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With the advent of essentially unlimited data storage capabili- information will have to be thrown out—and the typical piece
ties and with the proliferation of the use of the Internet, it becomes of information will nevebe looked at by a human being.” [1]

reasonable to imagine a world in which it would be possible to Much of that information will be in the form of speech from

access any of the stored information at will with a few keystrokes . ] - . .
or voice commands. Since much of this data will be in the form VariOUS sources: television, radio, telephone, meetings, pre-

of speech from various sources, it becomes important to developSentations, etc. However, because of the difficulty of locating
the technologies necessary for indexing and browsing such audio informationinlarge audioarchives, speechhasnotbeenvalued

data. This paper describes some of the requisite speech and lan-as an archival source. But, after a decade or more of steady
guage technologies that would be required and introduces an ef- advances in speech and language technologies, it is now pos-

fort aimed at integrating these technologies into a system, called _. Il . . .
Rough’n'Ready, which indexes speech data, creates a structural SiPI€ to start building automatic content-based indexing and

summarization, and provides tools for browsing the stored data. The retrieval tools, which, in time, will make speech recordings as
technologies highlighted in this paper include speaker-independent valuable as text has been as an archival resource.

continuous speech recognition, speaker segmentation and identifi-  This paper describes a number of speech and language
cation, name spotting, topic classification, story segmentation, and processing technologies that are needed in developing

information retrieval. The system automatically segments the con- ful dio indexi ¢ A tot t
tinuous audio input stream by speaker, clusters audio segments fromPOWerul audio Indexing Systems. prototype system

the same speaker, identifies speakers known to the system, and tranincorporating these technologies has been built for the
scribes the spoken words. It also segments the input stream into stoindexing and retrieval of broadcast news. The system,

ries, based on their topic content, and locates the names of persons gubbedRough’n’Ready provides arough transcription of

places, and organizations. These structural features are stored in athe speech that iseady for browsing. The technologies
database and are used to construct highly selective search queries. )

for retrieving specific content from large audio archives. !ncorporated In _th's system, and. described in this papgr,
include speaker-independent continuous speech recognition,
e . ; : : _ speaker segmentation, speaker clustering, speaker identifica-
tion, information retrieval, named-entity extraction, name spotting, i Hing. tovic classificali " ati
speaker change detection, speaker clustering, speaker identifica- lon, name spotting, topic classication, story segmentation,

tion, speech recognition, story segmentation, topic classification. and information (or story) retrieval. The integration of such
diverse technologies allows Rough’'n’Ready to produce a
high-level structural summarization of the spoken language,
|. INTRODUCTION which allows for easy browsing of the data.

In a paper on how much information there is in the world, =~ The system and approach reported in this paper is related
M. Lesk, director of the Information and Intelligent Systems to several other multimedia indexing systems under devel-
division of the National Science Foundation, concludes: “So opment today. The Informedia system at Carnegie-Mellon
in only a few years, we will be able to saegerything—no University (CMU) [2]-[4] and the Broadcast News Navi-

. . . . . gator at MITRE Corporation [5], [6], both have the ability
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bbn.com; Inguyen@bbn.com; schwartz@bbn.com; asrivast@bbn.com). :
Publisher Item Identifier S 0018-9219(00)08102-0. tures of the video stream. These systems demonstrate that

Keywords—Audio browsing, audio indexing, information extrac-

0018-9219/00$10.00 © 2000 IEEE

1338 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000



cues from the video are very effective in locating the bound- on the server for later playback requests from the client
aries between news stories. They also make extensive use ofthe browser). The XML file containing the automatically
the closed-captioned text that accompanies most televisionextracted features from the indexer is uploaded into a
news programming in the United States today. relational database. Finally, all stories in the audio session
Another multimedia system is being developed at CMU are indexed for rapid information retrieval.
for indexing and browsing meetings from video [7]. In The browser is the only part of the Rough’n’Ready system
this domain, no closed-captioning is available, so there is with which the user interacts. Its main task is to send user
a stronger reliance on the automatic transcription. But the queries to the server and display the results in a meaningful
video is also exploited to detect speaker changes and toway. A variety of browsing, searching, and retrieving tools
interpret gestures such as gaze direction and head/handre available for skimming an audio archive and finding in-
movement. formation of interest. The browser is designed as a collection
The Rough’n’Ready system, in contrast, has focused of ActionX controls, which make it possible to run either as
entirely on the linguistic content contained in the audio a standalone application or embedded inside other applica-
signal and, thereby, derives all of its information from tions, such as an Internet browser.
the speech signal. This is a conscious choice designed to
channel all development effort toward effective extraction, B. Indexing and Browsing

summarization, and display of information from audio. This If we take a news broadcast and feed the audio into a
gives Rough'n’Ready a unique capability when speech is speaker-independent, continuous speech recognition system,
the only knowledge source. Another salient feature of our the output would be an undifferentiated sequence of words.
system is that all of the speech and language technologiesrig. 2 shows the beginning of such an output for an episode of
employed share a common statistical modeling paradigm a television news program (ABG&orld News Tonighirom

that facilitates the integration of various knowledge sources. January 31, 1998).Even if this output did not contain any

Section Il presents the Rough’n’Ready system and recognition errors, it would be difficult to browse it and know
shows some of its indexing and browsing capabilities. The at a glance what this broadcast is about.

remainder of the sections focus on the individual speech and  Now, compare Fig. 2 to Fig. 3, which is a screen shot

