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Abstract

A method of speaker adaptation for continuous density hidden
Markov models (HMMs) is presented. An initial speaker-independent
system is adapted to improve the modelling of a new speaker by
updating the HMM parameters. Statistics are gathered from the
available adaptation data and used to calculate a linear regression-
based transformation for the mean vectors. The transformation
matrices are calculated to maximize the likelihood of the adaptation
data and can be implemented using the forward–backward algorithm.
By tying the transformations among a number of distributions,
adaptation can be performed for distributions which are not
represented in the training data. An important feature of the method
is that arbitrary adaptation data can be used—no special enrolment
sentences are needed.

Experiments have been performed on the ARPA RM1 database
using an HMM system with cross-word triphones and mixture
Gaussian output distributions. Results show that adaptation can be
performed using as little as 11 s of adaptation data, and that as more
data is used the adaptation performance improves. For example, using
40 adaptation utterances, a 37% reduction in error from the speaker-
independent system was achieved with supervised adaptation and a
32% reduction in unsupervised mode.

1. Introduction

In spite of progress in the development of speaker-independent (SI) systems, error rates
are still typically two to three times higher than equivalent speaker-dependent (SD)
systems (Lee, Lin & Juang, 1991). Since a large amount of speaker-specific data is
required for training SD systems they are not suitable for many applications. SI systems
model speech from some speakers poorly so it is desirable to use a small amount of
the new speaker’s speech (adaptation data) to “tune” the SI models to the new speaker,
such methods are termed speaker adaptation techniques. The adaptation is said to be
supervised if the true transcription of the adaptation data is known and otherwise
unsupervised.

Adaptation techniques fall into two main categories—speaker normalization in which

0885–2308/95/020171+15 $08.00/0  1995 Academic Press Limited



172 C. J. Leggetter and P. C. Woodland

the input speech is normalized to match the speaker that the system is trained to model,
and model adaptation techniques in which the parameters of the model set are adjusted
to improve the modelling of the new speaker. An important issue with both approaches
is effective operation with a limited amount of adaptation data. For a system with a
large number of models and a small amount of adaptation data, some models will not
be observed in the data. Some model adaptation techniques [e.g. MAP estimation
(Gauvain & Lee, 1994)] only update the parameters of models which are observed in
the adaptation data, thus fairly large amounts of adaptation data are generally required.

Here, we propose a model adaptation technique which uses a set of regression-based
transforms to tune the hidden Markov model (HMM) mean parameters to the new
speaker. Each of the transformations is applied to a number of HMM mean parameters
and estimated from the corresponding data. Using this sharing of transformations and
data, the method can produce improvements with small amounts of adaptation data.

The method has links with the work on spectral shift transformations (Jaschul, 1982)
which attempts to map data from a new speaker onto that from a reference speaker.
In that work, uniform and non-uniform frequency shifts and a purely additive transform
were considered in a simple spectral phone template. It was found that the frequency
shifts were most effective, although they required more data to be estimated. Jaschul
(1982) also combined the frequency shift and the additive effect in a single transform.
In an attempt to reduce the amount of data needed to estimate the transform a
tridiagonal frequency shift matrix was considered, which although successful in halving
the amount of data required for estimation, gave poorer results. It was later shown
(Hewett, 1989) that the full transform used by Jaschul (1982) gave better performance
than a canonical correlation approach (Choukri, Chollet & Grenier, 1986) which
projects parameters of both the reference speaker and the new speaker to a new acoustic
space where they are similar. These spectral transformation approaches have also shown
success in a discrete HMM framework (Class et al., 1990), and with individual sound
class models or vowel spectra using Gaussian densities (Cox & Bridle, 1989).

Although some approaches consider transformations on a global basis, i.e. trans-
forming all speech vectors/parameters by the same transform (Class et al., 1990), it was
shown by Jaschul (1982) that gains can be made by using phone-dependent transforms.
However, this increases the amount of adaptation data required from the speaker so
that there is sufficient data to estimate each transform. A piecewise-linear approach
based on phone classes has also been used with discrete HMMs (Bellegarda et al.,
1992).

