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The Expectation-
Maximization Algorithm

common task in signal processing is the estimation
of the parameters of a probability distribution func-
tion. Perhaps the most frequently encountered esti-
mation problem is the estimation of the mean of a signal in
noise. In many parameter estimation problems the situation
is more complicated because direct access to the data neces-
sary to estimate the parameters is impossible, or some of the
data are missing. Such difficulties arise when an outcome is
a result of an accumulation of simpler outcomes, or when
outcomes are clumped together, for example, in a binning or
histogram operation. There may also be data dropouts or
clustering in such a way that the number of
underlying data points is unknown (censor-
ing and/or truncation). The EM (expectation-
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maximization) algorithm is ideally suited to problems of this
sort, in that it produces maximum-likelihood (ML) estimates
of parameters when there is a many-to-one mapping from an
underlying distribution to the distribution governing the ob-
servation. In this article, the EM algorithm is presented at a
level suitable for signal processing practitioners who have
had some exposure to estimation theory. (A brief summary
of ML estimation is provided in Box 1 for review.)

The EM algorithm consists of two major steps: an expec-
tation step, followed by a maximization step. The expectation
is with respect to the unknown underlying variables, using
the current estimate of the parameters and
conditioned upon the observations. The
maximization step then provides a new esti-
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mate of the parameters. These two steps are iterated until
convergence. The concept is illustrated in Fig. 1.

The EM algorithm was discovered and employed inde-
pendently by several different researchers until Dempster [1]
brought their ideas together, proved convergence, and coined
the term “EM algorithm.” Since that seminal work, hundreds
of papers employing the EM algorithm in many areas have
been published. A large list of references is found at [2]. A
typical application area of the EM algorithm is in genetics,
where the observed data (the phenotype) is a function of the
underlying, unobserved gene pattern (the genotype), e.g. [3].
Another area is estimating parameters of mixture distribu-
tions, e.g. [4]. The EM algorithm has also been widely used
in econometric, clinical, and sociological studies that have
unknown factors affecting the outcomes [5]. Some applica-
tions to the theory of statistical methods are found in [6].

In the area of signal processing applications, the largest
area of interest in the EM algorithm is in maximum likelihood
tomographic image reconstruction, e.g. [7, 8] Another com-
monly cited application is training of hidden Markov models,
especially for speech recognition, e.g. [9]. The books 10, 11]
have chapters with extensive development on hidden Markov
models (HMMs).

Other signal processing and engineering applications be-
gan appearing in about 1985. These include: parameter esti-
mation [12, 13]; ARMA modeling [14, 15]; image modeling,
reconstruction, and processing [16, 17]; simultaneous detec-
tion and estimation [18, 19, 20]; pattern recognition and
neural network training [21, 22, 23]; direction finding [241];
noise suppression [25]; spectroscopy [27]; signal and se-
quence detection [28]; time-delay estimation [29]; and spe-
cialized developments of the EM algorithm itself [30]. The
EM algorithm has been the subject for multiprocessing algo-
rithm development [31]. The EM algorithm is also related to
algorithms used in information theory to compute channel
capacity and rate distortion functions [32, 33], since the
expectation step in the EM algorithm produces a result simi-
lar to entropy. The EM algorithm is philosophically similar
to ML detection in the presence of unknown phase (incoher-
ent detection) or other unknown parameters: the likelihood
function is averaged with respect to the unknown quantity
(i.e., the expected value of the likelihood function is com-
puted) before detection, which is a maximization step (see,
e.g., [34, Chap. 5].

Ector’s Problem: An Introductory Example

The image-processing example introduced by Ector and Hat-
ter (see the “Tale of Two Distributions” sidebar), although
somewhat contrived, illustrates most of the principles of the
EM algorithm as well as the notational conventions of this
article. In many aspects it is similar to a problem that is of
practical interest — the emission tomography (ET) problem
discussed later in this article.

Suppose that in an image pattern-recognition problem,
there are two general classes to be distinguished: a class of
dark objects and a class of light objects. The class of dark
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objects may be further subdivided into two shapes: round and
square. Using a pattern recognizer, it is desired to determine
the probability of a dark object. For the sake of the example,
assume that the objects are known to be trinomially distrib-
uted. Let the random variable X, represent the number of
round dark objects, X, represent the number of square dark
objects, and X represent the number of light objects, and let
[x1, %5, x3]" = x be the vector of values the random variables
take for some image. (In this article the convention is that
vectors are printed in bold font, and scalars are printed in
math italic. All vectors by convention are taken as column
vectors. Uppercase letters are random variables.) Assume
further that enough is known about the probabilities of the
different classes so that the probability may be written as

PX =x,X, =x,,X; = x,lp) H)
_ (_L](l)“ (L)L)

it \4) \4 4 2 4)°
= f(x.2, %1 p) @)

where p is an unknown parameter of the distribution and n =

x+x,+x;. The notation f(x,,x,,x;lp) is typical throughout the

article; it is used to indicate the probability function which
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may be either a probability density function (pdf) or a prob-
ability mass function (pmf).

