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Abstract—A critical component in the pattern matching ap-
proach to speech recognition is the training algorithm, which
aims at producing typical (reference) patterns or models for
accurate pattern comparison. In this paper, we discuss the issue
of speech recognizer training from a broad perspective with
root in the classical Bayes decision theory. We differentiate the
method of classifier design by way of distribution estimation and
the discriminative method of minimizing classification error rate
based on the fact that in many realistic applications, such as
speech recognition, the real signal distribution form is rarely
known precisely. We argue that traditional methods relying
on distribution estimation are suboptimal when the assumed
distribution form is not the true one, and that “optimality”
in distribution estimation does not automatically translate into
“optimality” in classifier design. We compare the two different
methods in the context of hidden Markov modeling for speech
recognition. We show the superiority of the minimum classi-
fication error (MCE) method over the distribution estimation
method by providing the results of several key speech recognition
experiments. In general, the MCE method provides a significant
reduction of recognition error rate.

I. INTRODUCTION

T HE METHOD of hidden Markov modeling has become
prevalent in speech recognition applications recently [1].

The hidden Markov model (HMM) method is statistically
based, and its success has triggered a renewed urge for a better
understanding of the traditional statistical pattern recognition
approach to speech recognition problems. This paper is thus
intended to provide a revisit to the statistical formulation of
the recognition problem, take a critical view of the approach,
and hopefully inspire other innovations that would potentially
lead to better solutions in the context of automatic speech
recognition.

The statistical formulation has its root in the classical Bayes
decision theory, which links a classification/recognition task to
the problem of distribution estimation. This statistical formu-
lation is the basis of various pattern recognition techniques
developed in the past several decades. However, if we care-
fully reexamine the fundamental assumptions and limitations
of the approach, we can find that there exist differences
between the problem of optimal distribution estimation and
the problem of optimal recognizer design. This is, as will be
elaborated, due to the facts that we lack complete knowledge
of the form of the data distribution and that training data
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are always inadequate, particularly in dealing with speech
problems. Understanding of these differences would give us a
better perspective in answering the question of optimal speech
recognizer design.

The performance of a recognizer is normally defined by
its expected recognition error rate, and we define an optimal
recognizer to be one that achieves the least expected recog-
nition error rate. The difference between the statistical and
the proposed minimum classification error (MCE) approach
lies in the way the recognition error is expressed and in
the computational steps that would lead to the minimization
of such error functions. A key to the development of the
MCE method is a new error function that incorporates the
recognition operation and performance in a functional form,
which can be directly evaluated and optimized.

This paper begins in the next section with a brief review of
the Bayes decision theory and its application to the formulation
of statistical pattern recognition problems. We then discuss
in Section III key considerations in choosing the distribution
form for speech signals. The discussion is intended to cast the
problem of automatic speech recognition in the framework
of statistical pattern recognition, unlike other approaches such
as the acoustic-phonetic approach or the artificial intelligence
approach [2]. Based on the empirical observation, we explain
why the HMM is a natural, simple choice for a speech
signal distribution. We then discuss the estimation problem
in HMM in Section IV. We point out, however, that despite
its prevalence, an HMM is not thetrue distribution form for
speech signals and a new approach based on the concept of
discrimination for speech recognizer design becomes appro-
priate. In Section V, we introduce an MCE training method
that aims at minimizing either the empirical error rate or the
expected error rate, given an arbitrary choice of the distribution
(discriminant) function. We elaborate the implementation of
the new training method, again for the particular case of a
hidden Markov model. We report several experimental results
comparing the traditional maximum likelihood (ML) method
(based on the distribution estimation formulation) and the
new MCE training method in Section VI. We summarize
discussions finally in Section VII.