Here, we extend the ideas of Jaschul (1982) and Hewett (1989) to adapting the
parameters of continuous density HMMs. The parameters of the HMM system are
adapted using transforms which are estimated in a maximum likelihood framework.
The least squares regression calculation used by Hewett (1989) has been replaced by
maximum likelihood estimation taking into account different state distributions. If only
a small amount of adaptation data is presented a global transform is used for all models
in the system, and if more data is available the number of transforms is increased. This
ensures that all model states can be adapted even if no model-specific data is available.
We refer to this method as maximum likelihood linear regression (MLLR) adaptation.
The statistics used to estimate the transform matrices are generated using a forward–
backward alignment of the adaptation data. Hence, the method has clear links with
standard Baum–Welch HMM training. A related approach has been developed con-
temporaneously by Digalakis (Digalakis, Rtischev and Neumeyer, 1995).
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Section 2 describes the MLLR approach. The adaptation formulae are derived in
Section 3, with special cases detailed in Section 4. Section 5 briefly explains how sets
of parameters that use the same transform are tied. The method is evaluated using the
experimental setup described in Section 6, and the results are presented in Section 7.

2. Adaptation approach

The MLLR approach to speaker adaptation requires an initial speaker independent
continuous density HMM system. MLLR takes some adaptation data from a new
speaker and updates the model mean parameters to maximize the likelihood of the
adaptation data. The other HMM parameters are not adapted since the main differences
between speakers are assumed to be characterized by the means.

Consider the case of a continuous density HMM system with Gaussian output
distributions. A particular distribution, s, is characterized by a mean vector, ls, and a
covariance matrix Cs. Given a parameterized speech frame vector o, the probability
density of that vector being generated by distribution s is bs(o)

bs(o)=
1

(2p)n/2|Cs|1/2 e−1/2(o−ls)′C−1
s (o−ls)

where n is the dimension of the observation vector.
The adaptation of the mean vector is achieved by applying a transformation matrix

Ws to the extended mean vector ns to obtain an adapted mean vector l̂s

l̂s=Wsns

where Ws is an n×(n+1) matrix which maximizes the likelihood of the adaptation
data, and ns is defined as

ns=[x, l1, . . . , ln]′

where x is the offset term for the regression (x=1 to include an offset in the regression,
x=0 to ignore offsets).

For distribution s, the probability density function for the adapted system becomes

bs(o)=
1

(2p)n/2|Cs|1/2 e−1/2(o−Wsns)′C−1
s (o−Wsns). (1)

Having a separate transform for each Gaussian distribution is equivalent to a
complete re-estimation of the means. This leaves the problem of adapting the parameters
of unseen distributions unsolved. A more general approach is adopted in which the
same transformation matrix is used for several distributions. The transformation is
estimated using data from all the associated (tied) distributions, so if some of the
distributions are not observed in the adaptation data, a transformation may still be
applied. The degree of transformation tying is determined by the amount of adaptation
data available. For the case of small amounts of adaptation data a global transformation
may be used.
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3. Estimation of MLLR regression matrices

MLLR estimates the regression matrices Ws to maximize the likelihood of the adapted
models generating the adaptation data. The derivation of the MLLR estimates is given
below, making the assumption that each HMM state has a single Gaussian output
distribution. The full covariance case has no closed form for the estimation formulae
in the tied matrix case, hence only the case of diagonal covariance distributions is
considered.

3.1. Definition of auxiliary function

Assume the adaptation data, O, is a series of T observations

O=o1 . . . oT.

Denote the current set of model parameters by k and a re-estimated set of model
parameters as k̄. If all possible state sequences of length T are denoted by the set H,
the total likelihood of the model set generating the observation sequence is

F(O|k)=]
hvH

F(O, h|k)

where F(O, h|k) is the likelihood of generating O using the state sequence h given the
model parameters.

The quantity F(O|k) is the objective function to be maximized during adaptation.
It is convenient to define an auxiliary function Q(k, k̄):

Q(k, k̄)=]
hvH

F(O, h|k) log(F(O, h|k̄)). (2)

Model parameters which maximize the auxiliary function also increase the value of the
objective function (unless it is at a maximum). Therefore successively forming a
new auxiliary function with improved parameters iteratively maximizes the objective
function. Baum first proved the convergence of the algorithm (Baum, 1972) which was
later extended to mixture distributions and vector observations (Liporace, 1982; Juang,
1985).

3.2. Maximization of auxiliary function

Since only the transformations Ws are re-estimated, only the output distributions bs are
affected so the auxiliary function (2) can be written as

Q(k, k̄)=constant+]
hvH
]

T

t=1

F(O, h|k) log bht(ot). (3)

Defining S as the set of all state distributions in the system, and cs(t) as the
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a posteriori probability of occupying state s at time t given that the observation sequence
O is generated

cs(t)=
1

F(O|k)]
hvH

F(O, ht=s|k).