language technologies employed in the system. Section Il of the Rough’n’Ready browser showing some of the results
presents the basic statistical modeling paradigm that is of the audio indexing component of the system when ap-
used extensively in the various technologies. Section IV plied to the same broadcast. What was an undifferentiated
describes the speech recognition technology that is usedsequence of words has now been divided into paragraph-like
and Section V details the three types of speaker recognitionsegments whose boundaries correspond to the boundaries be-
technologies: speaker segmentation, speaker clustering, angween speakers, shown in the leftmost column. These bound-
speaker identification. The technologies presented in the aries are extracted automatically by the system. The speaker
next sections all take as their input the text produced by the segments have been identified by gender and clustered over
speech recognition component. Sections VI-IX present the the whole half-hour episode to group together segments from
following technologies in sequence: name spotting, topic the same speaker under the same label. One speaker, Eliza-
classification, story segmentation, and information retrieval. peth Vargas, has been identified by name using a speaker-
specific acoustic model. These features of the audio episode
[. INDEXING AND BROWSING WITH ROUGH N'READY are derived by the system using the speaker segmentation,
clustering, and identification components.
The colored words in the middle column in Fig. 3 show
The architecture of the Rough’n’Ready system [8]is shown the names of people, places, and organizations—all impor-
in Fig. 1. The overall system is composed of three subsys- tant content words—which were found automatically by the
tems: indexer, server, and browser. The indexer subsystem isiame-spotting component of the system. Even though the
shown in the figure as a cascade of technologies that takes aranscript contains speech recognition errors, the augmented
single audio waveform as input and produces as output a com-version shown here is easy to read and the gist of the story is
pact structural summarization encoded as an XML file thatis apparent with a minimum of effort.
fed to the server. The duration of the input waveform can be  Shown in the rightmost column of Fig. 3 is a set of topic la-
from minutes to hours long. The entire indexing process runs bels that have been automatically selected by the topic classi-
in streaming mode in real-time on a dual 733-MHz Pentium fication component of the system to describe the main themes
Il processor. The system accepts continuous input and incre-of the first story in the news broadcast. These topic labels are
mentally produces contentindex with an output latency of less drawn from a set of over 5500 possible topics known to the
than 30 s with respect to the input. system. The topic labels constitute a very high-level sum-
The server has two functions: one is to collect and managemary of the content of the underlying spoken language.
the archive and the other is to interact with the browser. The topic labels shown in Fig. 3 are actually applied by
The server receives the outputs from the indexer and addsthe system to a sliding window of words; then the resulting
them incrementally to its existing audio archive. For each | . . . -
. . . . The data used in the various experiments reported in this paper are
audio session processed by the indexer, the audio Waveformavailable from the Linguistic Data Consortium, University of Pennsylvania,
is processed with standard MP3 compression and storechttp:/mww.ldc.upenn.edul.

A. Rough’'n’Ready System
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Fig. 1. Distributed architecture of the Rough’n’Ready audio indexing and retrieval system.
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Fig. 2. Transcription of aWorld News Tonightwudio broadcast as produced by the BBN Byblos
speech recognition system.

sequence of topic labels is used by the story segmentationin Fig. 4, an audio archive consisting of 150 h of broadcast
component of the system to divide the whole news broadcastnews is organized as a collection of episodes from various
into a sequence of stories. The result of the story segmen-content producers. One particular episode (CNéadline
tation for this episode is shown in Fig. 4, which is another Newsfrom January 6, 1998) is expanded to show the se-
screen shot of the audio browser. guence of stories detected by the system for this particular

Breaking a continuous stream of spoken words into a se- episode. Each story is represented by a short list of topic la-
guence of bounded and labeled stories is a novel and pow-bels that were selected by the system to describe the themes
erful capability that enables Rough’'n’Ready to effectively of the story. The net effect of this representation is that a
transform a large archive of audio recordings into a collec- human can quickly get the gist of the contents of a news
tion of document-like units. In the view of the browser shown broadcast from a small set of highly descriptive labels.
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Fig. 3. Elements of the automatic structural summarization produced by Rough’n’Ready from the
text that appears in Fig. 2. Speaker segmentation and identification is shown to the left; names of
people, places, and organizations are shown in color in the middle section; and topics relevant to the
story are shown to the right—all automatically extracted from the news broadcast.
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Fig. 4. Ahigh-level organization of an audio archive showingeadline Newgpisode as a sequence
of thematic stories, all extracted automatically from the news broadcast.

The first story in the expanded episode in Fig. 4 is about the labels shown here to describe the story. Note that the system
fatal skiing accident suffered by Sonny Bono. The three im- had never observed these topics together before in its training
portant themes for this story—skiing, accidents, and Sonny set, for Bono died only once. Nonetheless, it was able to se-
Bono—have all been automatically identified by the system. lectthis very informative and parsimonious list of topics from
Justasimportant, the systemrejected all ofthe other 5500topica very large set of possibilities at the same time that it was seg-
labels for this story, leaving only the concise list of four topic menting the continuous word streaminto asequence of stories.
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The entire audio archive of broadcast news is automat-  training Feature
ically summarized in the same fashion as the expanded ~pata ] ANALYSS Ieoquence ;;‘3'5‘;,’;‘:,,
episode shown in Fig. 4. This means that the archive can
be treated as a collection of textual documents that can be
navigated and searched with the same ease that we associate
with Internet search and retrieval operations. Every word  oo-cenvmon
of the transcript and all of the structural features extracted
by the system are associated with a time offset within the
episode, which allows the original audio or video segment _IMPYt_J  \\a vgs  [FeatUre, RECOGNITION | Recognized
to be retrieved from the archive on demand. The actual "% Sequence| SFARCH | sequence
segment to be retrieved can be easily scoped by the user as
a story, as one or more speaker segments, or as an arbitrarfig: 5 The statistical modeling paradigm employed in the speech
span of consecutive words in the transcription. This gives 2"d 1an9uage technologies presented in this paper.
the user precise control over the segment to be retrieved.
We now turn to the main topic of this paper, which is a V. SPEECHRECOGNITION
description of the various speech and language technologies
employed in the Rough’n’Ready system, preceded by a brief  Automatic transcription of broadcast news is a chal-
exposition of the general modeling paradigm for these tech- lenging speech recognition problem because of frequent and
nologies. The descriptions for more recent contributions are unpredictable changes that occur in speaker, speaking style,
provided in more detail than those that had been under de-topic, channel, and background conditions. The transcription
velopment for many years. in Rough’'n’Ready is created by the BBN Byblos large-vo-
cabulary speaker-independent speech recognition system

[9]. Over the course of several years of participation in the

[ll. STATISTICAL MODELING PARADIGM DARPA Broadcast News evaluations, the Byblos system
_ ) o has evolved into a robust state-of-the-art speech recognition

The technologies described in this paper follow the same gy gtem capable of transcribing real-life broadcast news
statistical modeling paradigm shown in Fig. 5. There are two 4 ,4io data [10].
parts to the system: training and recognition. Given some sta- The Byblos system follows the statistical paradigm in

tistical model of the data of interest, the recognition part of Fig. 5. In the analysis part, the system computes mel-warped

the system firstanalyzes the input data into a sequence of fea'cepstral coefficients every 10 ms, resulting in a feature vector

tures, or feature vectors, a_m(_j then performs_g search for thaty 'y 5 ¢ sefficients as a function of time. To deal effectively
output sequence that maximizes the prabability of the outpmwith the continuous stream of speech in broadcast news,
sequence, given the sequence of features. In other words, th‘fhe data are divided into manageable segments that may

