test changes to
, where is a positive threshold that is adjusted

in the same manner as in 1).is introduced to bias the
placement of the speech/nonspeech boundary toward
the nonspeech region so that the boundary is less likely
to break up words.

We implemented a sequential procedure that increments
the speaker segments one phone at a time and hypothesizes
speaker changes at each phone boundary using the algorithm
given above. The procedure is nearly causal, with a look-
ahead of only 2 s, enough to get sufficient data for the detec-
tion. The result of this procedure when applied to the DARPA
Broadcast News test was to find 72% of the speaker changes
within 100 ms of the correct boundaries (about the duration
of one phoneme), with a false acceptance rate of 20%. Most
of the missed boundaries were brief greetings or interjections
such as “good morning” or “thanks,” while most of the false
acceptances were during nonspeech periods and, therefore,
inconsequential.

B. Speaker Clustering

The goal of speaker clustering is to identify all segments
from the same speaker in a single broadcast or episode and
assign them a unique label; it is a form of unsupervised
speaker identification. The problem is difficult in broadcast
news because of the extreme variability of the signal and
because the true number of speakers can vary so widely (on
the order of 1–100). We have found an acceptable solution to
this problem using a bottom-up (agglomerative) clustering
approach [24], with the total number of clusters produced
being controlled by a penalty that is a function of the number
of clusters hypothesized.

The feature vectors in each speaker segment are modeled
by a single Gaussian. The likelihood ratio test in (1) is used
repeatedly to group cluster pairs that are deemed most similar
until all segments are grouped into one cluster and a complete
cluster tree is generated. At each turn in the procedure, and
for each cluster, a new Gaussian model is estimated for that
cluster [25]. The speaker clustering problem now reduces to
finding that cut of the cluster tree that is optimal based on
some criterion. The criterion we choose to minimize is the
sum of two terms

(3)

1344 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000



where is the number of clusters for any particular cut of
the tree and is the number of feature vectors in cluster
. The first term in (3) is the logarithm of the determinant

of the within-cluster dispersion matrix [24], and the second
term is a regularization or penalty term that compensates for
the fact that the determinant of the dispersion matrix is a
monotonically decreasing function of. The final clustering
is that cut of the cluster tree that minimizes (3). The value
of is determined empirically to optimize performance; it is
usually in the range .

This algorithm has proved effective over a very wide range
of news broadcasts. It performs well regardless of the true
numbers of speakers in the episode, producing clusters of
high purity. The cluster purity, which is defined as the per-
centage of frames that are correctly clustered, was measured
to be 95.8%.

C. Speaker Identification

Every speaker cluster created in the speaker clustering
stage is identified by gender. A Gaussian mixture model for
each gender is estimated from a large sample of training
data that has been partitioned by gender. The gender of a
speaker segment is then determined by computing the log
likelihood ratio between the male and female models. This
approach has resulted in a 2.3% error in gender detection.

In addition to gender, the system can identify a specific
target speaker if given approximately one minute of speech
from the speaker. Again, a Gaussian mixture model is esti-
mated from the training data and is used to identify segments
of speech from the target speaker using the approach detailed
in [26]. Any number of target models can be constructed and
used simultaneously in the system to identify the speakers.
To make their labeling decisions, the set of target models
compete with a speaker-independentcohortmodel that is es-
timated from the speech of hundreds of speakers. Each of
the target speaker models is adapted from the speaker-inde-
pendent model. To ameliorate the effects of channel changes
for the different speakers, cepstral mean subtraction is per-
formed for each speaker segment whereby the mean of the
feature vectors is removed before modeling.

In the DARPA Broadcast News corpus, 20% of the
speaker segments are from 20 known speakers. Therefore,
the speaker identification problem here is what is known as
an open setproblem in that the data contains both known
and unknown speakers and the system has to determine
the identity of the known-speaker segments and reject the
unknown-speaker segments. Using the above approach, our
system resulted in the following three types of errors: a false
identification rate of 0.1%, where a known-speaker segment
was mistaken to be from another known speaker; a false
rejection rate of 3.0%, where a known-speaker segment
was classified as unknown; and a false acceptance rate of
0.8%, where an unknown-speaker segment was classified as
coming from one of the known speakers.