A feature extractor is employed that can distinguish which
objects are light and which are dark, but cannot distinguish
shape. Let [y,,y,]" =y be the number of dark objects and number
of light objects detected, respectively, so that y, = x, + x, and y,
= X;, and let the corresponding random variables be Y, and Y.
There is a many-to-one mapping between {x,,x,} and y,. For
example, if y, = 3, there is no way to tell from the measurements
whether x, = 1 and x, =2 or x, =2 and x, = 1. The EM algorithm
is specifically designed for problems with such many-to-one
mappings. Then (sce Box 2),

_ _ n }_ _l_’_ ¥l _1_—£ n=y1
P(K—yllp)—(yl)(2+4j (2 4)

=g lp)

(The symbol g is used to indicate the probability function for
the observed data.) From the observation of y, and y,, com-
pute the ML estimate of p,

Py = arg mpaxg(Yl =wlp), 3

where “argmax” means “the value that maximizes the func-
tion.” In this example, it would be a simple matter to deter-
mine an ML estimate of p. In more interesting problems,
however, such straightforward estimation is not possible. In
the interest of introducing the EM algorithm, we will not take
the direct approach to the ML estimate. Taking the logarithm
of the likelihood often simplifies the maximization and yields
equivalent results since log is an increasing function, so Eq.
(3) may be written as

nY1 p y‘(l p)n_yl €
Py = I 4| === .
e Og(yJ(Z 4) 2 4

The idea behind the EM algorithm is that, even though we
do not know x, and x,, knowledge of the underlying distribu-
tion f(x,, x,, x3lp) can be used to determine an estimate for p.
This is done by first estimating the underlying data, then
using these data to update our estimate of the parameter. This
is repeated until convergence. Let p'k] indicate the estimate of
p after the kth iteration, k = 1,2..... An initial parameter value
p'” is assumed. The algorithm consists of two major steps:

Expectation Step (E-step). Compute the expected value
of the x data using the current estimate of the parameter and
the observed data.

The expected value of x;, given the measurement y, and
based upon the current estimate of the parameter, may be
computed as

4= ety ]
Using the results of Box 2,
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1. An overview of the EM algorithm. After initialization, the E-
step and the M-step are alternated until the parameter estimate
has converged (no more change in the estimate).

2. lllustration of many-to-one mapping from X to Y. The point y
is the image of X, and the set X(y) is the inverse map of y.

O S )
=N T
7 7z
Similarly,
(k] 6)
1 D
Ly (
[kst] _ Wy, AT77
xz+ = Elx 1y, p" 1=y, 5N
1+

In the current example, x, is known and does not need to be
computed.
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Maximization Step (M-step). Use the data from the
expectation step as if it were actually measured data to
determine an ML estimate of the parameter. This estimated
data is sometimes called “imputed” data.

In this example, with x,"*'" and x,"*"
available. the ML estimate of the parameter is obtained by
taking the derivative of log fx,"""!, x,*"

Xy, x3lp) with respect
to p, equating it to zero, and solving for p,

imputed and x;

0= ilogf()cl[’””,xg"”],)%Ip) &
dp

[k+1)
1) _ 2Xy T X

ptl=2 53
Ay,

The estimate x,""" is not used in Eq. (7) and so, for this
example, need not be computed. The EM algorithm consists
of iterating Eqs. (6) and (7) until convergence. Intermediate
computation and storage may be eliminated by substituting
Eq. (6) into Eq. (7) to obtain a one-step update:

Table 1. ResKlts of t;gEM algorithm for an ;x;nple"
using trinomial data i

iy

3. Representation of ET. There are B boxes in the body and D de-
tectors surrounding the body.
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(k1] _ P[k](4y1 =2x3)+2y, —2x; (3)
P2y, +2x) + 3, + 23,

As a numerical example, suppose that the true parameter
is p = 0.5, n = 100 samples are drawn, with y; = 100. (The
true values of x; and x, are 25 and 38, respectively, but the
algorithm does not know this.) Table 1 illustrates the result
of the algorithm starting from p™ = 0. The final estimate p*
=(0.52 is in fact the ML estimate of p that would have been
obtained by maximizing Eq. (1) with respect to p, had the x
data been available.

General Statement of the EM Algorithm

Let Y denote the sample space of the observations, and let y
€R" denote an observation from Y. Let x denote the under-
lying space and let x ER" be an outcome from x, with m < n.
The data x is referred to as the complete data. The complete
data x is not observed directly, but only by means of y, where
y =¥y(x), and y(x) is a many-to-one mapping. An observation
y determines a subset of ¥, which is denoted as x(y). Figure
2 illustrates the mapping.

The probability density function (pdf) of the complete data
is fy(x10) = ix10), where 0EOCR’ is the set of parameters of
the density. (We will refer to the density of the random
variables for convenience, even for discrete random variables
for which probability mass function (pmf) would be appro-
priate. Subscripts indicating the random variable are sup-
pressed, with the argument to the density indicating the
random variable.) The pdf f is assumed to be a continuous
function of 8 and appropriately differentiable. The ML esti-
mate of 0 is assumed to lie within the region ®. The pdf of
the incomplete data is

g(y18)=]  f(xi0)dx
Let

L(0) = g(y16)

denote the likelihood function and let

Ly(0) = log g(yl6)

denote the log-likelihood function.