OUtEUtb.'IS. chcfnsgn to maxm_uzé’(ohutputmput, (;n?]deb, the_ | depend on speaker or channel characteristics (wide-band
probability of the output, given the input and the statistical " w,o announcer's speech or narrow-band for telephone

model_. The training program estimates the par_a_meters of thespeech). Segmentation based on speaker, described in the
statistical model from a corpus of analyzed training data and

. . . _ next section, is followed by further segmentation based on
the corresponding ground truth (i.e., the desired rec:ognlzedd(_ltect(_}d pauses [11]

sequence for that data). The statistical model itself is speci- The overall statistical model has two parts: acoustic

fied by the technology_developer. models and language models. The acoustic models, which
Some of the properties of this approach are as follows. . . . ;
describe the time-varying evolution of feature vectors

the integration of information from different knowl-  pjgden Markov models (HMMs) [12] to model each of the

A 4

Ground Truth

STATISTICAL }em & = . —

edge sources by combining their probabilities. phonemes in the various phonetic contexts. The context of
2) Automatic training algorithms for the estimation of 3 phoneme model can extend to as many as two preceding
model parameters from a corpusasfnotatedraining  and following phonemes. Weighted mixtures of Gaussian

data (annotation is the process of providing ground gensities—the so-called Gaussian mixture models—are
truth). Furthermore, the annotation is affordable, re- ysed to model the probability densities of the cepstral
quiring only domain knowledge, and can be performed feature vectors for each of the HMM states. If desired, the
by students or interns. models can be made gender-dependent and channel-spe-
3) Language-independent training and recognition, cific, and can also be configured to capture within-word and
requiring only annotated training data from a new cross-word contexts. To deal specifically with the acoustics
language. The training and recognition components of spontaneous speech, which is prevalent in broadcast news,

generally remain the same across languages. algorithms are developed that accommodate pronunciations
4) State-of-the-art performance. typical of spontaneous speech—including those of very
5) Robust in the face of degraded input. short duration—as well as special acoustic models for pause
We will see below how this paradigm is put to work in the fillers and nonspeech events, such as music, silence/noise,
different technologies. laughter, breath, and lip-smack [13].
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The language models used in the systemmaggam lan- Since the number of Gaussians associated with each HMM
guage models [14], where the probability of each word is a state is very large (typically around 250 000), Gaussian com-
function of the previous word (for a bigram language model) putation is a major bottleneck. Byblos’ FGC implementation
or the previous two words (for a trigram language model). is a variation of a decision-based FGC developed at IBM
Higher order models typically result in higher recognition [20]. Conceptually, the whole acoustic space can be parti-
accuracy, but at a slower speed and with larger storage re-tioned through a decision tree into smaller regions such that,
quirements. for each region, and for any codebook of Gaussians, there

To find the best scoring word sequence, the Byblos systemis only a short list of Gaussians that can cover that region.
emp]oys a mu|tipass recognition search strategy [15]’ [16] During recognition, the decision tree is used to determine the
that always starts with an approximate but fast initial forward Small acoustic region that corresponds to each input feature
pass—thdast-matchpass—which narrows the search space, vector, where only a few Gaussians are used to calculate the
followed by other passes that use progressively more accu-likelihood. FGC speeds up the fast-match by a factor of three
rate models that operate on the smaller search space, thus reand theN-best generation by a factor of 2.5, with almost no
ducing the overall computational cost. For Rough’n’Ready, l0ss in accuracy.
the system employs two passes after the fast-match pass: the Beam search algorithms can be tuned to run very fast
first is a backward pass (from the end of an utterance to theby narrowing the beams. However, aggressive narrow
beginning), which generates a list of the top-scofiigest beams can often prematurely prune out correct theories at
word-sequence hypothesési¢ typically anywhere between  word boundaries due to the sudden change in likelihood
100 and 300), and the last pass performs a restoring of thescores caused by the language model score applied at these
N-best sequence, as described below. The final top-scoringboundaries. To ameliorate this effect, we have developed
word sequence is given as the recognized output. an algorithm that “spreads” the language model probabil-

The fast-match pass, which is performed from the be- ities across all the phonemes of a word to eliminate these
ginning to the end of each utterance, is a time-synchronouslarge score spikes [19]. When the decoder is at a word
search that uses the Single-Phonetic-Tree algorithm [17]bPoundary transition, say, from, to w,, instead of using the
with a robust phonetically tied mixture (PTM) acoustic bigram probabilityP(w:|w; ), we use the probability ratio
model and an approximate word bigram language model. P(wz2|w1)/P(w2). Then we compensate for the division
The output is a word graph with word ending times that by (w2) by multiplying the scores between phone—phone
are used to guide the next pass. In a PTM acoustic model,transitions inw; by P(w2)*/*, wherek is the number of
all states of the HMMs of all context-dependent models of phones imw;. We call this process “grammar spreading,”
a phoneme are tied together, sharing a Gaussian mixtureand we find that it allows us to use a much narrower beam
density of 256 components; only the mixture weights vary in the backward pass, thus saving a factor of two in compu-
across states. Thbl-best generation pass with a trace- tation with no loss in accuracy.
back-based algorithm [16] uses a more accurate within-word  Finally, the N-best rescoring pass is also sped up by a
state-clustered tied-mixture (SCTM) acoustic model and factor of two by using a Tree Rescoring algorithm [19] in
a word trigram language model. Corresponding states of which allN hypotheses are arranged as a tree to be rescored
the HMMs of all models of a phoneme are clustered into a concurrently to eliminate redundant computation.
number of clusters sharing a mixture density of 64 Gaussian When we run Byblos on a 450-MHz Pentium Il processor
components. A typical SCTM system usually uses about at three times real-time (8 RT), the word error rate on the
3000 such clusters. The final pass rescores Kabest DARPA Broadcast News test data, using a 60 000-word vo-
hypotheses using a cross-word SCTM acoustic model andcabulary, is 21.4%. The error rate decreases to 17.5% at 10
a word trigram language model and then selects the mostx RT and to 14.8% for the system running at 23@RT [10].
likely hypothesis as the recognition output.