II. BAYES DECISION THEORY

Let be a random observation from an information source,
consisting of classes of events. A classifier’s job is to
correctly classify each into one of the classes. We
denote these classes by Let be
the joint probability distribution of and a quantity that is
assumed to be known to the designer of the classifier. In other
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words, the designer has full knowledge of the random nature
of the source. From the set of joint probability distributions,
the marginal and the conditional probability distributions can
be easily calculated.

To measure the performance of the classifier, we further
define for every class pair a cost or loss function
that signifies the cost of classifying (or recognizing) a class
observation into a classevent. The loss function is generally
nonnegative with 0 representing correct classification.

Given an arbitrary observation a conditional loss for
classifying into a class event can be defined as [3]

(1)

where is the a posteriori probability. This leads to
a reasonable performance measure for the classifier, i.e. the
expected loss, defined as

(2)

where represents the classifier’s decision, assuming
one of the “values,” based on a random
observation drawn from a probability distribution
The decision function, depends on the classifier design.
Obviously, if the classifier is so designed that for every

(3)

the expected loss in (2) will be minimized.
For speech recognition, the loss function is usually

chosen to be the zero-one loss function defined by

(4)

which assigns no loss to correct classification and a unit loss
to any error, regardless of the class. With this type of loss
function, the expected loss is thus the error probability of
classification or recognition. The conditional loss becomes

(5)

The optimal classifier that achieves minimumis thus the
one that implements the following:

(6)

In other words, for minimum error rate classification, the
classifier employs the decision rule of (6), which is called the
maximum a posteriori(MAP) decision. The minimum error
rate achieved by MAP decision is calledBayes risk.

The required knowledge for an optimal classification de-
cision is, thus, thea posteriori probabilities for the imple-
mentation of the MAP rule. These probabilities, however,
are not given in practice and have to be estimated from a
training data set with known class labels. The Bayes decision
theory thus effectively transforms the classifier design problem
into a distribution estimation problem. This is the basis of
the statistical approach to pattern recognition, which can be

stated: Given (or collect) a set of training data (observations)
with known class labels, estimate the a

posteriori probabilities for any to
implement the maximum a posteriori decision for minimum
Bayes risk. Thea posteriori probability can be
rewritten as

(7)

Since is not a function of the class index and, thus,
has no effect in the MAP decision, the needed probabilistic
knowledge can be represented by the class prior and
the conditional probability For the simple case of
isolated word speech recognition, the observations are the
word utterances and the class labels are the word identities.
The class prior often appears as part of the language
model [4] and in our present discussion is assumed to be
uniform without loss of generality.

There are several issues associated with this classical ap-
proach. First, the distributions usually have to be parame-
terized in order for them to be practically useful for the
implementation of the MAP rule of (6). The classifier designer
therefore has to determine the right parametric form of the
distributions. For most of the real-world problems, this is a
difficult task. Our choice of the distribution form is often
limited by the mathematical tractability of the particular dis-
tribution functions and is very likely to be inconsistent with
the actual distribution. This means the true MAP decision can
rarely be implemented, and the minimum Bayes risk generally
remains an unachievable lower bound. Second, given a param-
eterized distribution form, the unknown parameters defining
the distribution have to be estimated from the training data.
A good parameter estimation method is therefore necessary.
The estimation method has to be able to produce consistent
parameter values. Third, the approach requires a training data
set of known examples. In order to have a reliable parameter
estimate, the training data set needs to be of sufficient size.
Usually, the more the training data that is provided, the
better the parameter estimate is. The difficulty, nevertheless,
is that data collection and labeling is a labor-intensive and
resource-demanding process, particularly for speech recogni-
tion applications. When the amount of the training data is
limited, the quality of the distribution parameter estimates
can not be guaranteed. These three basic issues point out a
fundamental fact in the statistical pattern recognition approach;
that is, despite the conceptual optimality of the Bayes decision
theory and its applications to pattern recognition, it cannot be
accomplished because practical “MAP” decisions in speech
recognition are not true MAP decisions. This understanding is
critical in our discussions below.