VI. NAME SPOTTING

The objective of name spotting in Rough’n’Ready is to
extract important terms from the speech and collect them
in a database. Currently, the system locates names of per-
sons, places, and organizations. Most of the previous work
in this area has considered only text sources of written lan-
guage and has concentrated on the design of rule-driven algo-
rithms to locate the names. Extraction from automatic tran-
scriptions of spoken language is more difficult than written
text due to the absence of capitalization, punctuation, and
sentence boundaries, as well as the presence of recognition
errors. These have significant degrading effects on the perfor-
mance of rule-driven systems. To overcome these problems,
we have developed an HMM-based name extraction system
called IdentiFinder [27]. The technique requires only that we
provide training text with the type and location of the named
entities marked. The system has the additional advantage that
it is easily ported to other languages, requiring only a set of
annotated training data from a new language.

The name spotting problem is illustrated in Fig. 6. The
names of people (Michael Rose, Radovan Karadzic) are in
bold; places (Bosnia, Pale, Sarajevo) are underlined; and or-
ganizations (U.N.) are in italics. We are required to find all
three sets of names but classify all others as general language
(GL).

Fig. 7 shows the hidden Markov language model used by
IdentiFinder to model the text for each type of named entity.
The model consists of one state for each of the three named
entities plus one state (GL) for all other words in the text,
with transitions from each state to every other state. Asso-
ciated with each of the states is a bigram statistical model
on all words in the vocabulary—a different bigram model is
estimated for each of the states. By thinking of this as a gen-
erative model that generates all the words in the text, most
of the time we are in the GL state emitting general-language
words. We then transition to one of the named-entity states
if we want to generate a name; we stay inside the state gen-
erating the words for that name. Then, we either transition
to another named-entity state or, more likely, back to the GL
state. The decision to emit each word or to transition to an-
other state depends on the previous word and the previous
state. In this way the model uses context to help detect and
classify names. For example, the word “Mr.” in the GL state
is likely to be followed by a transition to the PERSON state.
After the person’s name is generated, a transition to the GL
state is likely and general words like “said” or “departed”
may follow. These context-dependent effects are included in
our model.

The parameters of the model in Fig. 7 are estimated auto-
matically from annotated training data, where the three sets
of named entities are marked in the text. Then, given a test
sample, the model is used to estimate the probability of each
word’s belonging to one of the three named entities or to
none. We then use the Viterbi algorithm [28] to find the most
likely sequence of states to account for the text. The result is
the answer for the sequence of named entities.
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Fig. 6. A sentence demonstrating three types of named entities: people (Michael Rose, Radovan
Karadzic), locations (Bosnia, Pale, Sarajevo), and organizations (U.N.).

Fig. 7. The hidden Markov model used by IdentiFinder for name
finding. Each of the states includes a statistical bigram language
model of all the words in the vocabulary.

Since our system has been trained on only 1 million words
of annotated data from broadcast news, many of the words in
an independent test set will be unknown to the name-spotting
system, even though they might be known to the speech rec-
ognizer. (Words that are not known to the speech recognizer
will be recognized incorrectly as one of the existing words
and will, of course, cause performance degradation, as we
shall see below.) It is important to deal with the unknown
word problem since some of those words will be among the
desired named entities and we would like the system to spot
them even though they were not seen before by the training
component. During training, we divide the training data in
half. In each half we replace every string that does not ap-
pear in the other half with the string “UNKNOWN.” We then
are able to estimate all the probabilities involving unknown
words. The probabilities for known words are estimated from
all of the data. During the testing phase, we replace any string
that is unknown to the name spotting system by the label
“UNKNOWN” and are then able to find the best matching
sequence of states. We have found that by making proper use
of context, many of the names that were not known to the
name-spotting system are labeled correctly by the system.

One advantage of our approach to information extraction
is the ease with which we can learn the statistics for different
styles of text. For example, let us say we want the system
to work on text without case information (i.e., the text is
displayed as either all lower case or all upper case). It is a
simple matter to remove the case information from our an-
notated text and then reestimate the models. If we want to use
IdentiFinder on the output of a speech recognizer, we expect
that the text will not only be caseless but will also have no
punctuation. In addition, there will be no abbreviations, and
numeric values will be spelled out (e.g., TWENTY FOUR
rather than 24). Again, we can easily simulate this effect on
our annotated text in order to learn a model of text output

from a speech recognizer. Of course, given annotated data
from a new language, it is a simple matter to train the same
system to recognize named entities in that language.