Unsupervised adaptation of the Byblos system to each V- SPEAKERRECOGNITION
speaker can be performed to improve recognition accuracy. One of the major advantages of having the actual audio
The process requires the detection of speaker-change boundsignal available is the potential for recognizing the sequence
aries. The next section describes the speaker segmentationf speakers. There are three consecutive components to the
used in the Rough'n’Ready system to compute those bound-speaker recognition problem: speaker segmentation, speaker
aries. The adaptation performed in Byblos is based on theclustering, and speaker identification. Speaker segmentation
maximum-likelihood linear regression (MLLR) approach segregates audio streams based on the speaker; speaker clus-
developed at the University of Cambridge [18]. tering groups together audio segments that are from the same
In practical applications, such as Rough’n’Ready, itis im- speaker; and speaker identification recognizes those speakers
portant that the speech transcription be performed as fast a®f interest whose voices are known to the system. We de-
possible. In addition to the search strategy described above scribe each of the three components below.
further speedups have been necessary to bring the compu- .
tation down to real-time. Major speedup algorithms in the A~ SPeaker Segmentation
last few years include Fast Gaussian Computation (FGC), The goal of speaker segmentation is to locate all the
Grammar Spreading, amd-Best Tree Rescoring [19]. boundaries between speakers in the audio signal. This is a
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difficult problem in broadcast news because of the presencewhere ¢ is determined empirically and is usually greater
of background music, noise, and variable channel condi- than one. This normalized likelihood ratio is similar to the
tions. Accurate detection of speaker boundaries provides theBayesian information criterion used in [23]. However, in
speech recognizer with input segments that are each fromour case, we can make use of the extra knowledge that a
a single speaker, which enables speaker normalization andspeaker change is more likely to happen during a nonspeech
adaptation techniques to be used effectively on one speakeinterval in order to enhance our decision making. The final
at a time. Furthermore, speaker change boundaries breakest, therefore, takes the following form.

the continuous stream of words from the recognizer into 1) During nonspeech region# log X’ < ¢, then the seg-

paragraph-like units that are often homogeneous in topic. mentsx andy are deemed to be from the same speaker,

We have developed a novel two-stage approach to speaker  otherwise not, where is a threshold that is adjusted
change detection [21]. The first stage detects speech/non- such that the sum of false acceptance and false rejec-
speech boundaries (note from Fig. 1 that, at this point in the tion errors is a minimum.

system, speech recognition has not taken place yet), while  2) During speech regionghe test changes tog X' <
the second stage performs the actual speaker segmentation t + o, wherea is a positive threshold that is adjusted

within the speech segments. Locating nonspeech frames re- in the same manner as in b)is introduced to bias the
liably is important since 80% of the speaker boundaries in placement of the speech/nonspeech boundary toward
broadcast news occur within nonspeech intervals. the nonspeech region so that the boundary is less likely

To detect speech/nonspeech boundaries, we perform a to break up words.

coarse and very fast gender-independent phoneme recogni- e implemented a sequential procedure that increments
tion pass of the input. We collapse the phoneme inventory the speaker segments one phone at a time and hypothesizes
into three broad classes (vowels, fricatives, and obstruents),speaker changes at each phone boundary using the algorithm
and we include five different models for typical nonspeech given above. The procedure is nearly causal, with a look-
phenomena (music, silence/noise, laughter, breath, andznead of only 2 s, enough to get sufficient data for the detec-
lip-smack). Each phone class is modeled with a five-state tion The result of this procedure when applied to the DARPA
HMM and mixtures of 64 Gaussian densities. The model Broadcast News test was to find 72% of the speaker changes
parameters are estimated reliably from only 20 h of acoustic \jthin 100 ms of the correct boundaries (about the duration
data. The resulting recognizer performs the speech/non-gf gne phoneme), with a false acceptance rate of 20%. Most
speech detection at each frame of the input reliably over of the missed boundaries were brief greetings or interjections
90% of the time. such as “good morning” or “thanks,” while most of the false

The second stage performs the actual speaker segmentagcceptances were during nonspeech periods and, therefore,
tion by hypothesizing a speaker change boundary at everyinconsequential.

phone boundary that was located in the first stage. The time

resolution at the phone level permits the algorithm to run B. Speaker Clustering
very quickly while maintaining the same accuracy as hy-
pothesizing a boundary at every frame. The speaker changq[r
decision takes the form of a likelihood ratio test where the
null hypothesis is that the adjacent segments are produce
from the same underlying distribution. Given two segments

The goal of speaker clustering is to identify all segments
om the same speaker in a single broadcast or episode and
Oassign them a unique label; it is a form of unsupervised
speaker identification. The problem is difficult in broadcast
- P o news because of the extreme variability of the signal and
x = {wj, ¢ =1,--, N} andy = {y;,j = 1, -, M} because the true number of speakers can vary so widely (on

with feature vectors; andy;, respectively, we assume that "o ¢ 1-100). We have found an acceptable solution to
x andy were produced by Gaussian processes. Since the

means of the two segments are quite sensitive to backgrounathIS problem using a bottom-up (agglomerative) clustering
. : .~approach [24], with the total number of clusters produced
effects, we only use the covariances for the generalized like-

lihood ratio, which takes the form [22] being controlled by a penalty that is a function of the number
of clusters hypothesized.

The feature vectors in each speaker segment are modeled
(N+M),2 by a single Gaussian. The likelihood ratio test in (1) is used

- |24— (1) repeatedly to group cluster pairs that are deemed most similar

|2 [V/2] 5, | M/2 until all segments are grouped into one cluster and a complete

. ) . , cluster tree is generated. At each turn in the procedure, and

wherez is the union ofx andy and ¥ is the maximum- ¢, aach cluster, a new Gaussian model is estimated for that
likelihood estimate of the covariance matrix for each of the cluster [25]. The speaker clustering problem now reduces to

processes. Itis usually the case that the more data we havey, jing that cut of the cluster tree that is optimal based on
forestimating the Gaussians, the highes [22]. Toalleviate g6 criterion. The criterion we choose to minimize is the
this bias, a normalization factor is introduced, so the ratio test sum of two terms

changes to

k
, A S=log|Y N;«3;|+0logk (3)

N= vy @) =
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wherek is the number of clusters for any particular cut of VI. NAME SPOTTING
the tree andV; is the number of feature vectors in cluster
4. The first term in (3) is the logarithm of the determinant
of the within-cluster dispersion matrix [24], and the second
term is a regularization or penalty term that compensates for
the fact that the determinant of the dispersion matrix is a
monotonically decreasing function bf The final clustering

is that cut of the cluster tree that minimizes (3). The value
of ¢ is determined empirically to optimize performance; it is
usually in the rang® < 6 < 1.