Equation (3) can then be written as

Q(k, k̄)=constant+F(O|k)]
S

j=1
]

T

t=1

cj(t) log bj(ot). (4)

Expanding log bj(ot) the auxiliary function is

Q(k, k̄)=constant−
1
2
F(O|k)

×]
S

j=1
]

T

t=1

cj(t)[n log(2p)+log|Cj|+h(ot, j )]

where

h(ot, j )=(ot−Wjnj)′C−1
j (ot−Wjnj).

The differential of Q(k, k̄) with respect to W̄s is:

d

dWs

Q(k, k̄)=−
1
2
F(O|k)

d

dWs

×]
S

j=1
]

T

t=1

cj(t)[n log(2p)+log|Cj|+h(ot, j )]

then completing the differentiation, and equating to zero to find the maximum of
Q(k, k̄)

d

dWs

Q(k, k̄)=F(O|k)]
T

t=1

cs(t)C−1
s [ot−Wsns]n′s=0

hence

]
T

t=1

cs(t)C−1
s otn′s=]

T

t=1

cs(t)C−1
s Wsnsn′s. (5)

Equation (5) gives the general form for computing Ws.
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3.3. Re-estimation formula for tied regression matrices

When the regression matrices are tied across a number of distributions (e.g. a global
regression matrix) the summations must be performed over all tied distributions. If Ws

is shared by R states {s1, s2 . . . . sR} Equation (5) becomes:

]
T

t=1
]

R

r=1

csr(t)C
−1
sr otn′sr=]

T

t=1
]

R

r=1

csr(t)C
−1
sr Wsnsrn′sr. (6)

To derive a re-estimation formula for the tied case, Equation (6) is first rewritten as

]
T

t=1
]

R

r=1

csr(t)C
−1
sr otn′sr=]

R

r=1

V(r)WsD(r) (7)

where V(r) is the state distribution inverse covariance matrix scaled by the state occupation
probability,

V(r)=]
T

t=1

csr(t)C
−1
sr

and D(r) is the outer product of the extended mean vectors

D(r)=nsrn′sr.

If the right-hand side of Equation (7) is denoted by the n×(n+1) matrix Y with
elements yij, the individual matrix elements of V(r), Ws and D(r) are denoted by v(r)

ij , wij

and d (r)
ij , respectively, then

yij=]
n

p=1
]
n+1

q=1

wpqC]
R

r=1

v(r)
ip d (r)

qj D .

If all covariances are diagonal, and since D is symmetric, then

]
R

r=1

v(r)
ip d (r)

qj=GRR
r=1 v(r)

ii d (r)
jq when i=p

0 when irp

so

yij=]
n+1

q=1

wiqg(i)
jq ,
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where g(i)
jk are the elements of the (n+1)×(n+1) matrix G(i), given by

g(i)
jq=]

R

r=1

v(r)
ii d (r)

jq .

If the left hand side of Equation (7) is an n×(n+1) matrix denoted by Z with elements
zij, then Z=Y and

zij=yij=]
n+1

q=1

wiqg(i)
jq .

It should be noted that zij and g(i)
jq are not dependent on Ws and both can be computed

from the observation vectors and the model parameters. Hence Ws can be computed
from the system of simultaneous equations

w′i=G(i)−1z′i

where wi and zi are the ith rows of Ws and Z, respectively. These equations can be solved
using Gaussian elimination or LU decomposition methods and Ws calculated on a row-
by-row basis.

The extension of the method to HMMs with mixture Gaussian distributions is
straightforward and achieved by substituting mixture component occupation prob-
abilities for state occupation probabilities (Leggetter & Woodland, 1994).

4. Special cases of MLLR

4.1. Least squares regression

Least squares regression computation as used by Hewett (1989) can be shown to be a
special case of MLLR. If all the covariances of the distributions tied to the same
transformation are the same, Equation (6) becomes

]
T

t=1
]

R

r=1

csr(t)otn′sr=]
T

t=1
]

R

r=1

csr(t)Wsnsrn′sr. (8)

If each speech frame is assigned to exactly one distribution (e.g. by Viterbi alignment)
so that

csr(t)=G1 if ot is assigned to state distribution sr

0 otherwise
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then Equation (8) becomes

]
T

t=1

otn′htdsht=W̄s]
T

t=1

nhtn′htdsht (9)

where

dsht=G1 if htv{s1 . . . sR}
0 otherwise.