The basic idea behind the EM algorithm is that we would
like to find O to maximize log f{xI18), but we do not have the
data x to compute the log-likelihood. So instead, we maxi-
mize the expectation of log f(x10) given the data y and our
current estimate of 6. This can be expressed in two steps. Let
6" be our estimate of the parameters at the kth iteration,

For the E-step compute:

0(016™) = Eflog fixI0)ly,6). 9

It is important to distinguish between the first and second
arguments of the Q functions. The second argument is a
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Box 1: Maximume-likelihood estimation

Maximum-likelihood (ML) estimation is.a means of estimating
the parameters of a distribution based upon observed data
drawn according to that distribution, Let 8 = [0y, 02,..., GrJT
deniote a set of parameters. Let x be data observed from a
distribution X with pdf (or pmf).fx(x10) = f(x16), parameterized
by ‘the set of parameters 0. Let X1, x2,:..; XN be a sequence of
outcomes of the random variables X1, X2,...; Xy that have been
observed. Tt is often assumed that X; is independent of X; for i
# j. The key:idea in ML estimation is to determine the parame-
ter O for which the probability of observing the outcome X =
X1,X2;...%xN i as igh-as possible.

The function

L0132, xN) = fx1,%2;...XN10 ) = f(x16)

is the likeliliood function: 1t is viewed as a function. of the
parameter @ with the samples x fixed, in contrast to the pdf, in
which the parameter is considered fixed. Because the data is
assumed: fixed in the likelihood function, it is common to
suppress the dependence on the data and write simply /() or
even I(6). The ML estimate of the parameter is that value of
parameters which maximizes the likelihood function:

0, =arg max 1.(8)

Because it is the maximizing value (the argument) that is
importarit in ML estimation;, nof the valiie of the maximum (the
function), it is common to-ignore or suppress constants in the
likelihood function that do not depend upon the parameter.
Also, in many. applications it is more convenient to consider
the logarithm of the likelihood function, called the log-likeli-
hood function:

Lx(8) =log [x(0).

Since the logarithm is monotonically increasing, maximizing
the log-likelihood is equivalent to maximizing the likelihood:

In many (but not all) cases, the log-likelihood furictionis a . -
continuous differentiable function of the parameter and. the
maximizing 6 lies in the interior of its range. In this case, a
necessary (but not sufficient) condition to maximize the (log)
likelihood is for the gradient to vanish at the value of 0 thatis -
the ML value: :

Vol, O)lgeoyy = Volog L, (O)lgg; =0
where
-
LY
8
Vo=| "2 1.
2
30,

As an example of ML estimation, let Xi; X2, XN be
independent Gaussian random variables with unknown mean
| and variance 02 and let.x1,x2,...507 be samples of these
random variables. It is straightforward to show [50] that the
ML estimate of the mean and the variance are . :

it

2|~z

V3

z TPz
&

S

Y (=)

N

For more details and examples of ML estimation, including
results about the quality (variance) of the resulting estimates, the
interested reader is encouraged to consult texts such as {50, 51].

conditioning argument to the expectation and is regarded as
fixed and known at every E-step. The first argument condi-
tions the likelihood of the complete data.

For the M-step let 8% be that value of © which maximizes
0(816™):

0'“*!! = arg max Qe16") (10)

It is important to note that the maximization is with respect
to the first argument of the Q function, the conditioner of the
complete data likelihood.

The EM algorithm consists of choosing an initial 8, then
performing the E-step and the M-step successively until
convergence. Convergence may be determined by examining
when the parameters quit changing, i.e., stop when
o -t ” < e for some € and some appropriate distance

measure |
The general form of the EM algorithm as stated in Egs. (9)
and (10) may be specialized and simplified somewhat by
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restriction to distributions in the exponential family. These
are pdfs (or pmfs) of the form
Ax16) = b(x) exple(®) t(x)1/a(6) an
where 6 is a vector of parameters for the family [35,36]. The
function t(x) is called the sufficient statistic of the family (a
statistic is sufficient if it provides all of the information
necessary to estimate the parameters of the distribution from
the data [35, 36]). Members of the exponential family include
most distributions of engineering interest, including Gauss-
ian, Poisson, binomial, uniform, Rayleigh, and others. For
exponential families, the E-step can be written as

0016") = Eflog bo)ly,0M] + ¢(©) Ert(x)ly.0!
“log a(0)

Let t** = E[t(x)ly,0"™]. As a conditional expectation is an
estimator, t*"'! is an estimate of the sufficient statistic (The
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4. Single-microphone ANC system.