III. PROBABILITY DISTRIBUTIONS FORSPEECH

The statistical method, as discussed in the previous section,
requires that a proper, usually parametric, distribution form
for the observations be chosen in order to implement the MAP
decision. Using the task of isolated word speech recognition as
an example, we have to determine the distribution form for the
speech utterances of each word before we apply an estimation
method to find the values of the parameters. What is the right
distribution form for speech utterances? This question involves
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Fig. 1. Speech waveform and a segmentation and labeling of the constituent
sounds of the phrase “Should we chase?”

two essential aspects: i) finding the speech dimensions that
carry the most pertinent linguistic information, and ii) deciding
how to statistically characterize the information along the
chosen dimensions. We discuss these issues in this section.

A. Speech Characteristics

Speech is a time-varying signal. When we speak, our artic-
ulatory apparatus (the lips, jaw, tongue, and velum) modulates
air pressure and flow to produce an audible sequence of
sounds. Although the spectral content of any particular sound
in speech may include frequencies up to several thousand
hertz, our articulatory configuration (vocal tract shape, tongue
movement, etc.) often does not undergo dramatic changes more
than ten times per second. During the short interval where the
articulatory configuration stays somewhat constant, a region
of “quasistationarity” in the produced speech signal can often
be observed. This is the first characteristic of speech that
distinguishes it from other random, nonstationary signals. As
an example, Fig. 1 shows the waveform of the speech segment
“should we chase?” with the corresponding phoneme labels.

Furthermore, speech is not a memoryless process due to
articulatory and phonotactic constraints. According to the
phonological rule of a language, there is a certain dependency
between sound pairs that occur in sequence; some occur

more often than others, while some are simply nonexistent
in the language. The speech model or distribution needs to
have provisions to permit characterization of this sequential
structure, ideally in a manner consistent with the slowly
varying nature (“quasistationarity”) of the speech signal. The
HMM provides a simple means to characterize speech signals
according to the above discussion.

B. Hidden Markov Model

Let be a speech utterance, where
denotes a short-time vector measurement. It has been found
that short-time cepstral analysis [5] produces effective speech
observations, in the form of low-frequency (10–16) cepstral
coefficients, for recognition purposes. Thus,conventionally
is a cepstral vector.

Further consider a first-order -state Markov chain gov-
erned by a state transition probability matrix where

is the probability of making a transition from stateto
state Assume that at 0 the state of the system is
specified by an initial state probability Then,
for any state sequence the probability of
being generated by the Markov chain is

(8)

Suppose the system, when at stateputs out an observation
according to a distribution

The HMM used as a distribution for the speech
utterance is then defined as

(9)

where is the parameter set for the model.
As can be seen in (9), defines the distribution for

short-time observations and characterizes the behavior
and interrelationship between different states of the speech-
generation process. In other words, the structure of an
HMM provides a reasonable means for characterizing the
distribution of a speech signal. Normally, the total number
of states, is much smaller than the time duration of the
speech utterance. The state sequencedisplays a certain
degree of stability among adjacents due to the above-
mentioned “quasistationarity.” The use of the HMM as speech
distributions has been shown to be practically effective.

Two points deserve further attention. First, in the above,
the choice of state observation distributions is not
specified. Different choices of speech dimensions for the
observation space may require different forms of the state
observation distribution. For cepstral vectors, a mixture Gauss-
ian density is commonly employed. Second, regardless of the
practical effectiveness of the HMM in speech recognition, it
should not be taken as the true distribution form of speech and,
therefore, any recognition system or decision rule that operates
based on the HMM is not going to achieve the minimum error
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rate as implied in the true MAP decision. We shall come back
to this later in Section V.

IV. HIDDEN MARKOV MODELING FRAMEWORK

The statistical method of hidden Markov modeling for
speech recognition encompasses several interesting problems,
namely, the evaluation problem, the decoding problem, and the
estimation problem [1], [9]. In this paper, we discuss only the
estimation problem, in light of the above discussions of Bayes
decision theory approach, which transforms the recognizer
design problem into a distribution estimation problem.