Defining the matrices X and Y as

X=[nh1 nh2 . . . nhT]

Y=[o1dsh1 o2dsh2 . . . oTdshT].

Substituting X and Y in Equation (9) and rearranging, the estimate of the regression
matrix is the standard least squares estimate (Kendall, 1971)

Ws=YX ′(XX′)−1.

4.2. Single variable linear regression

If all the features in the mean vector are independent, the modification of each mean
component can be calculated by simple single variable linear regression. This significantly
reduces the number of regression parameters which need to be estimated per regression
matrix.

Rewriting the transformation matrix Ws for this case as a vector ŵs

( ) ( )
w1,1

w1,1 w1,2 0 . . . 0 <
w2,1 0 w2,3 . . . 0 wn,1

Ws= < < , ŵs= w1,2
,

wn,1 . . . . . . 0 wn,n+1 <
wn,n+1

and defining an n×2n matrix Ds made up of elements of the extended mean vector n

( )x 0 . . . . . . 0 l1 0 . . . 0
0 x 0 . . . . . . 0 l2 0 . . . 0

Ds= < <
0 . . . 0 x 0 . . . . . . 0 ln−1 0
0 . . . . . . 0 x 0 . . . . . . 0 ln
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then the maximization of the objective function leads to the following formula for the
regression parameters in the tied regression matrix cases:

ŵs=C]
R

r=1
]

T

t=1

cs(t)D′srC
−1
sr DsrD

−1

C]
R

r=1
]

T

t=1

csr(t)D′srC
−1
sr otD.

Thus only one matrix inversion is required to calculate W and if the offset term is
zero (x=0) all matrices can be reduced to diagonal matrices making computation
trivial.

5. Defining regression classes

When regression matrices are tied across mixture components, each matrix is associated
with many mixture components. This is achieved by defining a set of regression classes
where each class contains all the mixture components associated with the same regression
matrix.

For the tied approach to be effective it is desirable to put all the mixture components
which will use similar transforms into the same class. However, since we have no
a priori knowledge of the transforms some other criteria must be used. Thus we make
an assumption that mixture components with similar parameter values will change in
a similar manner. By assigning mixture components, representing similar acoustic
phenomena to the same regression class, they will be transformed using the same
regression matrix.

Two approaches for defining regression classes were considered: one based on broad
phonetic classes and the other based on clustering of mixture components. In the first
case all mixture components in any model representing the same broad phonetic class
(e.g. fricatives, nasals, etc.) were placed in the same regression class. In the clustering
approach the mixture components were compared using a likelihood measure and
similar components placed in the same regression class. Preliminary results showed
little difference between the two approaches when a small number of classes is used,
but the data driven approach was found to be more appropriate for defining large
numbers of classes.

6. Experimental set-up

The ARPA Resource Management RM1 database was used to evaluate MLLR speaker
adaptation. The speech was coded into 25 ms frames, with a frame advance of 10 ms.
Each frame was represented by a 39 component vector consisting of 12 MFCCs plus
log energy, and their first and second time derivatives.

A set of SI models was trained on the SI portion of the database (3990 utterances),
using standard Baum–Welch maximum likelihood estimation. The models were state
clustered cross-word triphones, containing a total of 1778 states. Each state had six
mixture components for the output distribution. All training and data preparation was
performed using the HTK HMM toolkit (Young, Woodland & Byrne, 1993).

The 48 phone CMU set was used for labels and a single pronunciation for each
word was derived from a dictionary (Lee, 1988). This set of SI models gives a 2·5%
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word error rate on the RM Feb’91 SI test set (Young, Odell & Woodland, 1994) and
was used as the initial system for the adaptation experiments.

The SD portion of the database was used for all adaptation experiments. This consists
of 600 training and 100 test utterances from each of 12 different speakers (seven male
and five female). Portions of the training data were used as adaptation data.

Adaptation was implemented by using a forward–backward alignment of the ad-
aptation data to assign frames to regression matrices as previously described. All
recognition tests were performed using a dynamic network decoder (Odell, Valtchev,
Woodland & Young, 1994) with the standard RM word-pair grammar (perplexity 60).