5. Processor block diagram of the ANC system.

EM algorithm is sometimes called the estimation/maximiza-
tion algorithm because, for exponential families, the first step
is an estimator. It has also been called the expectation/modi-
fication algorithm [9]). In light of the fact that the M-step will
be maximizing

k+1

Ellog b(x)ly,e[kj] + c(B)T gl log a(0)

with respect to 8 and that E[log b(X)ly,q™'] does not depend
upon 9, it is sufficient to write:
E-step Compute

< = Erecxly,of%. (12)
M-step Compute
0! = arg meaxc(G)Tt[“” —loga(®). (13)

The EM algorithm may be diagrammed starting from an
initial guess of the parameter 8"’ as follows:

M-step E-step o) M-~step

s L N | N

E—step
tm

9{0] N

The EM algorithm has the advantage of being simple, at least
in principle; actually computing the expectations and perform-
ing the maximizations may be computationally taxing. In addi-
tion, as discussed in the next section, every iteration of the EM
algorithm increases the likelihood function until a point of
(local) maximum is reached. Unlike other optimization tech-
niques, it is not necessary to compute gradients or Hessians, nor
is it necessary to worry about setting step-size parameters, as
algorithms such as gradient descent require.
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Convergence of the EM Algorithm

For every iterative algorithm, the question of convergence
needs to be addressed: does the algorithm come finally to a
solution, or does ititerate ad nauseum, ever learning but never
coming to a knowledge of the truth? For the EM algorithm,
the convergence may be stated simply: at every iteration of
the EM algorithm, a value of the parameter is computed so
that the likelihood function does not decrease. That is, at
every iteration the estimated parameter provides an increase
in the likelihood function increases until a local maximum is
achieved, at which point the likelihood function cannot in-
crease (but will not decrease). Box 3 contains a more precise
statement of this convergence for the general EM algorithm.

Despite the convergence theorem in Box 3, there is no guarantee
that the convergence will be to a global maximum. For likelihood
functions with multiple maxima, convergence will be to a local
maximum which depends on the initial starting point 6.

The convergence rate of the EM algorithm is also of
interest. Based on mathematical and empirical examinations,
it has been determined that the convergence rate is usually
slower than the quadratic convergence typically available
with a Newton’s-type method [4]. However, as observed by
Dempster [1], the convergence near the maximum (at least
for exponential families) depends upon the eigenvalues of the
Hessian of the update function M, so that rapid convergence
may be possible. In any event, even with potentially slow
convergence there are advantages to EM algorithms over
Newton’s algorithms. In the first place, no Hessian needs to
be computed. Also, there is no chance of “overshooting™ the
target or diverging away from the maximum. The EM
algorithm is guaranteed to be stable and to converge to an
ML estimate. Further discussion of convergence appears in
[37, 38].

Applications of the EM Algorithm

In this section several applications of the EM algorithm to
problems of signal processing interest are presented to illustrate
the computations required in the steps of the algorithm and also
to demonstrate the breadth of applications to which it may be
applied. The example in ET image reconstruction section and
the previous introductory example illustrate the case in which
the densities are members of the exponential family. The other
examples in this section treat densities that are not in the
exponential family, so the more general statement of the EM
algorithm must be applied. The focus of the examples is on the
EM algorithm; assumptions and details of the systems involved
are therefore not presented. The interested reader is encouraged
to examine the references for details.

Introductory Example, Revisited

The multinomial distribution of the introductory example is
a member of the exponential family with t(x) = x:
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Box 2: Combination and
conditional expectations multinomials

Let X1,X2,X3 have a multinomial distribution with class prob-
abilities (p1,p2,p3), SO

G tx+x)! o

PX =x, X%, =x,X,=x)= bpyps

xx, lx!

This multinomial in n outcomes can be combined to form a
multinomial in (n—1) outcomes. Let Y= X1 + X2. The probability
P(Y,X3) can be determined as follows:

Y
PX +X, =X, =x)= Y PX,=i,X,=y-1X, =x,)

=10

pipy’

+0)! !
= tx) pfz‘ Y :

ylix,! o il(y—il)
- (y+x;)!

yix,!

o+, P;3

where the last step follows from the binomial theorem. So (X +
X2,X3) is binomial with class probabilities (p1 + p2,p3). This
generalizes by induetion to-other multinomials.

To compute the conditional expectation E[X11Y = y], it is first
necessary to determine the conditional probability, P(X1 = x{lY
=7y) = P(X1 = x11X1 + X2 = ). The conditional probability can
be written as

P(X =x,Y=Y)

P(Y=3y)
PX =x,X,=y=x)

P(Y=y)

P(X,=x1Y=y)

where the numerator probability is over the trinomial; out of n =
X1 + x2 + x3 trials, and the denominator probability is over the
binomial out of # trials. Then

1
(p.+p;)

y!
x 1y —x)!

!

PX, =x|Y=y)= 289 24

The conditional expectation is then

S ! o]
X b p, ;
% 17‘1!(}"”‘1)! iz (pi=p) (37)

= oy P

2 3

EXIX, +X, =v]

Similarly it can be shown that

ELX,IX, + X, =y]=y—£2
Dtp,

Computations are similar for Poisson:random variables.

f(x,%,5,x,1p) =

!
(L]exp [Iog
X, 1x, 1 xy !

The E-step consists simply of estimating the underlying
data, given the current estimate and the data. This is followed
by a straightforward maximization.

