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Minimum Classification Error Rate
Methods for Speech Recognition

Biing-Hwang JuangFellow, IEEE Wu Chou,Member, IEEE and Chin-Hui LeeFellow, IEEE

Abstract—A critical component in the pattern matching ap- are always inadequate, particularly in dealing with speech
proach to speech recognition is the training algorithm, which problems. Understanding of these differences would give us a
aims at producing typical (reference) patterns or models for phetter perspective in answering the question of optimal speech
accurate pattern comparison. In this paper, we discuss the issue recognizer design

of speech recognizer training from a broad perspective with Th f f . . v defined b
root in the classical Bayes decision theory. We differentiate the € periormance or a recognizer 1S normally detined by

method of classifier design by way of distribution estimation and itS €xpected recognition error rate, and we define an optimal
the discriminative method of minimizing classification error rate  recognizer to be one that achieves the least expected recog-
based on the fact that in many realistic applications, such as nition error rate. The difference between the statistical and
speech recqgnition, the real signal dis.t.ribution form is rargly the proposed minimum classification error (MCE) approach
known precisely. We argue that ftraditional methods relying - jieg in the way the recognition error is expressed and in
on distribution estimation are suboptimal when the assumed - R
distribution form is not the true one, and that “optimality” the computational steps that would lead to the minimization
in distribution estimation does not automatically translate into Of such error functions. A key to the development of the
“optimality” in classifier design. We compare the two different MCE method is a new error function that incorporates the
methods in the context of hidden Markov modeling for speech recognition operation and performance in a functional form,
recognition. We show the superiority of the minimum classi- which can be directly evaluated and optimized.
f'Catr']or(‘j oo ('\.’('jc.:E) rznethoo: o the O:'Etr'b“t'on ﬁs“mat'o_”_ This paper begins in the next section with a brief review of
Exe;eﬁ o e%tg.r(i\r? g'gg et . ael,rﬁlsg ngsri\é?rzi d gﬁ/o\s/?deeesc . ggﬂﬁggﬁ? the Bayes decision theory and its application to the formulation
reduction of recognition error rate. of statistical pattern recognition problems. We then discuss
in Section Ill key considerations in choosing the distribution
form for speech signals. The discussion is intended to cast the
problem of automatic speech recognition in the framework
HE METHOD of hidden Markov modeling has becomef statistical pattern recognition, unlike other approaches such
prevalent in speech recognition applications recently [1ds the acoustic-phonetic approach or the artificial intelligence
The hidden Markov model (HMM) method is statisticallyapproach [2]. Based on the empirical observation, we explain
based, and its success has triggered a renewed urge for a beitgr the HMM is a natural, simple choice for a speech
understanding of the traditional statistical pattern recognitigiignal distribution. We then discuss the estimation problem
approach to speech recognition problems. This paper is thisHMM in Section IV. We point out, however, that despite
intended to provide a revisit to the statistical formulation dts prevalence, an HMM is not thieue distribution form for
the recognition problem, take a critical view of the approacBpeech signals and a new approach based on the concept of
and hopefully inspire other innovations that would potentiallgiscrimination for speech recognizer design becomes appro-
lead to better solutions in the context of automatic speeghiate. In Section V, we introduce an MCE training method
recognition. that aims at minimizing either the empirical error rate or the
The statistical formulation has its root in the classical Bayespected error rate, given an arbitrary choice of the distribution
decision theory, which links a classification/recognition task {@iscriminant) function. We elaborate the implementation of
the problem of distribution estimation. This statistical formuthe new training method, again for the particular case of a
lation is the basis of various pattern recognition techniquésiden Markov model. We report several experimental results
developed in the past several decades. However, if we cagemparing the traditional maximum likelihood (ML) method
fully reexamine the fundamental assumptions and limitatiofisased on the distribution estimation formulation) and the
of the approach, we can find that there exist difference@w MCE training method in Section VI. We summarize
between the problem of optimal distribution estimation andiscussions finally in Section VII.
the problem of optimal recognizer design. This is, as will be
elaborated, due to the facts that we lack complete knowledge
of the form of the data distribution and that training data Il. BAYES DECISION THEORY
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words, the designer has full knowledge of the random natustated: Given (or collect) a set of training data (observations)

of the source. From the set of joint probability distributions{.X;, X, --- X7} with known class labels, estimate the a