The objective of hame spotting in Rough’n’Ready is to
extract important terms from the speech and collect them
in a database. Currently, the system locates names of per-
sons, places, and organizations. Most of the previous work
in this area has considered only text sources of written lan-
guage and has concentrated on the design of rule-driven algo-
rithms to locate the names. Extraction from automatic tran-
scriptions of spoken language is more difficult than written
. ) . . text due to the absence of capitalization, punctuation, and
This algorithm has proved effective over a very wide range sentence boundaries, as well as the presence of recognition

of nebws br?adcasl,(ts. It. p(etgormg wsll rega(;dlgss Ofl thte trueferrors. These have significant degrading effects on the perfor-
nUMDErS Of Speakers in the episode, producing CIUSIErS Ol ,nca of rule-driven systems. To overcome these problems,

high purity. The cluster purity, which is defined as the per- e have developed an HMM-based name extraction system
centage of frames that are correctly clustered, was measurecra"ed IdentiFinder [27]. The technique requires only that we
to be 95.8%. provide training text with the type and location of the named
entities marked. The system has the additional advantage that
it is easily ported to other languages, requiring only a set of
annotated training data from a new language.
The name spotting problem is illustrated in Fig. 6. The
Every speaker cluster created in the speaker clusteringnames of people (Michael Rose, Radovan Karadzic) are in
Stage is identified by gender. A Gaussian mixture model for b0|d, p|aces (Bosnia, Pa|e, Sarajevo) are under“ned; and or-
each gender is estimated from a large sample of training ganizations (U.N.) are in italics. We are required to find all
data that has been partitioned by gender. The gender of &hree sets of names but classify all others as general language
speaker segment is then determined by computing the Iog(GL).
likelihood ratio between the male and female models. This Fig. 7 shows the hidden Markov language model used by
approach has resulted in a 2.3% error in gender detection. |dentiFinder to model the text for each type of named entity.
In addition to gender, the system can identify a specific The model consists of one state for each of the three named
target speaker if given approximately one minute of speech entities plus one state (GL) for all other words in the text,
from the speaker. Again, a Gaussian mixture model is esti- with transitions from each state to every other state. Asso-
mated from the training data and is used to identify segmentsciated with each of the states is a bigram statistical model
of speech from the target speaker using the approach detailean all words in the vocabulary—a different bigram model is
in [26]. Any number of target models can be constructed and estimated for each of the states. By thinking of this as a gen-
used simultaneously in the system to identify the speakers.erative model that generates all the words in the text, most
To make their labeling decisions, the set of target models of the time we are in the GL state emitting general-language
compete with a speaker-independeoihortmodel thatises-  words. We then transition to one of the named-entity states
timated from the speech of hundreds of speakers. Each ofif we want to generate a name; we stay inside the state gen-
the target speaker models is adapted from the speaker-indeerating the words for that name. Then, we either transition
pendent model. To ameliorate the effects of channel changedo another named-entity state or, more likely, back to the GL
for the different speakers, cepstral mean subtraction is per-state. The decision to emit each word or to transition to an-
formed for each speaker segment whereby the mean of theother state depends on the previous word and the previous
feature vectors is removed before modeling. state. In this way the model uses context to help detect and
In the DARPA Broadcast News corpus, 20% of the classify names. For example, the word “Mr.” in the GL state
speaker segments are from 20 known speakers. Thereforeis likely to be followed by a transition to the PERSON state.
the speaker identification problem here is what is known as After the person’s hame is generated, a transition to the GL
an open setproblem in that the data contains both known state is likely and general words like “said” or “departed”
and unknown speakers and the system has to determinanay follow. These context-dependent effects are included in
the identity of the known-speaker segments and reject theour model.
unknown-speaker segments. Using the above approach, our The parameters of the model in Fig. 7 are estimated auto-
system resulted in the following three types of errors: a false matically from annotated training data, where the three sets
identification rate of 0.1%, where a known-speaker segmentof named entities are marked in the text. Then, given a test
was mistaken to be from another known speaker; a false sample, the model is used to estimate the probability of each
rejection rate of 3.0%, where a known-speaker segmentword’s belonging to one of the three named entities or to
was classified as unknown; and a false acceptance rate ohone. We then use the Viterbi algorithm [28] to find the most
0.8%, where an unknown-speaker segment was classified adikely sequence of states to account for the text. The result is
coming from one of the known speakers. the answer for the sequence of named entities.

C. Speaker Identification
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The delegation, which included the commander of the U.N. troops in Bosnia, Lt.
Gen. Sir Michael Rose, went to the Serb stronghold of Pale, near Sarajevo, for talks
with Bosnian Serb leader Radovan Karadzic.

Fig. 6. A sentence demonstrating three types of named entities: people (Michael Rose, Radovan
Karadzic), locations (Bosnia, Pale, Sarajevo), and organizations (U.N.).

from a speech recognizer. Of course, given annotated data

from a new language, it is a simple matter to train the same

system to recognize named entities in that language.

We have performed several experiments to measure the

performance of IdentiFinder in finding names. In addition,
Sentence we have measured the degradation when case and punctua-
tion information is lost, or when faced with errors from auto-
matic speech recognition. In measuring the accuracy of the
system, both the type of named entity and the span of the
corresponding words in the text are taken into consideration.
We measure thglot error rate—where the type and span of a
name is each counted as a separate slot—by dividing the total
Fig. 7. The hidden Markov model used by IdentiFinder for name number of errors in named entities (substitutions, deletions,
ﬁn?c?ég?b F;f?hgfv\fgfdssﬁt‘fﬁe'ng:;ja?yfta“sncal bigram language and insertions) by the total number of true named entities in

the reference answers [29].