T+

AL il R (1_3)"-
3= &% \2 4

14 P
717y
p> 1>
4 274

ET Image Reconstruction

In ET [7], tissues within a body are stimulated to emit
photons. These photons are detected by detectors surround-
ing the tissue. For purposes of computation the body is
divided into B boxes. The number of photons generated in
each box is denoted by n(b), b = 1,2,..., B. The number of
photons detected in each detector is denoted by y(d), d =
1,2,...,D,asshowninFig. 3. Lety = [y(1), ¥(2)...., y(d)] denote
the vector of observations.

The generation of the photons from box b can be described
as a Poisson process with mean A(b), i.e.,

FRIMBY) = P(n(b) = nIA(b)) = e 3@".
n!

The parameter A(b) is a function of the tissue density so
that by estimating the parameters A(b) in each box it is
possible to construct an image of the body. The boxes are
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assumed to be independent of each other. Let the set of
unknown parameters be denoted by A = {A(1), M(2)...., A(B) }.

A photon emission from box b is detected in tube d with
probability p(b,d), and it may be assumed that all emitted
photons are detected by some detector, so that

}Ij;p(b,d):l. (14)

Based upon the geometry of the sensors and the body it is
possible to determine p(b,d). The detector variables y(d) are
Poisson distributed,

FOIRD) = P(y(d) = yy =0 HD

and it can be shown that
B
Md) = E[y(d)]= Y, Mb)p(b,d) .
b=1

Let x(b,d) be the number of emissions from box b
detected in detector d and let x = {x(b,d),b = 1,....B, d =
1,....,D}. For any given set of detector data { y(d)}, there are
many different ways that the photons could have been
generated. There is thus a many-to-one mapping from
x(b,d) to y(d), and x constitutes the complete data set. Each
variable of the complete data x(b,d) is Poisson with mean
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Mb,d) = Mb)p(b,d). 15)

Assuming that each box generates independently of every
other box and that the detectors operate independently, the
likelihood function of the complete data is

o Mb,dY P (16)
L )= f(xA)= Mo DT
LW =fd)= T e b.d)!
and, using Eq. (15), the log-likelihood function is
L,(A)=logl (A)= (17)
Z—X(b)p(b,d) + x(b,d)log M(b) + x(b,d)log p(b,d)
D
—logx(b,d)!

Application of the EM algorithm is straightforward. Pois-
son distributions are in the exponential family. The sufficient
statistics for the distribution are the data, t(x) = x. Let A be
the estimate of the parameters at the kth iteration and let
xM(b,d) be the estimate of the complete data. For the E-step,
compute

A, d) = B,y A9 = B, dyty(e) 2]

where the latter equality follows since each box is inde-
pendent. Since x(b,d) is Poisson with mean A (b,d) and
W)=Y, L x(b,d) is  Poisson  with  mean
W(@d)y=3 2 N (b,d), the conditional expectation may be
computed (using techniques similar to those in Box 2)

N b,d)

[k+1] _
XU, Ay E
Y ha @)

b=12,..,B,d=12,..,D

(18)

For the M-step, x**" (b.d) is used in the likelihood function
(17), which is maximized with respect to A(b):

el L

6. lllustration of a tates, the distri-
butions in each state, and some probabilistic transitions between
the states.
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d

iy 2 OB+ bd)ogh) + (19)

d=1,...D

(b, d)log p(b,d) — log x**(b,d)!
D

=Ny = Y X (b,d) p(b,d)
d=1

where Eq. (14) has been used.

Equations (18) and (19) may be iterated until convergence.
The overhead of storing x**"! (b,d) at each iteration may be
eliminated by substituting Eq. (18) into Eq. (19) using Eq.
(15), much as was done in the introductory example. This
gives

Uty _ Koy Y@)p(b,d)
Fr= (b)nga%kl(b')P(b',d)'

Active Noise Cancellation (ANC)

Active noise cancellation is accomplished by measuring a
noise signal and using a speaker driven out of phase with the
noise to cancel it. In many traditional ANC techniques, two
microphones are used in conjunction with an adaptive filter
to provide cancellation (see, e.g., [39, 40]). Using the EM
algorithm, ANC may be achieved with only one microphone
[41]. The physical system is depicted in Fig. 4, with a block
diagram for the ANC in Fig. 5.

The signal to be canceled is modeled as the output of an
all-pole filter,

s(t) = ~zp: a,s(t~k)+o u(t)

=—s (t—Da+ou(t)
where
s, () =[s(t=p),st~p+D),...s®O ,

and u(f) is a white, unit-variance, zero-mean Gaussian proc-
ess. The signal #(¢) is generated by the processor and corre-
sponds to the input of the speaker; the delay z™ is the delay
from the speaker to the microphone. The signal &, v(£) models
the measurement error at the microphone. According to Fig.
5, the input to the processor can be written as

¥(1) = s(2) + cev(r);

we assume that v(z) is a unit-variance, white Gaussian proc-
ess. The set of unknown parameters is 8 = [a”,6”, GEZ]T.

A block of N measurements is used for processing. The
observed data vector is

¥ = (1), Y@y

these observations span a set of autoregressive samples given
by
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s=[s(1=p), Q2= p), o s

The complete data set is X = [yT, sT]". If we knew s,
estimation of the AR parameters would be straightforward
using familiar spectrum estimation techniques.

The likelihood function for the complete data is

fx10) = f(y.s10) = fyls,0) f(s16).