Given an observation sequence (or a set of sequences)
the estimation problem involves finding the “right” model
parameter values that specify a source model (distribution)
most likely to produce the given sequence of observations. In
solving the estimation problem, we usually use the method of
ML; that is, we choose such that as defined in (9)
is maximized for the given “training” sequence Note that
in most simple cases, is a speech utterance of a known
word identity. The estimated model parameter setis then
associated with each individual word class. For an-word
vocabulary, such parameter sets are to be estimated for use
in the recognizer.

The Baum–Welch algorithm [10] accomplishes likelihood
maximization in a two-step procedure, known as “reestima-
tion.” Based on an existing model the first step of the
algorithm transforms the objective function into a
new function that essentially measures a divergence
between the initial model and an updated model The
function is defined, for the simplest case, as

(10)

where can be found in (9). It can be shown that
implies Therefore,

the second step of the algorithm involves maximizing
as a function of to obtain a higher, improved likelihood.
These two steps iterate interleavingly until the likelihood
reaches a fixed point.

The ML method is, however, not the only possible choice
for solving the estimation problem. An in-depth discussion
of various estimation criteria can be found in [9]. It should
be pointed out that the ML method does not necessarily lead
to a minimum error rate performance for the recognizer. As
discussed above, this is due to i) the likely mismatch between
the chosen distribution form (HMM in the present case),
and the actual speech data distribution that is typically not
available; and ii) the finite training (known) data set that is
often inadequate.

V. MCE TRAINING

As discussed, classifier design by distribution estimation
often does not lead to an optimal performance. The problem
is that in most situations, the estimated probabilities deviate
from the true probabilities and the exact MAP rule cannot
be implemented. In addition, when the assumed form of the
distributions is different from the true one, the optimality of the
estimated distribution has little to do with the optimality of the
classifier, particularly in terms of recognition error rate. This

leads to various criteria for estimating the classifier parameters
in classifier design. In particular, criteria of maximum mutual
information (MMI) and minimum discriminative information
(MDI) are used in many applications [6]–[8]. Although these
methods demonstrate significant performance advantages over
the traditional ML approach, they are not based on a direct
minimization of a loss function, which links to the classi-
fication error rate. Over the past few years, an attempt has
developed to overcome the fundamental limitations of the
traditional approach and to directly formulate the classifier
design problem as a classification error rate minimization
problem. This approach is called theminimum classification
error (MCE) method, in which the goal of MCE training
is to be able to correctly discriminate the observations for
best recognition/classification results rather than to fit the
distributions to the data.

Consider a set ofclass conditional likelihood functions
defined by the parameter set In

its simplest form for our present discussion of the HMM
techniques, can take essentially the same form as
(9), i.e.

(11)

where the superscript denotes the parameter set identity
associated with word (class)in the vocabulary. The entire
parameter set of the classifier is thus 1. The
choice of HMM of (9) is a reasonable one as discussed in
Section III. The classifier/recognizer is operating under the
following decision rule:

(12)

The goal of classifier design is again to achieve the minimum
error probability based on the loss function defined in (4).

The difficulty associated with the MCE training approach
lies in the derivation of an objective function that has to be
consistent with the performance measure (i.e., the error rate)
and also suitable for optimization. The error rate based on a
finite data set is a piecewise constant function of the classifier
parameter and, thus, a poor candidate for optimization by
a simple numerical search method. We propose the following
embedded smoothingfor a loss function, which is a reasonable
estimate of the error probability.