To enable a comparison with an equivalent speaker dependent system the SI models
were retrained for each speaker using all 600 training files using Baum–Welch estimation,
and tested on the speaker dependent test set. The SI system gave 4·3% word error and
the SD system 1·8% word error (averaged over all 12 speakers).

For each adaptation experiment the number of regression matrices was pre-de-
termined. The mixture components were assigned to the regression classes using a
clustering procedure. Each mixture component was initially assigned to an individual
class. The two closest classes were combined to create a single class, and the process
repeated until the desired number of classes was obtained. The distance measure used
was based on the change in likelihood of the class data being generated by the classes
when the classes are combined as opposed to being kept separate. The smaller the
change the closer the distributions are, so these components are placed in the same
class.

7. Evaluation

A number of experiments have been performed to investigate the merits of the approach.
These include a comparison between using diagonal and full regression matrices; an
investigation into the amount of adaptation data required; unsupervised implementation
of MLLR; and a comparison using the least squares regression criteria.

All adaptation was performed in a static supervised manner using labelled adaptation
data unless otherwise indicated. Only one iteration of adaptation was performed in all
cases since preliminary tests indicated that further iterations had very little effect (i.e.
the frame-state alignment for the adapted models is very similar to the SI frame-state
alignment). In all cases the silence models were not adapted and the silence data was
ignored during adaptation. For all experiments the offset term for the regression
calculation was set to one (x=1).

7.1. Comparison of full and diagonal regression matrices

Using 40 adaptation utterances, MLLR adaptation was performed while varying the
number of regression classes using either full or diagonal regression matrices.

Both approaches give an improvement over the initial model set, but the effect of
the diagonal matrices is limited (Fig. 1). The full matrices give a substantial improvement
when using just one or two classes, but as the number of classes is increased the amount
of data allocated to each class becomes small and the matrices are poorly estimated.
Thus the performance falls away rapidly. With diagonal matrices, as more classes are
used the performance gradually increases; however, this effect is very small and using
300 diagonal matrices is only 0·2% absolute better than using 40 diagonal regression
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Figure 1. Full matrix vs. diagonal matrix maximum likelihood linear regression
using 40 adaptation utterances. (· · · · · ·), Speaker independent; (—-—-—-),
speaker dependent; (——), full adapted; (–––), diagonal adapted.

matrices. A diagonal matrix has 2n parameters while a full matrix has n(n+1) parameters,
thus the amount of data needed to estimate a diagonal regression matrix is much
smaller than that of a full matrix. This indicates that more classes can be used with
the same amount of data. The results show that increasing the number of classes does
improve performance, but the performance never reaches that of the full regression
matrix. Although an examination of full regression matrices showed the main diagonal
to be quite dominant, it is clear that the off-diagonal terms relating the interdependencies
between components is important.

The single variable regression used for the diagonal matrix is clearly not powerful
enough to capture many different variations within a class. When using 300 classes of
diagonal matrices the number of adaptation parameters is equivalent to that using 15
full matrices, yet the performance is significantly poorer (3·2 vs. 2·7%). Using a large
number of classes can lead to problems of data sufficiency for robust estimates of each
class, and therefore adaptation using a small number of full matrices is superior to
using many diagonal matrices. There are also advantages for unsupervised adaptation
since using a small number of classes is more likely to generate more robust estimates
for the adaptation parameters in the presence of some errors in the labelling of the
adaptation data.

7.2. Small amounts of adaptation data

To assess how the amount of adaptation data affects performance, a global regression
matrix was estimated while varying the number of adaptation utterances.

Using a full regression matrix gives an improvement after just three adaptation
utterances (equivalent to an average of 11 s of speech per speaker), and as more
adaptation data is presented the performance gradually improves (Fig. 2). When a
sufficient amount of data has been used to estimate the regression matrix further
addition of data has little effect. By increasing the number of classes as the amount of
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Figure 2. Full matrix maximum likelihood linear regression using global
regression class. (· · · · · ·), Speaker independent; (—-—-—-), speaker dependent;
(——), speaker adapted.

data increases while ensuring sufficient adaptation data per regression class, improved
performance can be achieved. The method performs poorly when there are too many
classes and not enough data. In these cases the assignment of data to each class is
insufficient for a robust estimate for the regression, and in extreme cases the accumulated
matrices to invert are very close to being singular (due to linear dependence), resulting
in computational errors.