In a test from the DARPA Broadcast News corpushere

Since our system has been trained on only 1 million words g
of annotated data from broadcast news, many of the words inthe number of types of named entities was seven (rather than
’ the three used by Rough’n’Ready), IdentiFinder obtained a

an independent test set will b_e unknown to the name-spottmgslot error rate of 11.4% for text with mixed case and punctu-
system, even though they might be known to the speech rec-

. .__ation. When all case and punctuation were removed, the slot
ognizer. (Words that are not known to the speech recognizer ;
- . ) - error rate increased to only 16.5%.
will be recognized incorrectly as one of the existing words

. : In recent DARPA evaluations on name spotting with
and will, of course, cause performance degradation, as we : S
- : speech input, again with seven classes of names, the slot
shall see below.) It is important to deal with the unknown

word problem since some of those words will be among the error rate for the output of the Byblos speech recognizer was

0, 1 iti 0,
desired named entities and we would like the system to spot26'7m with a speech recognition word error rate of 14.7%

" [30]. When all recognition errors were corrected, without
them even though they were not seen before by the training-" T )
‘ . . 2 . “adding any case or punctuation information, the slot error
component. During training, we divide the training data in

0,
half. In each half we replace every string that does not ap- rate decreased to 14.1%. In general, we have found that the

pear in the other half with the string “UNKNOWN.” We then named-en_tity slot error rate increases Iinearly with the word
. S . error rate in approximately a one-to-one fashion.
are able to estimate all the probabilities involving unknown
words. The probabilities for known words are estimated from
all of the data. During the testing phase, we replace any stringV”'
that is unknown to the name spotting system by the label
“UNKNOWN" and are then able to find the best matching Much work has been done in topic classification, where
sequence of states. We have found that by making proper usehe models for the different topics are estimated indepen-
of context, many of the names that were not known to the dently, even if multiple topics are assigned to each document.
name-spotting system are labeled correctly by the system. One notable exception is the work of Yang and Chute [31],
One advantage of our approach to information extraction who, as part of their model, take into consideration the fact
is the ease with which we can learn the statistics for different that multiple simultaneous topics are usually associated with
styles of text. For example, let us say we want the system each document. Our approach to topic classification is sim-
to work on text without case information (i.e., the text is ilar in spirit to that of Yang and Chute, except that we use
displayed as either all lower case or all upper case). It is aa Bayesian framework [32] instead of a distance-based ap-
simple matter to remove the case information from our an- proach. Our topic classification component, called OnTopic,
notated text and then reestimate the models. If we want to useis a probabilistic HMM whose parameters are estimated from
IdentiFinder on the output of a speech recognizer, we expecttraining samples of documents with given topic labels, where
that the text will not only be caseless but will also have no the topic labels number in the thousands. The model allows
punctuation. In addition, there will be no abbreviations, and each word in the document to contribute different amounts
numeric values will be spelled out (e.g., TWENTY FOUR to each of the topics assigned to the document. The output
rather than 24). Again, we can easily simulate this effect on from OnTopic is a rank-ordered list of all possible topics and
our annotated text in order to learn a model of text output corresponding scores for any given document.

Person

Sentence

Start End

General Language

T opPIC CLASSIFICATION
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General
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Fig. 8. The hidden Markov model used in OnTopic to model the
set of topics in a story. The model is capable of assigning several
topics to each story, where the topics can number in the thousands.

A. The Model

We choose the set of topi¢&¢ that corresponds to a given
documentD such that the posterior probabiliB{Set|D) is
maximized

P(D|Set)

P(Set|D) = P(Set) P(D)

(4)

For the purpose of ranking the sets of topit%,)) can be
ignored. The prior probability’(Set) is really the joint prob-
ability of a document having all the labels in the set, which

B. Estimating HMM Parameters

We use a biased form of the Expectation-Maximization
(EM) algorithm [33] to find good estimates for the transi-
tion probabilitiesP(T;|Set) and the emission probabilities
P(W,|T;) inthe HMM in Fig. 8. The transition probabilities
are defined by

Posa(Ty|Set) =
E(# times any word is emitted in state Tj|model k)

E(# times any word is emitted in any state|model k)

which can be estimated as

Z Z Qk,j(VVv 1, D)

Poy1(T|Set) = bias(T}) —m 2
where
> D)
bLCLS(TJ) _ D with T} (8)

> UD)
D

is the bias termi( D) is the number of words in the document
D, and

can be approximated using topic co-occurrence probabilities ¢, ;(W, T}, D)

P(Tk, Trn)

V@S

II II P@. 7.

k€Set meSet
m>k

P(Set) ~ (5)

where N is the number of topics irtet and the exponent
serves to place on similar footing topic sets of different sizes.
P(Ty, T,,,) is estimated by taking the product of the max-
imum-likelihood estimates oP(7%|7,.) and P(T,.). The
former is estimated as the fraction of those documents with
T,, as a topic that also havg, as a topic, and the latter is
estimated as the fraction of documents vidth as a topic.
What remains to be computedi§ D|Set), the conditional
probability of the words in the document, given that the docu-
mentis labeled with all the topics Bet We model this proba-
bility with an HMM consisting of a state for each of the topics
in the set, plus one additional topic state, GL, as shown in
Fig. 8. The model “generates” the words in the document one
by one, first choosing a topic distribution from which to draw
the nextword, according tB(T;|Set), then choosing a word
according taP(W,|T};), then choosing another topic distribu-
tion to draw from, etc. The formula fd?(D|Set) is, therefore

P(D|Set) =~ [ Y P(T;|Set) P(WA|T)

t jESet

(6)

Di(L3|Set) P(WIT3)
> Pu(Ti|Set) Pu(WT)

1CSet

qx, ;(W, T;, D) is the fraction of the counts fé# in D that

are accounted for by}, given the current set of parameters
in the generative modet{W|D) is the number of times that
word W appears in the document; aidiz) is an indicator
function returning one if its predicate is true and zero other-
wise. The bias term is needed to bias the observations toward
the GL state; otherwise, the EM algorithm would result in a
zero transition probability to the GL state [31]. The effect of
the bias is that the transition and emission probabilities for
topic 7 will be set such that this topic accounts for a frac-
tion of the words in the corpus roughly equalitas(T}).
The emission probabilities are then estimated from

- ZZQI&‘J(VV’ TJ’D)

D WcD

= c(W|D)I(D has T})

(9)

P (WIT3) (10)