The conditioning step provides important leverage be-
cause it is straightforward to determine f(yls,8). The condi-
tioning can be further broken down as

f(x16) = f(y1s.,0) fis(1), 5(2),..., s(N)Isp-1(0),0)f (sp-1(0)I6).

Then

p Z(y(t) s()* }

1
8,0) = ————7¢
f(yls.0) (2150:)1\”2 l: =
and (see [42, page 187])

f(s(1),5(2),...,s(N)ls, ,(0),8) =

d ,,_l(r))z}'

Ellog f(x10)ly,8%']= log f(s,_,(0)I8)— Nlogo, —Nlogo,

| 1
e p[“ 26°

s t=1

The E-step may be computed as

——Z[E[s (nly,8%]+2a" Els,, (= Ds(0)ly, ]

O =
+aTE[sp_1 (t-Ds, (- Dly,6"]a]
1

~5g72 S [y (0~ 250 Els(0)ly. 6] + ELs*(0)ly, 6]

Taking the gradient with respect to a and derivatives with
respect to 0, and G, to maximize yields

-1
oy [ e (20)
a 3 Els, (t—D)s, 1 (t—Dly,0™]
= 1 p_l p_l y7
1=
N &1+
3 Els,, 1 (t—Ds(0)ly,6%1]
t=1
N
(@) = LY B0y, 0]+ e
N
N
(a[k])TZ‘iE[sp_l(t—1)S(t)ly,e[k]]
(0 = L 31y (1)~ 2y ELsly, 091+ ELs” (01, 0%]

=1

(22)
The expectations in Egs. (20), (21), and (22) are first and
second moments of Gaussians, conditioned upon observation
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- maybe wrltten as

Box 3 A convé,:g nce th 6rem

EM algonthm
Let: o - ;
- f(xle) -

,( "= )

~ and note t that k(xly,())‘ maybe
density. Then the log-hkehhood

. Ly(ﬂ) log f(xle) log’K(x[y'ﬂ)

Deﬁne ’

: : H(G IG) E[Iogk(xly, ')l y,G]

’ Let M G[k] iy e[k 1] represent th map;[x' %deﬁnedkby
tthM algonthmf Eq 9),(10), 1o et

Theorem 1 L),(M(GU‘”] >> 19(9) ,
onlyif ~

Q(M(B)IO) : Q(GIB)
and.
k(xly,M (G)) k(xly,e)

then Ly(M(G*)) Ly(e*) In ch woids M s e
1e lxkehhood‘

<L (G[k]) which must converge s &
~ The theorem falls short of proving that the fixed points
of the EM algorithm are in fact ML cstimates. The latteris
~‘true, under rather general conditions, bu’c the pro' fiss me—, o
“what mvolved and is not presented here -

which may be computed using a Kalman smoother. The
variable s, may be put into state-space form as

sp(t) =®s (¢ ~1)+gu(t)
y(©)=h"s (1) + o v(1)

where

g’ =10,0,...,0,0,]

and
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7. Representation of signals in a spread-spectrum multiple-access
system.

n!'=10,..,0,1].

With an estimate of the parameters, the canceling signal
c(t+M) is obtained by estimating s(z+M) using E[s,(1)ly,0] and
0.

HMMs

The hidden Markov model is a stochastic model of a process
that exhibits features that change over time. It has been
applied in a broad variety of sequential pattern-recognition
problems such as speech recognition and handwriting recog-
nition [9, 43]. An overview appeared in Signal Processing
Magazine in [44]. Detailed descriptions of HMMs and their
application are given in [9, 10, 11].

A Markov chain is a stochastic model of a system that is
capable of being in a finite number of states {1,2,...,.S}. The
current state of the system is denoted by s,. The probability
of transition from a state at the current (discrete) time ¢ to any
other state at time ¢ + 1 depends only on the current state, and
not on any prior states:

P(stri=jlse=ise1=01,...) =P(se1 =j 1 se=10).

Itis common to express the transition probabilities as a matrix
A with elements P(s,., = jls, = i) = a,;. The initial state s, is
chosen according to the probability

n=[P(so=1), ... P(so =" = [1,...75]"

In each state at time ¢, s, a (possibly vector) random
variable is Y, selected according to the density AY, =y,ls, =
iy =f;, (), as shown in Fig. 6. The variable y is observed, but
the underlying state is not, hence the name hidden Markov
model. The set of densities fi, f...., f; is denoted as fi,,. The
triple (A,1.f(,)) defines the HMM.

The HMM operates as follows: an initial state s, 1s chosen
according to the probability law . A succeeding state s, is
chosen according to the Markov probability transition A. An
output y, is chosen according to f;;. Then a new state is
chosen, and the process continues.

56 |IEEE SIGNAL PROCESSING MAGAZINE

Let the elements of the HMM be parameterized by 6, i.e.,
there is a mapping 8 — (A(8),7(0), f,,,(16)). The mapping is
assumed to be appropriately smooth. In practice, the initial
probability and transition probabilities are some of the ele-
ments of 0. The parameter estimation problem for an HMM
is this: given a sequence of observations, y = {y,,¥2,....¥7}:
determine the parameter 6 which maximizes the likelihood
function

1,(8) = f(¥,.Ys0--0r ¥, 1(A®), T(8), f;,, ()
N
= Ym0, Of 10a,,®)

L p— ]

£y (210) -, ©)f, (¥,10).