We have performed several experiments to measure the
performance of IdentiFinder in finding names. In addition,
we have measured the degradation when case and punctua-
tion information is lost, or when faced with errors from auto-
matic speech recognition. In measuring the accuracy of the
system, both the type of named entity and the span of the
corresponding words in the text are taken into consideration.
We measure theslot error rate—where the type and span of a
name is each counted as a separate slot—by dividing the total
number of errors in named entities (substitutions, deletions,
and insertions) by the total number of true named entities in
the reference answers [29].

In a test from the DARPA Broadcast News corpus,1 where
the number of types of named entities was seven (rather than
the three used by Rough’n’Ready), IdentiFinder obtained a
slot error rate of 11.4% for text with mixed case and punctu-
ation. When all case and punctuation were removed, the slot
error rate increased to only 16.5%.

In recent DARPA evaluations on name spotting with
speech input, again with seven classes of names, the slot
error rate for the output of the Byblos speech recognizer was
26.7% with a speech recognition word error rate of 14.7%
[30]. When all recognition errors were corrected, without
adding any case or punctuation information, the slot error
rate decreased to 14.1%. In general, we have found that the
named-entity slot error rate increases linearly with the word
error rate in approximately a one-to-one fashion.

VII. T OPIC CLASSIFICATION

Much work has been done in topic classification, where
the models for the different topics are estimated indepen-
dently, even if multiple topics are assigned to each document.
One notable exception is the work of Yang and Chute [31],
who, as part of their model, take into consideration the fact
that multiple simultaneous topics are usually associated with
each document. Our approach to topic classification is sim-
ilar in spirit to that of Yang and Chute, except that we use
a Bayesian framework [32] instead of a distance-based ap-
proach. Our topic classification component, called OnTopic,
is a probabilistic HMM whose parameters are estimated from
training samples of documents with given topic labels, where
the topic labels number in the thousands. The model allows
each word in the document to contribute different amounts
to each of the topics assigned to the document. The output
from OnTopic is a rank-ordered list of all possible topics and
corresponding scores for any given document.
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Fig. 8. The hidden Markov model used in OnTopic to model the
set of topics in a story. The model is capable of assigning several
topics to each story, where the topics can number in the thousands.

A. The Model

We choose the set of topics that corresponds to a given
document such that the posterior probability is
maximized

(4)

For the purpose of ranking the sets of topics, can be
ignored. The prior probability is really the joint prob-
ability of a document having all the labels in the set, which
can be approximated using topic co-occurrence probabilities

(5)

where is the number of topics in and the exponent
serves to place on similar footing topic sets of different sizes.

is estimated by taking the product of the max-
imum-likelihood estimates of and . The
former is estimated as the fraction of those documents with

as a topic that also have as a topic, and the latter is
estimated as the fraction of documents with as a topic.

What remains to be computed is Set , the conditional
probability of the words in the document, given that the docu-
ment is labeled with all the topics inSet. We model this proba-
bility with an HMM consisting of a state for each of the topics
in the set, plus one additional topic state, GL, as shown in
Fig. 8. The model “generates” the words in the document one
by one, first choosing a topic distribution from which to draw
the next word, according to Set , then choosing a word
according to , then choosing another topic distribu-
tion to draw from, etc. The formula for Set is, therefore

Set

Set

Set (6)

where varies over the set of words in the document. The ele-
ments of the above equation are estimated from training data
as described below.

B. Estimating HMM Parameters

We use a biased form of the Expectation-Maximization
(EM) algorithm [33] to find good estimates for the transi-
tion probabilities and the emission probabilities

in the HMM in Fig. 8. The transition probabilities
are defined by

which can be estimated as

Set

(7)
where

(8)

is the bias term, is the number of words in the document
, and

Set

Set

Set

(9)

is the fraction of the counts for in that
are accounted for by , given the current set of parameters
in the generative model; is the number of times that
word appears in the document; and is an indicator
function returning one if its predicate is true and zero other-
wise. The bias term is needed to bias the observations toward
the GL state; otherwise, the EM algorithm would result in a
zero transition probability to the GL state [31]. The effect of
the bias is that the transition and emission probabilities for
topic will be set such that this topic accounts for a frac-
tion of the words in the corpus roughly equal to .
The emission probabilities are then estimated from

(10)

C. Classification

To perform classification for a given document, we need to
find the set of topics that maximizes (4). But the total number
of all possible sets is , which is a very large number
if the number of possible topics is in the thousands. Since
scoring such a large number of possibilities is prohibitive
computationally, we employ a two-pass approach. In the first
pass, we select a small set of topics that are likely to be in the
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Fig. 9. Performance of OnTopic’s classification algorithm on broadcast news when the top-N scoring
topics are matched against what the human annotators recorded for each story. The top curve shows
the performance when at least one of theN topics matches one of the annotator’s topics. Theprecision
andrecall curves score allN topics against all of the annotator’s topics.