the marginal and the conditional probability distributions caposteriori probabilities?(C;|.X),i =1,2--- M for any X to

be easily calculated. implement the maximum a posteriori decision for minimum
To measure the performance of the classifier, we furthBayes risk. Thea posteriori probability P(C;|X) can be

define for every class paifj,i) a cost or loss functior;; rewritten as

that signifies the cost of classifying (or recognizing) a class

observation into a classevent. The loss function is generally P(Ci|X) = P(X|C)P(Ci)/ P(X). (7)

nonnegative withe;; = O representing correct classification.
Given an arbitrary observatioX, a conditional loss for

classifying X into a classi event can be defined as [3]

Since P(X) is not a function of the class index and, thus,
has no effect in the MAP decision, the needed probabilistic
knowledge can be represented by the class pH(f;) and
M the conditional probabilityP?(X|C;). For the simple case of
R(Ci|X) = Z@jiP(Cj|X) (1) isolated word speech recognition, the observations are the
j=1 word utterances and the class labels are the word identities.

’ . . . . The class priorP(C;) often appears as part of the language
where P(C;|.X) is the a posteriori probability. This leads to odel [4] and in our present discussion is assumed to be

a reasonable performance measure for the classifier, i.e. rt]f'u,af . .
. uniform without loss of generality.
expected loss, defined as

There are several issues associated with this classical ap-
proach. First, the distributions usually have to be parame-
terized in order for them to be practically useful for the
I . _implementation of the MAP rule of (6). The classifier designer
where C(.X) represents the classifier's decision, assumifigerefore has to determine the right parametric form of the
one of the M “values,” Cy,C -~ - Cyy based on a random yigyribtions. For most of the real-world problems, this is a
observationX drawn from a probability distributior?(.X).  gitficy|t task. Our choice of the distribution form is often

The decision function(/(.X'), depends on the classifier designjinited by the mathematical tractability of the particular dis-
Obviously, if the classifier is so designed that for eV&fy  tihtion functions and is very likely to be inconsistent with

£= / R(C(X)|X)p(X) dX @

R(C(X)|X) = min R(C;| X) (3) the actual distribution. This means the true MAP decision can
@ rarely be implemented, and the minimum Bayes risk generally
the expected loss in (2) will be minimized. remains an unachievable lower bound. Second, given a param-
For speech recognition, the loss functieg; is usually eterized distribution form, the unknown parameters defining
chosen to be the zero-one loss function defined by the distribution have to be estimated from the training data.
o A good parameter estimation method is therefore necessary.
i = {0, t=J ij=1,2-M (4) The estimation method has to be able to produce consistent
! L ot#y ’ ’ parameter values. Third, the approach requires a training data

which assigns no loss to correct classification and a unit losgt of known eX"%”?p'es- In order to have a reliable parameter
timate, the training data set needs to be of sufficient size.

to any error, regardless of the class. With this type of lo > . .
y g ! A sually, the more the training data that is provided, the

function, the expected loss is thus the error probability of b h . < The difficul hel
classification or recognition. The conditional loss becomes ; etter the parameter estimate is. The difficulty, nevertheless,
is that data collection and labeling is a labor-intensive and

R(Ci|X) = ZP(CJ|X) resource-demanding process, particularly for speech recogni-
ity tion applications. When the amount of the training data is
=1- P(Cy|X). (5) limited, the quality of the distribution parameter estimates

can not be guaranteed. These three basic issues point out a
The optimal classifier that achieves minimuhis thus the fundamental fact in the statistical pattern recognition approach;
one that implements the following: that is, despite the conceptual optimality of the Bayes decision
) theory and its applications to pattern recognition, it cannot be
CX) =0 il P(GlX) = m?XP(CﬂX)' (6) accomplished because practical “MAP” decisions in speech

. o recognition are not true MAP decisions. This understanding is
In other words, for minimum error rate classification, th%ritical in our discussions below.

classifier employs the decision rule of (6), which is called the
maximum a posterior{MAP) decision. The minimum error
rate achieved by MAP decision is call&hyes risk IIl. PROBABILITY DISTRIBUTIONS FOR SPEECH