A. Optimization Criterion

The smoothed optimization criterion is a function of the
class conditional likelihood functions
Again, the classifier makes its decision for each inputby
choosing the largest of the class conditional likelihood function
evaluated on The key to the new error criterion is to express
the operational decision rule of (12) in a functional form. There
exist in this regard many possibilities, one of which is aclass
misclassification measuretaking the following form:

(13)
1Note thatgi(X;�) can be other reasonable functions, which are consistent

with the error rate minimization.
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where is a positive number [11], [12]. This misclassification
measure is a continuous function of the classifier parameters

and attempts to emulate the decision rule. For anth class
utterance implies misclassification and

means correct decision. Whenapproaches the term
in the bracket becomes By varying the
value of and one can take all the competing classes
into consideration, according to the individual significance,
when searching for the classifier parameterIn HMM-based
speech recognition systems, each input feature vector in a
speech utterance is often assigned to
certain state of some HMM according to the best hidden-state
sequence obtained through a Viterbi alignment process.

To complete the definition of the objective criterion, the
misclassification measure of (13) is embedded in a smoothed
zero-one function, for which any member of the sigmoid
function family is an obvious candidate. A general form of
the loss functioncan then be defined as

(14)

where is a sigmoid function, one example of which is

(15)

with normally set to zero and set to one. Clearly,
when is much smaller than zero, which implies correct
classification, virtually no loss is incurred. When is
positive, it leads to a penalty which becomes essentially a clas-
sification/recognition error count. Finally, for any unknown
the classifier performance is measured by

(16)

where is the indicator function.
This three-step definition emulates the classification op-

eration as well as the performance evaluation in a smooth
functional form, suitable for classifier parameter optimization.
Based on the criterion of (16), we can choose to minimize one
of two quantities for the classifier parameter search; one is the
expected loss and the other the empirical loss.

B. Optimization Methods

The purpose of the training process in the MCE approach
is to find a set of parameters so that a prescribed loss is
minimized. As mentioned previously, the two kinds of loss
we focus on are the expected loss and the empirical loss.

1) Expected Loss:For a classification problem involving
different classes, the expected loss is defined as

(17)
Various minimization algorithms can be used to minimize the
expected loss. The generalized probabilistic descent (GPD) al-
gorithm is a powerful algorithm that can be used to accomplish
this task [11]. In the GPD-based minimization algorithm, the
target function is minimized according to an iterative
procedure. The following generalized probabilistic descent

theorem [17] establishes the algorithmic convergence property
of the algorithm.

Theorem 1: Suppose the following conditions are satis-
fied:2

such that for all

where is the Hessian matrix of

second-order partial derivatives;

is the unique such that

Then, given by

(18)

will converge to almost surely (i.e., with probability one).
Condition can be considerably weakened. Even without

condition the following is still true:

(19)

where is a subsequence of In this case, will
converge to a local minimum point where
0.

The algorithm defined by equation (18) can also be gener-
alized to the following form:

(20)

where is a positive definite matrix [17].
Other theoretical properties of the GPD algorithm have been

studied in the literature, often under the name of stochastic
approximation [20]–[22]. However, in order to apply this
algorithm to speech recognition, such as a speech recognition
system using HMM’s, the GPD algorithm has to accommo-
date various constraints imposed on the HMM structures. In
particular, the GPD algorithm is an unconstrained minimiza-
tion scheme that needs modification for solving minimization
problems with constraints. As will be shown shortly, one can
utilize parameter space transformation to resolve this issue. In
this method, the original parameters are updated through the
inverse transform from the transformed parameter space to
the original parameter space. This is done in such a way that
constraints on the original parameters are always maintained.
More detailed illustrations of this approach are given in later
sections.

It should be noted that the underlying probability distribu-
tions involved in minimizing (17) are often unknown to the
designer. One of the advantages of a GPD-based minimization
algorithm is that it does not make any explicit assumption
on these unknown probabilities. This feature is important for
recognition and adaptive learning problems.