7.3. Comparison of supervised and unsupervised adaptation

In the previous experiments the adaptation has been supervised, i.e. the true transcription
of the adaptation data was known. Unsupervised adaptation may be implemented by
first generating the adaptation data transcription by an initial recognition pass. This
information is then used in the forward–backward alignment of data in adaptation. In
experiments to compare supervised and unsupervised adaptation different quantities of
adaptation data were used and an appropriate number of regression classes selected by
experiment. The best supervised and unsupervised adaptation results for the given data
are shown in Fig. 3.

Supervised adaptation performs marginally better in all cases, but the difference is
small: for 40 utterances the difference is 0·2% absolute; with 100 utterances 0·2%; and
600 utterances 0·1%. This small difference is partly due to the accuracy of the SI models
which gives a reasonable alignment in most cases, and also due to the broad tying of
classes which reduces the effect of misaligned frames due to errors in the adaptation
labelling.

As the number of adaptation files increases the performance also improves and
gradually tends towards the performance of an SD system. In the limit, with sufficient
data and one class per mixture component, the performance should be equivalent to
that achieved by Baum–Welch estimation since the new means are estimated by the
same optimization criteria.
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Figure 3. Supervised vs. unsupervised adaptation using maximum likelihood
linear regression. (· · · · · ·), Speaker independent; (—-—-—-), speaker
dependent; (——), supervised adapted; (–––), unsupervised adapted.

T I. Comparison of adaptation using least squares estimation and maximum likelihood
linear regression (MLLR) estimation using Viterbi and forward–backward alignment of the data

% word error

MLLR adaptation
No. adaptation No. of Least squares

utterances classes adaptation Viterbi Forward–backward

5 1 4·0 3·8 3·8
10 1 3·8 3·8 3·7
15 1 3·4 3·3 3·2
40 1 3·5 3·4 3·4
40 5 3·5 3·2 3·0
40 10 3·3 3·0 2·9
40 15 3·5 2·8 2·7
40 20 3·8 3·0 2·8

7.4. Comparison of MLLR to least squares regression

Experiments were performed using the standard least squares regression (as discussed
in Subsection 4.1) to estimate the regression matrix, and compared to the MLLR
method. Exactly the same experimental set-up was used, the only difference being the
adaptation phase. The adaptation data was aligned using a Viterbi alignment of the
correct labels (i.e. each frame was assigned to a single mixture component). The effect
of including the variance in the estimation of the transform was also examined by
generating MLLR transforms using a Viterbi alignment.

The comparison (Table I) shows that MLLR gives a lower error rate than least squares
optimization. The difference is due mainly to the inclusion of variance information in
the estimation of the transform since the two alignment strategies give similar MLLR
results. The least squares approach made the invalid assumption that each distribution
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within the same regression class has the same covariance matrix. As the number of
classes increases, the difference between least squares and MLLR performance increases
showing the importance of correctly incorporating the covariance matrices into the
regression matrix calculation.

8. Conclusion

A new speaker adaptation method for continuous density HMMs called maximum
likelihood linear regression (MLLR) adaptation has been described. The method adapts
a set of SI models to a specific speaker by applying a set of linear transformations to
the Gaussian mean vectors. Each transformation is used for a number of Gaussian
distributions, and the number of transformations is determined by the amount of
adaptation data available. The parameters of the transformation matrices are estimated
to maximize the likelihood of the speaker specific data.

MLLR can be seen as an extension to least squares regression. The assumption of
equal covariances has been removed, and the adaptation data can be assigned to
distributions on a probabilistic basis. The improvement is reflected in the experiments
which show that MLLR is more effective than least squares, especially when more
regression classes are used.

The method has been evaluated on the ARPA Resource Management corpus using
a mixture Gaussian cross-word triphone system. Experiments have shown that full
regression matrices are more effective than diagonal matrices, and that improvements
in recognition rates can be achieved using only a few seconds of adaptation data. As
more data is used for adaptation a corresponding increase in performance can be
achieved by matching the number of regression transformations in the system to the
quantity of data available. The performance tends towards that of an SD system as
more data is used. Implementing the method in an unsupervised manner gives only a
marginal degradation in performance from a supervised approach.

It has been shown that MLLR can be applied to continuous density HMMs with a
large number of Gaussians and is effective with small amounts of adaptation data.
Furthermore, since any data can be used for adaptation, it is possible to integrate MLLR
transparently into a recognition system in an incremental unsupervised adaptation mode.
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