C. Classification

To perform classification for a given document, we need to
find the set of topics that maximizes (4). But the total number
of all possible sets i§" 1" | k!, which is a very large number
if the number of possible topic¥ is in the thousands. Since

wheret varies over the set of words in the document. The ele- scoring such a large number of possibilities is prohibitive
ments of the above equation are estimated from training datacomputationally, we employ a two-pass approach. In the first
as described below. pass, we select a small set of topics that are likely to be in the
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Fig.9. Performance of OnTopic's classification algorithm on broadcast news when tté sopring

topics are matched against what the human annotators recorded for each story. The top curve shows
the performance when at least one of fi¢opics matches one of the annotator’s topics. pteeision
andrecall curves score alN topics against all of the annotator’s topics.

best set. In the second pass, we score all sets of these cardone in two ways. The at-least-one-correct curve shows the
didates using (4). We select candidate topics in the first passfraction of stories for which at least one of the tdptopic
by scoring each topic independently, as if it were a complete labels for each story was included in the annotations for that
set on its own, using a slight modification of (4) story. Clearly, that fraction increases with increasivigWwe
log P(T;|D) see, for example! that the top scoring topic was deemeq cor-

J rect 76% of the time. In the second method of comparison,
~ alog P(T}) + Z plog <p(Tj|get),ﬁw> (11) we compare allV top topics generated by the system against

7 P(W:) the set of annotated topics and count how many are the same,

then we measurprecisionandrecall. Precisionis the frac-
tion of NV topics that the system got correct (i.e., matched
the human annotators) anetall is the fraction of the topics
0generated by the annotators that the system got correct. As
usual, precision decreases as recall increases.

We have indications that the criteria we have adopted for
measuring the performance of our system may be less for-
giving than necessary. Topic annotation is not an easy task
when the number of topics is large; people tend to undergen-
erate labels for documents because it is difficult to remember
i , so many topics. Upon informal examination of stories for
We applied the two-pass procedure of the OnTopic clas-yhich the top scoring topic was not included in the list given

sifier described above to a corpus of broadcast news sto-py he annotators, we often found that the topic given by the
ries, transcribed and annotated by Primary Source Media. Forcomputer was quite reasonable for the story.

each story, the annotators gave a nqmber of topic labels that \yhije it is possible to apply OnTopic to any segment of
they thought represented the topics in the story. The numbery,. o4 qcast news (e.g., for every speaker segment), for the pur-
of topics for each story was anywhere between one and 13,5446 of indexing, it would be even more useful to use topic

with an average of 4.5 topics per story. The corpus was di- ¢1assification as a means to finding story boundaries. This is
vided into one year, or 42502 stories, for training, and one o subject of the next section.

month, or 989 stories, for test. The training set contained a
total of 4627 unique topic labels.

Measuring the performance of our system against what
the human annotators wrote down as the topic labels is not Story segmentation turns the continuous stream of spoken
straightforward, because our system gives an ordered list ofwords into document-like units with a coherent set of topic
all topics, each with a score, while the annotators have alabels assigned to each story. In Rough’n’Ready, we apply
small, unordered list of topics for each story. Fig. 9 shows OnTopic to overlapping data windows of 200-words span,
different reasonable ways of measuring performance. Thewith a step size of four words between successive windows.
abscissa of the figure shows the numbBérof top-ranking For each data window, and for each topic of the 5500 topics
topics provided by the system. For each valu&/gfve com- known to the system, we compute the log probability of the
pare the top¥ topics produced by the system against the topic given the words in the window. The list of 5500 such
set of topics generated by the annotators. The comparison igopic scores for each data window is pruned automatically to

whereg¢(z) is zero ifz < 0 andz otherwise, and serves to
filter out the effect of words in documents that constitute neg-
ative evidence for a topic. The parametehas been intro-

is optimized from training data. The paramefkis there to
flatten (if less than one) or sharpen (if greater than one) the
transition probability distribution, in order to compensate for
the independence assumption over words in the document.

D. Experiments

VIIl. STORY SEGMENTATION
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Fig. 10. The story segmentation component first chooses a few top scoring topics for each 200-word
data window on a sliding basis every four words. Shown above are the chosen topics as the window
passes across two stories, one allnuticanesand the other abowtocks

preserve only the top scoring (i.e., the most relevant) topics
for that data window, as follows. We assume that the scores #q r—jr—1 171 |
of the top scoring 100 topics are drawn from a Gaussian
process, and we choose as our pruned list those topics tha
lie above twice the standard deviation from the mean score.
The result of this process is depicted in Fig. 10, which shows -E |'
the results of the topic pruning process during a transition §
from one story abouturricanesto another abowstocks ]
The challenge now is to locate the boundary between sto- *
ries. We define d@opic windowas the aggregate of 50 con-
secutive pruned topic lists, and we compiaigic persistence
as the number of occurrences of each topic label found in 4
a topic window. We then measure thraximum-persistence 1 Tophe Window | T
score as the largest persistence found for any topic in a given
tOpiC window. Flg 11 shows the maximum—persistence SCOreFig. 11. A plot of persistence as a function of topic window
as a function of topic window across an episode. The max- humber for a broadcast news episode. The high persistence regions
imum value of 50 s typically reached during regions that are 5.2 21 %E 1 St ohes chomer are unior: e peremcrce
within the same story. The vertical dashed lines in Fig. 11 true story boundaries.
show the true boundaries between different stories. By set-
ting a threshold of 90% of the maximum, as shown by the
horizontal line in Fig. 11, we can narrow the search for the
story boundaries to the regions below the threshold.
The story boundaries are then located more precisely by
taking note of the locations dbpic support wordswithin
the text. Topic support words (or keywords) are those words
in a topic window that contribute to the score of one of the

f—————————— T —

e
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-
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segmentation procedure correctly detected 77% of the true
boundaries and had a false acceptance of 90%, i.e., for every
true boundary, approximately two boundaries were found on
the average by the segmentation procedure. Longer stories,
in which the topics drift, tended to be subdivided by our
procedure and this is why the false acceptance was high.