The required knowledge for an optimal classification de- The statistical method, as discussed in the previous section,
cision is, thus, thea posteriori probabilities for the imple- requires that a proper, usually parametric, distribution form
mentation of the MAP rule. These probabilities, howevefor the observations be chosen in order to implement the MAP
are not given in practice and have to be estimated fromdacision. Using the task of isolated word speech recognition as
training data set with known class labels. The Bayes decisian example, we have to determine the distribution form for the
theory thus effectively transforms the classifier design problespeech utterances of each word before we apply an estimation
into a distribution estimation problem. This is the basis ahethod to find the values of the parameters. What is the right
the statistical approach to pattern recognition, which can destribution form for speech utterances? This question involves
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SHOULD WE CHASE more often than others, while some are simply nonexistent
in the language. The speech model or distribution needs to

b e - have provisions to permit characterization of this sequential

$ structure, ideally in a manner consistent with the slowly

varying nature (“quasistationarity”) of the speech signal. The
f‘ ! HMM provides a simple means to characterize speech signals
| ARV according to the above discussion.

v B. Hidden Markov Model

Let X be a speech utteranc¥, = (1, %> - - - 1) Wherex,
denotes a short-time vector measurement. It has been found
that short-time cepstral analysis [5] produces effective speech
observations, in the form of low-frequency (10-16) cepstral
coefficients, for recognition purposes. Thug,conventionally
is a cepstral vector.

Further consider a first-ordel-state Markov chain gov-
erned by a state transition probability matdx= [a,;], where
a;; is the probability of making a transition from stateto
state j. Assume that at = O the state of the systemy is
specified by an initial state probability; = P(qo = ). Then,
for any state sequenee= (qo, ¢1 - - - g7 ), the probability ofq
being generated by the Markov chain is

P(q|A7 7T) = Tq0Qq0q1 Yq192 * " " Cqr_1q97- (8)

Suppose the system, when at stgteputs out an observation
x; according to a distributiorby, (x:) = P(®|q:), ¢ =
1,2...N. The HMM used as a distribution for the speech
utteranceX is then defined as

re—— 3 . P(X|m, A {b;})o)) =P(X[N) =) P(X,q|\)
| q

. 100 mess: -t

Fig. 1. Speech waveform and a segmentation and labeling of the constituent
sounds of the phrase “Should we chase?”

=Y P(X|q, ) P(ql\)
q
T
two essential aspects: i) finding the speech dimensions that = 27“10 Haqt—lqtbqt () (9)
carry the most pertinent linguistic information, and ii) deciding 9 =t

how to statistically characterize the information along th\ﬁhere)\: (r, A, {b;}),) is the parameter set for the model.
chosen dimensions. We discuss these issues in this section. As can be’ séenj i]n:%9){b } defines the distribution for
q¢

L short-time observations andl characterizes the behavior

A. Speech Characteristics and interrelationship between different states of the speech-

Speech is a time-varying signal. When we speak, our artigeneration process. In other words, the structure of an
ulatory apparatus (the lips, jaw, tongue, and velum) modulatd8IM provides a reasonable means for characterizing the
air pressure and flow to produce an audible sequence digtribution of a speech signal. Normally,, the total number
sounds. Although the spectral content of any particular souofi states, is much smaller thdh, the time duration of the
in speech may include frequencies up to several thousasmkech utterance. The state sequegcdisplays a certain
hertz, our articulatory configuration (vocal tract shape, tongdegree of stability among adjacepts due to the above-
movement, etc.) often does not undergo dramatic changes mmentioned “quasistationarity.” The use of the HMM as speech
than ten times per second. During the short interval where thistributions has been shown to be practically effective.
articulatory configuration stays somewhat constant, a regionTwo points deserve further attention. First, in the above,
of “quasistationarity” in the produced speech signal can ofténe choice of state observation distributiobs(x;) is not
be observed. This is the first characteristic of speech thsttecified. Different choices of speech dimensions for the
distinguishes it from other random, nonstationary signals. Adservation space may require different forms of the state
an example, Fig. 1 shows the waveform of the speech segmebservation distribution. For cepstral vectors, a mixture Gauss-
“should we chase?” with the corresponding phoneme labelsan density is commonly employed. Second, regardless of the

Furthermore, speech is not a memoryless process dueptactical effectiveness of the HMM in speech recognition, it
articulatory and phonotactic constraints. According to th&hould not be taken as the true distribution form of speech and,
phonological rule of a language, there is a certain dependenbgrefore, any recognition system or decision rule that operates
between sound pairs that occur in sequence; some ocbased on the HMM is not going to achieve the minimum error