2The proof of this theorem is based on the Martingale convergence theorem,
which is out of the scope of this paper.
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2) Empirical Loss: For a given training data set consisting
of samples the empirical probability measure

defined on the training data set is a discrete probability
measure that assigns equal mass at each sample. The empirical
loss, on the other hand, is thus expressed as

(21)
where denotes the index of the training utterance in the
training set of size and is the empirical measure defined
on the training set. If the training samples are obtained by an
independent sampling from a space with a fixed probability
distribution the empirical probability distribution will
converge to in distribution as In other words, for
any measurable function

(22)

The empirical loss defined on the independent training
samples will converge to the expected loss, as the sample
size increases. With sufficient training samples, the empirical
loss is an estimate of the expected loss. The goodness of this
estimate is determined by the training sample sizeand the
convergence rate of the empirical probability measureto the
limit distribution Various upper bounds on the convergence
rate of the empirical probability measure can be found in [18].

C. HMM as a Discriminant Function

As we argued previously, an HMM is a reasonable
model/distribution form for speech observations, although
we cannot explicitly prove that it is the true distribution form
for speech. In this case, the MCE method is particularly
appropriate for the training of the model parameters.

Following (9), we have several ways of using an HMM
as the discriminant function. A basic component in (9) is the
joint observation-state probability

(23)

which is now defined as a component function for
class as well. The discriminant function for classcan take
several possible forms, as follows, based on

1) (24)

2) (25)

3) (26)

where is the total number of possible state

sequences and is a positive number.

4) functions of the above.

Note that (24) is equivalent to the likelihood function, (25) is
equivalent to the maximum joint observation-state probability,
and (26) is a generalized mixture model which approaches (25)

when We use the logarithm of (25) as an example
in our derivation below. The algorithm based on (25) is often
called segmental GPD[12].

We define, for

and

with being the dimension of

(27)

where is the optimal state sequence that
achieves We also assume that

(28)

where denotes a normal distribution, is the mixture

weights, the mean vector and the
covariance matrix which, for simplicity, is assumed to be
diagonal, i.e.

It is desirable to maintain the original constraints in HMM
as probability measure, such as: i) the function being non-
negative, ii) 1 for all 3) 1 for all
, etc. Also, we assume 0. The following parameter

transformations allow us to maintain the following constraints
during parameter adaptation:

1) where (29)

2) where (30)

3) (31)

4) (32)

It can be shown that for in the training set,
discriminative adjustment of the mean vector follows

(33)

where

(34)

(35)

(36)
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and

(37)

where is the center slope of the exponential sigmoid function
for as defined in (15) and denotes the Kronecker delta
function. Finally

(38)

Similarly, for the variance

(39)

where

(40)

(41)

Finally

(42)

Similar derivations for the transition probabilities and the
mixture weights can be easily accomplished.

D. Embedded MCE Training of HMM

In the above development of the MCE training formalism,
the utterance observation is assumed to be one of the
classes. For recognition of continuous speech or for speech
recognition using subword model units, what usually happens
is that is a concatenated string of observations belonging
to different classes. For example, a sentence is a sequence of
words, each of which is to be modeled by a distribution. In
this situation, one possible training criterion is to minimize
the string error rate while the string model is constructed from
concatenating a set of word (or substring) models.

Let be a word sequence that con-
stitutes a sentence. We define for an observation sequence

(43)

Fig. 2. Recognition curve of segmental GPD training.

where

th best word sequence

best state sequence corresponding to (44)

and is the joint state-word sequence likeli-
hood. Also, let be the known word sequence label for
a training sentence Following the minimum error rate
formulation, we define

(45)

where is the total number of the competing word se-
quences, different from that will be taken into consid-
eration in training. Again, the misclassification measure of
(45) is embedded in a zero-one or sigmoid loss function to
create a string error count. The rest of the procedure follows
the above case for isolated utterances straightforwardly. For
detailed discussion of this technique, consult [13].

VI. EXPERIMENTAL RESULTS

For brevity, we cite one set of experimental results for
the isolated class-utterance case [12] and another set for the
connected word case [13].