best set. In the second pass, we score all sets of these can-
didates using (4). We select candidate topics in the first pass
by scoring each topic independently, as if it were a complete
set on its own, using a slight modification of (4)

Set (11)

where is zero if and otherwise, and serves to
filter out the effect of words in documents that constitute neg-
ative evidence for a topic. The parameterhas been intro-
duced to balance the prior against the generative model and
is optimized from training data. The parameteris there to
flatten (if less than one) or sharpen (if greater than one) the
transition probability distribution, in order to compensate for
the independence assumption over words in the document.

D. Experiments

We applied the two-pass procedure of the OnTopic clas-
sifier described above to a corpus of broadcast news sto-
ries, transcribed and annotated by Primary Source Media. For
each story, the annotators gave a number of topic labels that
they thought represented the topics in the story. The number
of topics for each story was anywhere between one and 13,
with an average of 4.5 topics per story. The corpus was di-
vided into one year, or 42 502 stories, for training, and one
month, or 989 stories, for test. The training set contained a
total of 4627 unique topic labels.

Measuring the performance of our system against what
the human annotators wrote down as the topic labels is not
straightforward, because our system gives an ordered list of
all topics, each with a score, while the annotators have a
small, unordered list of topics for each story. Fig. 9 shows
different reasonable ways of measuring performance. The
abscissa of the figure shows the numberof top-ranking
topics provided by the system. For each value of, we com-
pare the top- topics produced by the system against the
set of topics generated by the annotators. The comparison is

done in two ways. The at-least-one-correct curve shows the
fraction of stories for which at least one of the toptopic
labels for each story was included in the annotations for that
story. Clearly, that fraction increases with increasing. We
see, for example, that the top scoring topic was deemed cor-
rect 76% of the time. In the second method of comparison,
we compare all top topics generated by the system against
the set of annotated topics and count how many are the same,
then we measureprecisionandrecall. Precisionis the frac-
tion of topics that the system got correct (i.e., matched
the human annotators) andrecall is the fraction of the topics
generated by the annotators that the system got correct. As
usual, precision decreases as recall increases.

We have indications that the criteria we have adopted for
measuring the performance of our system may be less for-
giving than necessary. Topic annotation is not an easy task
when the number of topics is large; people tend to undergen-
erate labels for documents because it is difficult to remember
so many topics. Upon informal examination of stories for
which the top scoring topic was not included in the list given
by the annotators, we often found that the topic given by the
computer was quite reasonable for the story.

While it is possible to apply OnTopic to any segment of
broadcast news (e.g., for every speaker segment), for the pur-
pose of indexing, it would be even more useful to use topic
classification as a means to finding story boundaries. This is
the subject of the next section.

VIII. STORY SEGMENTATION

Story segmentation turns the continuous stream of spoken
words into document-like units with a coherent set of topic
labels assigned to each story. In Rough’n’Ready, we apply
OnTopic to overlapping data windows of 200-words span,
with a step size of four words between successive windows.
For each data window, and for each topic of the 5500 topics
known to the system, we compute the log probability of the
topic given the words in the window. The list of 5500 such
topic scores for each data window is pruned automatically to
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Fig. 10. The story segmentation component first chooses a few top scoring topics for each 200-word
data window on a sliding basis every four words. Shown above are the chosen topics as the window
passes across two stories, one abouthurricanesand the other aboutstocks.

preserve only the top scoring (i.e., the most relevant) topics
for that data window, as follows. We assume that the scores
of the top scoring 100 topics are drawn from a Gaussian
process, and we choose as our pruned list those topics that
lie above twice the standard deviation from the mean score.
The result of this process is depicted in Fig. 10, which shows
the results of the topic pruning process during a transition
from one story abouthurricanesto another aboutstocks.

The challenge now is to locate the boundary between sto-
ries. We define atopic windowas the aggregate of 50 con-
secutive pruned topic lists, and we computetopic persistence
as the number of occurrences of each topic label found in
a topic window. We then measure themaximum-persistence
score as the largest persistence found for any topic in a given
topic window. Fig. 11 shows the maximum-persistence score
as a function of topic window across an episode. The max-
imum value of 50 is typically reached during regions that are
within the same story. The vertical dashed lines in Fig. 11
show the true boundaries between different stories. By set-
ting a threshold of 90% of the maximum, as shown by the
horizontal line in Fig. 11, we can narrow the search for the
story boundaries to the regions below the threshold.