260 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 3, MAY 1997

rate as implied in the true MAP decision. We shall come bad#ads to various criteria for estimating the classifier parameters

to this later in Section V. in classifier design. In particular, criteria of maximum mutual
information (MMI) and minimum discriminative information
IV. HIDDEN MARKOV MODELING FRAMEWORK (MDI) are used in many applications [6]-[8]. Although these

methods demonstrate significant performance advantages over

The statisticgl method of hidden Markov queling fo[he traditional ML approach, they are not based on a direct
speech recognition encompasses several interesting probl Simization of a loss function, which links to the classi-

”a’_“e'yz the evaluation problem,_the decoding PfOb'em’ and tFi’Ei‘ation error rate. Over the past few years, an attempt has
est!mat!on problem [.1]'.[9]' In this paper, we d'SWSS only thgeveloped to overcome the fundamental limitations of the
gstlm_atlonhproblem, In Ilg?]t of ;hehabove deSCUSSrI]OHS of BaygSditional approach and to directly formulate the classifier

ecision theory approach, which transtorms the recogmzaeésign problem as a classification error rate minimization

design problem into a distribution estimation problem. problem. This approach is called tmeinimum classification
Given an observation sequence (or a set of sequentes) o, (MCE) method, in which the goal of MCE training

the estimation problem involves finding the ‘right” models , e aple to correctly discriminate the observations for

parar‘r;_tle(telr valuez that spec_lfy a source m?det: (d'St”_bu““g@st recognition/classification results rather than to fit the
most likely to produce the given sequence of observations. diLii vio o the data,

solvinhg the estimgtion problimk,] we usually uzefthedmethod Ofconsider a set oftlass conditional likelihood functions
ML; that is, we choose\ such thatP(X|A) as defined in (9 . L .
is maximized for the given “training(” s|e()quendé Note th(at) gi(X;A),0 = 1,2..- M defined by the parameter st In

i its simplest form for our present discussion of the HMM

In most sw_nple cases),{ is a speech utterance of_a knowr{echniqueSgi(X;A) can take essentially the same form as
word identity. The estimated model parameter 3&6 then ), i.e

associated with each individual word class. For/&Rword ‘
vocabulary, M such parameter sets are to be estimated for useg;(X; A) = P(X|\?)) = P(X|x®, 4D {3{1X ) (11)
in the recognizer.

The Baum—Welch algorithm [10] accomplishes likelihoo
maximization in a two-step procedure, known as “reestim
tion.” Based on an existing mode¥’, the first step of the
algorithm transforms the objective functiaR(.X|\) into a
new function@(\’, \) that essentially measures a divergen
between the initial model’ and an updated model The @

function is defined, for the simplest case, as C(X)=0C; if ¢(X;A) =max g;(X;A). (12)
J

avhere the superscript denotes the parameter set identity
g_ssociated with word (class)in the vocabulary. The entire
parameter set of the classifidris thusA = {\)}M 1 The
choice of HMM of (9) is a reasonable one as discussed in
C\r‘ﬁiection lll. The classifier/recognizer is operating under the
ollowing decision rule:

QX A) = ZP(qup‘/)lOgP(qup‘) (10)  The goal of classifier design is again to achieve the minimum
q error probability based on the loss function defined in (4).
where P(X, ¢|\) can be found in (9). It can be shown that The difficulty a;sociated With the MCE .training approach
Q(N,\) > Q(V, X' implies P(X|\) > P(X|\'). Therefore, lies in the dgrlvatlon of an objective functpn that has to be
the second step of the algorithm involves maximizip@\’, A consistent with the performance measure (i.e., the error rate)
as a function of\ to obtain a higher, improved likelihoog. @nd also suitable for optimization. The error rate based on a