(23)

That is, determine the initial state probabilities and the
transition probabilities, as well as any parameters of the
density functions which maximize the likelihood function
(23). From the complicated structure of (23), it is clear that
this is a complicated maximization problem. The EM algo-
rithm, however, provides the power necessary to compute
without difficulty.

Let s = [S,81,5,...,57]” be a vector of the (unobserved)
states. The complete data vector can be expressed as x = (y,S).
The pdf of the complete data can be written as

f(x10) = f(y,516) = £ (y1s,0) £ (s10) 24

This factorization, with the pdf of the observation condi-
tioned upon the unknown state sequence and the distribution
of the unknown state sequence, turns out to be the key step
in the application of the EM algorithm.

Because of the Markov structure of the state, the state
probabilities in Eq. (24) may be written

T
[y =n, ®]]a,_ ., ® (25)
t=1

The pdf of the observations, conditioned upon the unob-
served states, factors as

Fyis 9 =T1 /(3,150 (26)

We will assume that the density in each state is Gaussian
with known diagonal covariance and unknown mean, [L.
(Many other distributions are possible, e.g., discrete selec-
tion, Poisson, exponential, or Gaussian with unknown mean
and variance [45].) Then

Sy ls,,0) =

1 r 3
Y CXP[—%T(Y, —u,, (0N (y, M;,(G))]

@7
Let $ = {1,2,...,5)™" denote the set of all possible state
sequences, including the initial state s,. In the E-step

0(018™)) = Eflog fy,s10)ly61,
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since the expectation is conditioned upon the observations,
the only random component comes from the state variable.
The E-step can thus be written as

Q018 =" f(sly,0"")log f(y!s,0) f(5,0)]

Ses

The conditional probability is

S(y1s,0") £ (sl
gyl 7

f(sly,8%) = 28)

Substituting from Eqs. (27) and (28),

mszﬂyls, o) £(siM) (29)

[i (—log(Z‘lw2 -

t=1

001" =

L y-n, @@, -n, <e>>)
20
+lognm ®)+ ilog a, ., (0)}

The updated parameters are then obtained by the M-step.
For the means of the pdfs,

ul = arg max Q(61611)
Hs

The maximizations may be accomplished by differentiat-
ing and equating the result to zero and solving for the appro-
priate argument. For the mean, the result is

[k+1] __ ZSeSf(yls’elk])f(SleIk])zt:si:syt

T Zef(s8") fs18)E,, 1

Efficient algorithms for computing this expression have
been developed based upon forward and backward inductive
computation (dynamic programming or the Viterbi algo-
rithm); see e.g. [10, 11].

The Markov chain parameters 7; and a;; may also be
obtained by maximizing Eq. (29) with constraints to preserve
the probabilistic nature of the parameters:

S
n**" = arg max Q(016™) subjectto Y&, =1, &, 20
i i=1

S
a*" = argmax Q(016™") subject to Y@l =1, q,;, 20
Jj=1

1
’ aj

This may be accomplished using Lagrange multipliers.
Then the condition

a S
2 o™ =0
gl AT,

(with A a Lagrange muitiplier) leads to
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8. Multiple-access receiver matched-filter bank.

= f(yls, 8" F(s16™)

et} . so=i

‘ X, [(¥ls,0)fs10)

and similarly,

o _ D SIS0 FEIODE, 1
YR f(1s,8) 510D, 1

ses spp=i

Spread-Spectrum Multi-User Communication

In direct-sequence spread-spectrum multiple-access (SSMA)
communications, all users in a channel transmit simultane-
ously, using quasi-orthogonal spreading codes to reduce the
inter-user interference [46]. The system block diagram is
shown in Fig. 7. A signal received in a K-user system through
a Gaussian channel may be written as

r(t) = S(t,b) + 6 N(¥)

where N(¢) is unit-variance, zero-mean, white Gaussian noise
and

S(t,b) = iak S b, (i)s, (t —iT-1,)

i=—m

is the composite signal from all X transmitters. Here a, is the
amplitude of the kth transmitted signal (as seen at the re-
ceiver), b represents the symbols of all the users, b,(i) is the
ith bit of the kth user, 1, is the channel propagation delay for
the kth user, and s,(7) is the signaling waveform of the kth user
including the spreading code. For this example, coherent
reception of each user is assumed so that the amplitudes are
real.