The story boundaries are then located more precisely by
taking note of the locations oftopic support wordswithin
the text. Topic support words (or keywords) are those words
in a topic window that contribute to the score of one of the
surviving topics for the putative story. We observe that only
about 6%–8% of the words in a story provide support for any
of the topic labels assigned to a story. We also observe that
the support words are most often easily separable into two
groups whenever they span a true story boundary. One group
supports the topics identified in the preceding story and the
other supports topics in the succeeding story. We exploit this
effect to automatically locate the story boundaries occurring
between stable topic regions. We also constrain the boundary
decision to prefer a nearby speaker boundary and to avoid
splitting names. Further details are provided in [34].

The performance of the story segmentation procedure
was tested on a test corpus consisting of 105 episodes with
a total of 966 stories. Given a 50-word tolerance, the story

Fig. 11. A plot of persistence as a function of topic window
number for a broadcast news episode. The high persistence regions
are ones where the set of topics chosen are uniform; the persistence
dips across story boundaries. The vertical dashed lines show the
true story boundaries.

segmentation procedure correctly detected 77% of the true
boundaries and had a false acceptance of 90%, i.e., for every
true boundary, approximately two boundaries were found on
the average by the segmentation procedure. Longer stories,
in which the topics drift, tended to be subdivided by our
procedure and this is why the false acceptance was high.
Note that, for indexing and retrieval purposes, such a high
false acceptance rate is of little consequence. Fig. 4 shows an
example of the results of story segmentation on one episode
of broadcast news.

IX. I NFORMATION RETRIEVAL

The Rough’n’Ready browser is capable of retrieving
stories of interest based on speakers, topics, and/or names
of people, places, and organizations. Another capability of
the browser is to retrieve stories that are similar to a given
story of interest. To perform this task, we employ a novel
information retrieval (IR) system, called Golden Retriever
[35]. Information indexing and retrieval take place on the
Rough’n’Ready server. Whenever a new episode is processed
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by the indexer, a new retrieval index is generated over the
entire archive of indexed stories. The browser gives the user
a powerful query-by-example capability whereby an entire
news story is submitted to the Golden Retriever search engine
as a query to find all similar stories in a large audio archive.
This provides an effective means for a user to find related
passages once a single example of interest has been found.
This capability makes valuable use of the topic classification
and story segmentation capabilities described above.

Golden Retriever is a novel probabilistic HMM-based IR
system that computes the probability that a document is rel-
evant, given a query, and ranks all documents in the collec-
tion based on this measure. Our approach to IR mirrors our
topic classification work; we allow a corpus of examples to
drive our selection of models and our estimation procedures.
The corpus consists of a set of documents, a set of natural
language queries (tens of words), and a number of relevance
judgments that state whether each document is relevant to the
query or not. Human annotators make the relevance judge-
ments on some significant sampling of the corpus of docu-
ments for each query. We build a statistical model capable of
ranking training documents effectively by their labeled rele-
vance to given training queries.

A. A Bayesian Model for IR

Given a query, it seems sensible to rank the documents in
a corpus by their probability of being relevant [36]. In other
words, we want to use as our document ranking function the
posterior probability , the probability that the
document is relevant, given query . We again use Bayes’
rule to decompose the posterior probability

(12)

is the prior probability of a document’s being rele-
vant to any query. Currently, we assume that this prior is uni-
form, although, in principle, we can make the prior a function
of document features. is simply the prior probability
of the query’s being posed in the first place. As this quantity
does not alter the document ranking, we can safely ignore it.
What is left is the conditional probability of the query being
posed, under the hypothesis that the document is relevant,

. We model this remaining quantity with a dis-
crete HMM that is dependent on the document. This will be
a generative model where we think of the document HMM
as generating the query. The parameters of the HMM should
be estimated in such a way as to make it more likely that a
document will generate a query to which it is relevant than a
query to which it is not relevant.

A simple formulation of the requisite HMM has just two
states, as shown in Fig. 12. The state labeled “D” represents
the option of generating query words by drawing words di-
rectly from the document. The state labeled “GL” represents
choosing words from general language, i.e., without regard
to the document. Most queries contain words that are present
in relevant documents, but all queries contain many general
words that are not really part of the specification of relevant
documents.