These two steps iterate interleavingly until the likelihoofNite data setis a piecewise constant function of the classifier
reaches a fixed point. pargmeterA ano!, thus, a poor candidate for optimization py
The ML method is, however, not the only possible choic® simple numerlca! search methoq. We propose the following
for solving the estimation problem. An in-depth discussiofMPedded smoothirigr a loss function, which is a reasonable
of various estimation criteria can be found in [9]. It shoul§Stimate of the error probability.
be pointed out that the ML method does not necessarily lead o o
to a minimum error rate performance for the recognizer. A& Optimization Criterion
discussed above, this is due to i) the likely mismatch betweenThe smoothed optimization criterion is a function of the
the chosen distribution form (HMM in the present caseglass conditional likelihood functiong (X, A),i =1,2--- M.
and the actual speech data distribution that is typically nagain, the classifier makes its decision for each inuby
available; and ii) the finite training (known) data set that ishoosing the largest of the class conditional likelihood function
often inadequate. evaluated onX. The key to the new error criterion is to express
the operational decision rule of (12) in a functional form. There
V. MCE TRAINING exist in this regard many possibilities, one of which islass
As discussed, classifier design by distribution estimatianisclassification measuraking the following form:

often does not lead to an optimal performance. The problem 1/n
is that in most situations, the estimated probabilities deviate 1

from the true probabilities and the exact MAP rule cann@t(X) = —gi(X;A) +log | - > explg; (X; A)n]

be implemented. In addition, when the assumed form of the Joi7e

distributions is different from the true one, the optimality of the (13)

eStim.a_ted diStribUtion _has little to do with _the optimality of th_e INote thaty; (X, A) can be other reasonable functions, which are consistent
classifier, particularly in terms of recognition error rate. Thigith the error rate minimization.
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wheren is a positive number [11], [12]. This misclassificatiortheorem [17] establishes the algorithmic convergence property
measure is a continuous function of the classifier parametefsthe algorithm.

A and attempts to emulate the decision rule. Forthnclass Theorem 1: Suppose the following conditions are satis-
utteranceX, d;(X) > 0 implies misclassification and;(X) < fied?

0 means correct decision. Whenapproachesxo, the term 00 00

in the bracket becomesiax; ;= ¢g;(X;A). By varying the  (¢1: Z € = 00, Z <00 & >0;

value of » and A4, one can take all the competing classes =1 =1

into consideration, according to the individual significance, ¢2. 30 < V <o, such that for alk,

when searching for the classifier parametetn HMM-based -

speech recognition systems, each input feature ve€toyin a Reler; 0r) = (VAX, An), H(X, An

speech utteranc® (X = X(1),.-- X(#;)) is often assigned to + €6, VUX, Ap))VUX, Ap)) <V,
certain state of some HMM according to the best hidden-state whereH is the Hessian matrix of
sequence obtained through a Viterbi alignment process.

To complete the definition of the objective criterion, the
misclassification measure of (13) is embedded in a smoothed'3: A* = arg H}\in Ext(X,A)
zero-one function, for which any member of the sigmoid
function family is an obvious candidate. A general form of

second-order partial derivatives;

is the uniqueA such that

the loss functioncan then be defined as VL(A)|a=p+ = VEX (X, A)|p=p- = 0.
L;(X5A) = £(di(X)) (14) Then, A, given by
where/ is a sigmoid function, one example of which is Atp1 = At — e VX, A)|a=a, (18)
(d) 1 (15) will converge toA* almost surely (i.e., with probability one).

" T+exp(—yd+0)

with @ normally set to zero ands set to > one. Clearly,
whend;(X) is much smaller than zero, which implies correct ExVIX, Ay )— 0 (19)
classification, virtually no loss is incurred. Wheh(X) is

positive, it leads to a penalty which becomes essentially a clygiere A;, is a subsequence aof;. In this case,A;, will
sification/recognition error count. Finally, for any unknown converge to a local minimum poidt* whereVL(A)|p=a+ =
the classifier performance is measured by 0

ConditionC3 can be considerably weakened. Even without
condition C3 the following is still true:

The algorithm defined by equation (18) can also be gener-

M alized to the following form:

=1 At—l—l = At bt GtUtvg(Xty A)|A=At (20)

where 1(-) is the indicator function. .. wherel, is a positive definite matrix [17].