The isolated class-utterance case involves recognition of
utterances of the English E-set vocabulary, consisting ofb,
c, d, e, g, p, t, v, z The data base was recorded over local
dialed-up telephone lines from 100 American native speakers,
50 male and 50 female. Two utterances from each talker
were recorded, one used for training and the other for testing.
An HMM recognizer with ten-state, five-mixture/state models
trained with the traditional ML method achieved an accuracy
of 89% for the training data set and 76% for the test set.

Fig, 2 plots the recognition accuracy for both the training
and the testing sets as a function of the number of iterations
of the MCE training procedure. After ten iterations, the new
recognizer achieved 99% accuracy for the training data set
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TABLE I
PERFORMANCE COMPARISON IN CONNECTED DIGIT RECOGNITION

and 88% for the test set, representing a 50% reduction in
recognition error.

For the connected word case, the experiment used TI
connected-digit data base, which contains 8565 connected digit
strings for training and 8578 strings for testing. The digit
strings are of unknown length with a maximum of seven
digits. The HMM recognizer configuration used ten-state, 64-
mixture/state digit-based models. The MCE-based segmental
GPD training method [13] was applied in the model training
stage. Table I lists a comparison in string error performance for
a baseline system trained with the conventional ML method
and a new system trained with the segmental GPD method. The
string error rate was reduced from 1.4% to 0.95%, representing
a 32% reduction in recognition error.

The minimum-error-rate-based training approach was also
applied to training context-dependent subword models in
continuous speech recognition [13], [14]. For connected
digit recognition on the TI data base, we used a set of
acoustic-based context-dependent subword model units, in
which 95% of the model units were interword context-
dependent units. Each digit in the vocabulary was modeled
by a context-dependent network with 12 fan-in heads and
12 fan-out tails. Fig. 3 illustrates the topology of each word
model described by these acoustic-based context-dependent
interword model units. The performance comparisons
between different acoustic modeling approaches are given
in Table II. Under the unknown length decoding condition,
the model obtained from the minimum error rate training
achieves a string error rate of 0.72% and a word error rate of
0.24% on the test set [14]. These are the best results reported
so far for connected digit recognition on TI connected digit
database. A similar approach was also applied to speaker
recognition, details of which has been described in [24].

VII. SUMMARY

We have reexamined the classical Bayes decision theory
approach to the problem of speech recognition and discussed
the implied assumptions and issues that have been often
left unresolved in the past. The classical decision-theoretic
approach transforms the recognizer design problem into a
problem in probability distribution estimation. The limitation
of the approach, however, comes from the fact that the form of
probability distributions for various dimensions of the speech
signal is realistically unknown and virtually any assumed form
will deviate from the true one and lead to suboptimal parameter
estimates, thereby making the minimum error probability, as
suggested by the Bayes approach, unattainable.

In light of this limitation, a new MCE approach based
on learning for discrimination was discussed in this paper.
The MCE approach to recognizer design aims at optimizing

Fig. 3. Diagram of digit model with acoustic interword context-dependent
model units.

TABLE II
PERFORMANCE COMPARISON OFML AND MINIMUM ERROR RATE TRAINING

the recognizer parameters to minimize the error rate. We
elaborate the issues and solutions associated with the new
MCE approach in this paper in the context of HMM-based
recognizer designs. The main issue or difficulty in this new
approach concerns with means to formulate the error rate
estimate as a smooth loss function for optimization. We show
that a three-step smooth embedding leads to an error function,
which is a close approximation to the error count and can
be easily optimized. The development led to an algorithm
called the generalized probabilistic descent (GPD) algorithm,
an implementation of which, in terms of hidden Markov
modeling, is discussed in detail in this paper. We further show
that the new MCE approach indeed achieves better perfor-
mance than the traditional probability distribution estimation
approach in a number of speech recognition experiments. In
general, the MCE method provides 30–50% reduction in error
rate, compared to the traditional recognizer design.
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