Fig. 12. A hidden Markov model for a single document for the
Golden Retriever information retrieval component. This generative
model assumes that the query is generated by a model comprising
two states, one for the document and another for general language.

B. Training the IR HMM

The parameters of the HMM are the transition probability
and the emission probabilities for each of the words in each

state. In principle, we would like to estimate these parame-
ters from examples using the EM algorithm. In practice, how-
ever, we find that we do not have enough training examples
to find good estimates for the emission probabilities. So we
set the emission probabilities for the D and GL states to be
the unigram distributions of the words in the document and
the whole corpus, respectively. Further, we set the transition
probabilities to be the samefor all documents, and we esti-
mate using the EM algorithm. We found that was
the value to which EM converged.

C. Performance

We have tested this simple two-state HMM on the Text
Retrieval Conference (TREC-7) corpus, which consists of
528 155 documents [35]. We preprocess the corpus lightly in
order to split documents up into words and to allow morpho-
logically similar words to match. The stream of characters in
each document gets tokenized into words. Then we conflate
terms by applying Porter’s stemming algorithm [37]. Next,
we discard anything found in a list of 400 “stop” words. Fi-
nally, numeric and nonword items are reduced to single to-
kens (“NUMBER,” “DOLLAR,” etc.).

The test comprised 50 queries with an average of 57.6
words per query. Each query was preprocessed in the same
manner described above for the documents. Then, for each
query, we compute (12) for each of the documents. The result
is that the top scoring document for each query was found to
be relevant 78% of the time.

The simple model described above has been extended
by adding more states with different query term-generating
mechanisms (e.g., synonyms, bigrams, topics, unsupervised
relevance feedback), and by the inclusion of document
priors, resulting in higher performance [38].

X. FUTURE DIRECTIONS

This paper focused on the speech and language technolo-
gies that are needed for the indexing and browsing of audio
data. State-of-the-art technologies have been integrated in a
system, Rough’n’Ready, that automatically takes the audio
stream and extracts a structural summarization that is stored
in a database and can be retrieved using a browser. The system
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dealt specifically with spoken language because speech is al-
ways a rich source of information, and frequently—in tele-
phone conversations, for example—it is the only source of in-
formation. It is clear, however, that a great deal of informa-
tion is conveyed by means other than speech. In a medium
such as broadcast news, numerous and valuable content cues
can be extracted directly from the video or on-screen text. In
such a medium, it is important to integrate information from
all available modes into a complete index of the content in the
medium. We have no doubt that an accurate index of speech
content, such as that produced by Rough’n’Ready, can be ef-
fectively integrated as a component in a comprehensive mul-
timedia indexing system.

The technologies described in this paper are at various
stages of maturity, and much work remains to be done in
each of them to improve accuracy in the broadcast news do-
main. Even though the acoustic environments in broadcast
news can be quite varied—all the way from studio quality
to live interviews over the telephone or in the field—much
of the speech is broadcast from a single microphone usu-
ally close to the speaker’s mouth. There are other applica-
tions, such as meetings, where the acoustic environment is
much more challenging. Unless meetings use highly special-
ized microphone arrays, the captured speech signal is likely
to be highly reverberant. Furthermore, meetings are charac-
terized by more spontaneous, conversational speech, as well
as overlapped speech from more than one speaker. All these
effects will have a deleterious effect on the performance of
the various speech technologies. Much research will be re-
quired to deal effectively with such applications.

We believe that the technology described in this paper has
reached the point where commercial utility may be possible
in the very near future, at least for applications similar to
broadcast news. No doubt, it will take a number of actual
attempts at commercialization before the technology takes
root and is used widely. While improving the accuracy of the
component technologies will render such systems more us-
able, it will be other engineering, interface, and human-fac-
tors issues that will determine the utility of these systems in
the short term. How will the system interface to the sources
of data? Where will the data be stored and at what cost? How
will the users interact with the system? To what degree will
the system have to be tuned to the specific application and at
what cost? Will each new application require different capa-
bilities that will have to be included in the system? For ex-
ample, if the application requires that commercials be identi-
fied specifically, then such a capability may have to be devel-
oped separately and included. In short, while we believe that
the speech processing technologies have reached the point
where commercialization has become possible, the actual
process of commercialization, as always with any new tech-
nology, is fraught with many obstacles and issues that have
to be resolved before the technology sees its full potential.
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