This three-step definition emulates the classification Op-gher theoretical properties of the GPD algorithm have been
eration as well as the performance evaluation in a smoQifgieq in the literature, often under the name of stochastic
functional form,'swj[able for classifier parameter Opt'm'_zat'o%pproximation [20]-[22]. However, in order to apply this
Based on the criterion of (16), we can choose to minimize 0Qg,qrithm to speech recognition, such as a speech recognition
of two quantities for the classifier parameter search; one is %Vstem using HMM's, the GPD algorithm has to accommo-
expected loss and the other the empirical loss. date various constraints imposed on the HMM structures. In

particular, the GPD algorithm is an unconstrained minimiza-
B. Optimization Methods tion scheme that needs modification for solving minimization

The purpose of the training process in the MCE approa#foblems with constraints. As will be shown shortly, one can
is to find a set of parameters so that a prescribed loss isutilize parameter space transformation to resolve this issue. In
minimized. As mentioned previously, the two kinds of losthis method, the original parameters are updated through the
we focus on are the expected loss and the empirical loss. inverse transform from the transformed parameter space to

1) Expected Lossfor a classification problem involving the original parameter space. This is done in such a way that

M different classes, the expected loss is defined as constraints on the original parameters are always maintained.
" More detailed illustrations of this approach are given in later
sections.
L(A) = Ex{H(X50)} = 2 /X€C- £i(X; A)p(X) dX. It should be noted that the underlying probability distribu-

(17 tions involved in minimizing (17) are often unknown to the
Various minimization algorithms can be used to minimize tHé€signer. One of the advantages of a GPD-based minimization
expected loss. The generalized probabilistic descent (GPD)@@orithm s that it does not make any explicit assumption
gorithm is a powerful algorithm that can be used to accompli&@f these unknown probabilities. This feature is important for
this task [11]. In the GPD-based minimization algorithm, thEcognition and adaptive learning problems.

target funCtionL(A) is _minimized a}ccording tol‘?‘n.iterative 2The proof of this theorem is based on the Martingale convergence theorem,
procedure. The following generalized probabilistic desceftich is out of the scope of this paper.
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2) Empirical Loss: For a given training data set consistingvhen o« — oo. We use the logarithm of (25) as an example
of I samples{ X1, --- X}, the empirical probability measurein our derivation below. The algorithm based on (25) is often
P defined on the training data set is a discrete probabiliballed segmental GPO12].
measure that assigns equal mass at each sample. The empiridale define, for
loss, on the other hand, is thus expressed as
X = (z1,%2--z7) and =z = [z, 242 21p]

Lo(A) :% S (X MUX, € C) :/z(X;A) dP;

j=1 =1
(21)

wherej denotes the index of the training utteranke in the  gi(X;A) = IOg{man 9i(X, s A)} = log{g:(X,q; A)}
training set of sizd, and P; is the empirical measure defined
on the training set. If the training samples are obtained by an
independent sampling from a space with a fixed probability
distribution P, the empirical probability distributior; will
converge toP in distribution asl — oc. In other words, for yhereg = (g,,4, - -- g7 is the optimal state sequence that

with D being the dimension of;

logag, g, +logty) (@)l +lognz  (27)
1

T

t

any measurable functiof achievesmaxq g;(X,q;A). We also assume that
/ fap; — / fdP. (22) K
b () = 3 N w1, R (28)
The empirical loss defined on thé independent training ’ kz_:—l 7 R

samples will converge to the expected loss, as the sample

sizel increases. With sufficient training samples, the empirica}here/\/[,] denotes a normal distribution(,i,z is the mixture
loss is an estimate of the expected loss. The goodness of this @ D J (i)
estimate is determined by the training sample dizand the weights, yj = [ujeli=, the mean vector and?jy the
convergence rate of the empirical probability meadgréo the cpvanancg ma(tiglx Wh|2ch,Dfor simplicity, is assumed to be
limit distribution P. Various upper bounds on the convergencdidgonal, i-.e.k;; = [0/,

rate of the empirical probability measure can be found in [18]. It iS desirable to maintain the original constraints in HMM
as probability measure, such as: i) the function being non-

negative, ii)2; a;; = 1 for all 4, 3) X4 ¢, = 1 for all

. . Jj, etc. Also, we assume;i, > 0. The following parameter
As we argued previously, an HMM is a reasonablgansformations allow us to maintain the following constraints

model/distribution form for speech observations, althoudfuring parameter adaptation:

we cannot explicitly prove that it is the true distribution form

C. HMM as a Discriminant Function

for speech. In this case, the MCE method is particularly ~ i
appropriate for the training of the model parameters. 1) aij — ai; wherea;; = X o (29)
Following (9), we have several ways of using an HMM ¢
as the discriminant function. A basic component in (9) is the k -
joint observation-state probability 2) cjx — & Wherec;;, = e’ (30)
T Z eéik
i i i i A :
POX, g A) = mg) [T af) 00 (20) = 0:(X, :4) (23) e
t=1 3) ke = fiike = p— (31)
which is now defined as a component functigflX, ¢; A) for 4) o — G = lojg O ke (32)
classi as well. The discriminant function for clagsan take ! ! !
several possible forms, as follows, basedgfiY, ¢; A): It can be shown that forX,, € C; in the training set,
1) g(X;A) = Z 9:(X, q: A). (24) discriminative adjustment of the mean vector follows
1 i i 04 (Xn; A
2) gi(X;A) =max gi(X,qA). (25) AiRe(n+1) = i (n) - 67(~(i) ) (33)
q Ofijie  1a=A,
o 1/
1
3) gi(X;A) = {5 > 9 Xg; A)“} (26) Where
_ ) _ (X;AN) o4 Od;
whereQ) is the total number of possible state T T 3d o (34)
. . aujké v a“jké
sequences and is a positive number. 50,
4) functions of the above. 8dz< =4(d;)(1 = £i(dy)) (35)
Note that (24) is equivalent to the likelihood function, (25) is adi(X; A) ) . Olog b](.i)(:ct)
equivalent to the maximum joint observation-state probability, — = Z 8@ —J) — @ —  (36)

NG -
and (26) is a generalized mixture model which approaches (25) Iy t=1 Fjree
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and
9 (@)
—v log b7 ()
aug('k?é

_ CEQ(QW)_d/2|R§»2|_1/2(b§»z)($t )—1

T 1 & T ?
O] e (i)
: <W - Njké) exp 3 Z <T - Njké)

T ke e=1 \%jke

(37)

where~ is the center slope of the exponential sigmoid function
for ¢; as defined in (15) and(-) denotes the Kronecker delta

function. Finally
(8)

“jké(” +1) = O—]('Q[(n)ﬁjké(n +1). (38)
Similarly, for the variancey](,?é
~ (2 ~ (4 8& Xn;A
aj(»k)é(n +1)= aj(»k)é(n) - 6% (39)
6,50 A=A,
where
al;
—y = —hd)[l = Li(di)]
95 1
- 0log b (z)
Y @) @)
t=1 95 1
dlog b,(»i)(:ct) i 3 i
g = 2m) TR
95 104
1 & (o o 2
te — Mkt
. eX —_—— —_
p{ 2 ;::1 < Tjke ) }
2
Tte — ke () -1
B Y e L R B IO RS )
(55 - e
(41)
Finally
oiRe(n+1) = exp{Fy(n + 1)}, (42)

Similar derivations for the transition probabilities and th
mixture weights can be easily accomplished.

D. Embedded MCE Training of HMM

In the above development of the MCE training formalis
the utterance observatiali is assumed to be one of thd

classes. For recognition of continuous speech or for spee
recognition using subword model units, what usually happeH
is that X is a concatenated string of observations belongin
to different classes. For example, a sentence is a sequenc (%
words, each of which is to be modeled by a distribution. In

this situation, one possible training criterion is to minimiz

concatenating a set of word (or substring) models.
Let W = (wy,ws---ws) be a word sequence that con

X

g(X7 W77 A) = IOg P(X7 qVVTv W1|A) (43)

m

stitutes a sentence. We define for an observation sequeg
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Fig. 2. Recognition curve of segmental GPD training.

where

WT = P(X7 QW’7W|A)

arg max
WAWY o, Wr_1

=rth best word sequence

qy, = best state sequence correspondingito (44)

and P(X, gy, W,|A) is the joint state-word sequence likeli-
hood. Also, letW, be the known word sequence label for
a training sentenceX. Following the minimum error rate

formulation, we define

. 1/n
|
+ log { - z_:l expg(X, Wy; A) - n]} (45)

where r,, is the total number of the competing word se-
guences, different froni¥,, that will be taken into consid-
eration in training. Again, the misclassification measure of
(45) is embedded in a zero-one or sigmoid loss function to
create a string error count. The rest of the procedure follows
the above case for isolated utterances straightforwardly. For
(edetailed discussion of this technique, consult [13].