. . : Note that, for indexing and retrieval purposes, such a high
surviving topics for the putative story. We observe that only false acceptance rate is of little consequence. Fig. 4 shows an

about 6%—8% of the words in a story provide support for any . .
. ) example of the results of story segmentation on one episode
of the topic labels assigned to a story. We also observe that P y seg P

the support words are most often easily separable into two of broadcast news.
groups whenever they span a true story boundary. One grou
supp%rts the topics iden[iified in the preceding story and theplx' INFORMATION RETRIEVAL
other supports topics in the succeeding story. We exploitthis The Rough’'n’Ready browser is capable of retrieving
effect to automatically locate the story boundaries occurring stories of interest based on speakers, topics, and/or names
between stable topic regions. We also constrain the boundaryof people, places, and organizations. Another capability of
decision to prefer a nearby speaker boundary and to avoidthe browser is to retrieve stories that are similar to a given
splitting names. Further details are provided in [34]. story of interest. To perform this task, we employ a novel
The performance of the story segmentation procedureinformation retrieval (IR) system, called Golden Retriever
was tested on a test corpus consisting of 105 episodes with[35]. Information indexing and retrieval take place on the
a total of 966 stories. Given a 50-word tolerance, the story Rough’n’Ready server. Whenever a new episode is processed
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by the indexer, a new retrieval index is generated over the @

entire archive of indexed stories. The browser gives the user o

a powerful query-by-example capability whereby an entire Query “ - Query
news story is submitted to the Golden Retriever search engine Start End
as a query to find all similar stories in a large audio archive.

This provides an effective means for a user to find related e

passages once a single example of interest has been found.
This capability makes valuable use of the topic classification _ _ _
d storv seamentation capabilities described above Fig. 12. A hidden Markov model for a single document for the
and story seg : . p i : Golden Retriever information retrieval component. This generative
Golden Retriever is a novel probabilistic HMM-based IR  model assumes that the query is generated by a model comprising
system that computes the probability that a document is rel- two states, one for the document and another for general language.
evant, given a query, and ranks all documents in the collec-
tion based on this measure. Our approach to IR mirrors ourg - Trajning the IR HMM

topic classification work; we allow a corpus of examples to » -
drive our selection of models and our estimation procedures. "€ parameters of the HMM are the transition probability
The corpus consists of a set of documents, a set of natural® and the emission probabilities for each of the words in each

language queries (tens of words), and a number of relevancestate. In principle, we.would like to e;timate thesel parame-
judgments that state whether each document s relevant to thd€'s from examples using the EM algorithm. In practice, how-
query or not. Human annotators make the relevance judge-8vel: We find that we do not have enough training examples
ments on some significant sampling of the corpus of docu- to find gooq e_stlmates fo_r. t_he emission probabilities. So we
ments for each query. We build a statistical model capable of S€t the emission probabilities for the D and GL states to be

ranking training documents effectively by their labeled rele- the unigram distributions of the words in the document and
vance to given training queries. the whole corpus, respectively. Further, we set the transition

probabilities to be the samefor all documents, and we esti-
A. A Bayesian Model for IR matec using the EM algorithm. We found that= 0.7 was

. . . ._the value to which EM converged.
Given a query, it seems sensible to rank the documents in

a corpus by their probability of being relevant [36]. In other

words, we want to use as our document ranking function the C. Performance

posterior probabilityP(DisR|Q), the probability that the We have tested this simple two-state HMM on the Text
documentD is relevant, given quer§). We again use Bayes’  Retrieval Conference (TREC-7) corpus, which consists of
rule to decompose the posterior probability 528 155 documents [35]. We preprocess the corpus lightly in
, . order to split documents up into words and to allow morpho-
P(DisR)P(Q|DisR . - ;
P(DisR|Q) = (Dis ])3 (Q| DisE) (12) logically similar words to match. The stream of characters in
(@) each document gets tokenized into words. Then we conflate

P(DisR) is the prior probability of a document’s being rele- terms by applying Porter's stemming algorithm [37]. Next,
vant to any query. Currently, we assume that this prior is uni- we discard anything found in a list of 400 “stop” words. Fi-
form, although, in principle, we can make the prior a function nally, numeric and nonword items are reduced to single to-
of document featured?(Q) is simply the prior probability kens (“NUMBER,” “DOLLAR,” etc.).
of the query’s being posed in the first place. As this quantity = The test comprised 50 queries with an average of 57.6
does not alter the document ranking, we can safely ignore it. words per query. Each query was preprocessed in the same
What is left is the conditional probability of the query being manner described above for the documents. Then, for each
posed, under the hypothesis that the document is relevantguery, we compute (12) for each of the documents. The result
P(Q|DisR). We model this remaining quantity with a dis- s that the top scoring document for each query was found to
crete HMM that is dependent on the document. This will be be relevant 78% of the time.
a generative model where we think of the document HMM  The simple model described above has been extended
as generating the query. The parameters of the HMM shouldby adding more states with different query term-generating
be estimated in such a way as to make it more likely that a mechanisms (e.g., synonyms, bigrams, topics, unsupervised
document will generate a query to which it is relevant than a relevance feedback), and by the inclusion of document
query to which it is not relevant. priors, resulting in higher performance [38].

A simple formulation of the requisite HMM has just two
states, as shown in Fig. 12. The state labeled “D” representsx FUTURE DIRECTIONS
the option of generating query words by drawing words di- "~
rectly from the document. The state labeled “GL" represents  This paper focused on the speech and language technolo-
choosing words from general language, i.e., without regard gies that are needed for the indexing and browsing of audio
to the document. Most queries contain words that are presentdata. State-of-the-art technologies have been integrated in a
in relevant documents, but all queries contain many generalsystem, Rough’n’Ready, that automatically takes the audio
words that are not really part of the specification of relevant stream and extracts a structural summarization that is stored
documents. in adatabase and can be retrieved using a browser. The system
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dealt specifically with spoken language because speech is alagencies of the U.S. government. The technologies have
ways a rich source of information, and frequently—in tele- benefited greatly by formal competitive technology evalua-
phone conversations, for example—it is the only source of in- tions sponsored by DARPA and carried out by NIST over
formation. It is clear, however, that a great deal of informa- many years. Much of the data used in the development and
tion is conveyed by means other than speech. In a mediumevaluation of the technologies are distributed by the Lin-
such as broadcast news, numerous and valuable content cueguistic Data Consortium at the University of Pennsylvania.
can be extracted directly from the video or on-screen text. In The results of the various evaluations, along with papers
such a medium, it is important to integrate information from from the different sites that participated in the evaluations,
all available modes into a complete index of the contentin the can be found in the proceedings of annual DARPA work-
medium. We have no doubt that an accurate index of speechshops published by Morgan Kaufmann.
content, such as that produced by Rough’n’Ready, can be ef- The authors would like to thank the reviewers for their
fectively integrated as a component in a comprehensive mul-excellent and helpful comments.
timedia indexing system.
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