VI. EXPERIMENTAL RESULTS

For brevity, we cite one set of experimental results for
the isolated class-utterance case [12] and another set for the
connected word case [13].

The isolated class-utterance case involves recognition of
i?erances of the English E-set vocabulary, consistingtof

d, e, g, p, t, v, & The data base was recorded over local
Ifed-up telephone lines from 100 American native speakers,
male and 50 female. Two utterances from each talker
were recorded, one used for training and the other for testing.

C

the string error rate while the string model is constructed fro%\n HMM recognizer with ten-state, five-mixiure/state models

rained with the traditional ML method achieved an accuracy
of 89% for the training data set and 76% for the test set.
CFig, 2 plots the recognition accuracy for both the training
54 the testing sets as a function of the number of iterations
of the MCE training procedure. After ten iterations, the new
recognizer achieved 99% accuracy for the training data set
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TABLE | HEAD BODY TAIL
PERFORMANCE COMPARISON IN CONNECTED DIGIT RECOGNITION

#_hj_bj bi_ti_#
String # of Error
Syst
ystem Error Rate String Errors Reduction 1_hi_bj
Baseline 1.4% 120 N/A 12_hj_bj ©
Minimum 13_h)_bj bl_tj_h3
String Error 0.95% 82 31.6% 14_hi_bj bl_tj_h4
GPD o 15_hi_b} bi_ti_hs
16_hj_bj
o bj_tj_h6
I~ t7_hj_bj
and 88% for the test set, representing a 50% reduction p_te-h.bi bl.tl_he
recognition error. Ot o

For the connected word case, the experiment used JI '°-"-°
connected-digit data base, which contains 8565 connected digit , o , o
strings for training and 8578 strings for testing The digﬁ'g' 3. Diagram of digit model with acoustic interword context-dependent

. : ) ’ del units.
strings are of unknown length with a maximum of seven oo M
digits. The HMM recognizer configuration used ten-state, 64-
mixture/state digit-based models. The MCE-based segment@,lE

RFORMANCE COMPARISON OF

GPD training method [13] was applied in the model training

TABLE 1
ML AND MINIMUM ERROR RATE TRAINING

stage. Table | lists a comparison in string error performance for ~ Training Method Word String

a baseline system trained with the conventional ML method 8700 sents. (Error_rate) | (Error.rate)
and a new system trained with the segmental GPD method. The Baseline (ML) 0.33% 0.97%
string error rate was reduced from 1.4% to 0.95%, representing Str_Frr GPD 0.24% 0.72%

a 32% reduction in recognition error. Err_Reduaction 26% 25%

The minimume-error-rate-based training approach was also
applied to training context-dependent subword models in ) o
continuous speech recognition [13], [14]. For connectéB® recognizer parameters to minimize the error rate. \We
digit recognition on the TI data base, we used a set Bfaborate the issues and solutions associated with the new
acoustic-based context-dependent subword model units, M&EE approach in this paper in the context of HMM-based
which 95% of the model units were interword contextteécognizer designs. The main issue or difficulty in this new
dependent units. Each digit in the vocabulary was model@@proach concerns with means to formulate the error rate
by a context-dependent network with 12 fan-in heads a@§timate as a smooth loss function for optimization. We show
12 fan-out tails. Fig. 3 illustrates the topology of each worthat a three-step smooth embedding leads to an error function,
model described by these acoustic-based context-depend#fich is a close approximation to the error count and can
interword model units. The performance comparisor¢ €asily optimized. The development led to an algorithm
between different acoustic modeling approaches are givedlled the generalized probabilistic descent (GPD) algorithm,
in Table 1. Under the unknown length decoding conditiorBn implementation of which, in terms of hidden Markov
the model obtained from the minimum error rate trainin%Ode““gy is discussed in detail in this paper. We further show
achieves a string error rate of 0.72% and a word error ratetgat the new MCE approach indeed achieves better perfor-
0.24% on the test set [14] These are the best results repoﬁ'@ﬁce than the traditional probablllty distribution estimation
so far for connected digit recognition on TI connected dig@PProach in a number of speech recognition experiments. In
database. A similar approach was also app“ed to Speag@ﬂeral, the MCE method prOVIdeS 30-50% reduction in error
recognition, details of which has been described in [24]. rate, compared to the traditional recognizer design.
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