At the receiver the signal is passed through a bank of
matched filters, with a filter matched to the spreading signal
of each of the users, as shown in Fig. 8. (This assumes that
synchronization for each user has been obtained.) The set of
matched filter outputs for the ith bit interval is

() = [y1(), y20),., yk ()P
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Because the interference among the users is similar to in-
tersymbol interference, optimal detection requires dealing
with the entire sequence of matched filter vectors

T
y = ly-M) y-m+1) Ly
For a Gaussian channel, it may be shown that

y=H(b)a + z, (30)

where H(b) depends upon the correlations between the
spreading signals and the bits transmitted and z is non-white,
zero-mean Gaussian noise. The likelihood function for the
received sequence may be written as (see [47])

, _ { Lo , } 31)
f(yla,b)=cexp| —(2a" R(b)y —a S(b)a)

20,

where R(b) and S(b) depend upon the bits and correlations
and c is a constant that makes the density integrate to 1. Note
that even though the noise is Gaussian, which is in the
exponential family, the overall likelihood function is not
Gaussian because of the presence of the random bits — it is
actually a mixture of Gaussians. For the special case of only
a single user the likelihood function becomes

1 M 5
f(yla,b)= cexp[? (2a, ;Zbl Oy, —aq )}.

What is ultimately desired from the detector is the set of
bits for each user. It has been shown [46] that the inter-user
interference degrades the probability of error very little,
provided that sophisticated detection algorithms are em-
ployed after the matched filters. However, most of the algo-
rithms that have been developed require knowledge of the
amplitudes of each user [48]. Therefore, in order to determine
the bits reliably, the amplitude of each user must also be
known. Seen from the point of view of amplitude estimation,
the bits are unknown nuisance parameters. (Other estimation
schemes relying on decision feedback may take a different
point of view.)

If the bits were known, an ML estimate of the amplitudes
could be easily obtained: a,,; = S(b)" R(b)y. Lacking the bits,
however, more sophisticated tools for obtaining the ampli-
tudes must be applied as a precursor to detecting the bits. One
approach to estimating the signal amplitudes is the EM algo-
rithm [47]. For purposes of applying the EM algorithm, the
complete data set is x = {y, b} and the parameter set is 6 = a.
To compute the expectations in the E-step, it is assumed that
the bits are independent and equally likely + 1.

The likelihood function of the complete data is

f(xla) = f(y,bla) = f(ylb,a)f(bla). (32)

This conditioning is similar to that of Eqs. (19) and (24):
the complete-data likelihood is broken into a likelihood of the
observation, conditioned upon the unobserved data times a
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likelihood of the unobserved data. From Eq. (31), fylb,a) is
Gaussian. To compute the E-step

Ellog f(xla)ly,a™]= ¥ f(bly,a"")log f(xIa)

befrn(MHHK

it is necessary to determine the conditional probability
f(bly,a™).

It is revealing to consider a single-user system. In this case
the log-likelihood function is

2

-(2M +1) +constant,
26

a

a M
log f(xlg,) = 6—'2—_2 by (i), (i) =

and the E-step becomes

Ellog f(xla)ly,a™ = f 2. f (b, (ly, (Ha)log f(x,(i)la,)

i==M by (i)et]
(33)

The conditional probability required for the expectation is

oo oy iy SO@,y Dl fbG),y (Dlaf)
l k] — 1 1 1 — 1 1 1
R R Y P R TS T

exp[ﬁ(Zalm b,(i)y, (i) — a*" )]
S AR

_ expl (@b, (), ()]
~ cosh(y,()a"' / 6?)

(34
Substituting Eq. (34) into Eq. (33) yields

Fllog f(xla)ly.a1 =L 3, (ytanh(aly, () /67 )

- alz (2M +1) + constant
26

Conveniently, Eq. (35) is quadratic in a, and the M-step is
easily computed by differentiating Eq. (35) with respect to a;,
giving

(36)

__ L& :
= Sy tanh(al i)/ 07)
=M

Equation (36) gives the update equation for the amplitude
estimate, which may be iterated until convergence. For mul-
tiple-users, the E-step and M-step are structurally similar, but
more involved computationally [47].

Summary

The EM algorithm may be employed when there is an under-
lying set with a known distribution function that is observed
by means of a many-to-one mapping. If the distribution of the
underlying complete data is exponential, the EM algorithm
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may be specialized as in Egs. (12) and (13). Otherwise, it will
be necessary to use the general statement of the EM algorithm
(Egs. (9) and (10)). In many cases, the type of conditioning
exhibited in Egs. (19), (24) or (32) may be used: the observed
data is conditioned upon data not observed so that the likeli-
hood function may be computed. In general, if the complete
data set is x = (y,z) for some unobserved z, then

Ellog f(x10)ly,0'")] = | fizly,6'")) log f(x16) dz,

since, conditioned upon y the only random component of x
isz.

Analytically, the most difficult portion of the EM algo-
rithm is the E-step. This is also often the most difficult
computational step; for the general EM algorithm, the expec-
tation must be computed over all values of the unobserved
variables. There may be, as in the case of the HMM, efficient
algorithms to ease the computation, but even these cannot
completely eliminate the computational burden.

In most instances where the EM algorithm applies, there
are other algorithms that also apply, such as gradient descent
(see, e.g., [49]). As already observed, however, these algo-
rithms may have problems of their own such as requiring
derivatives or setting of convergence-rate parameters. Be-
cause of its generality and the guaranteed convergence, the
EM algorithm is a good choice to consider for many estima-
tion problems. Future work will include application in new
and different areas, as well as developments to improve
convergence speed and computational structure.

Todd K. Moon is Associate Professor at the Electrical and
Computer Engineering Department and Center for Self-Or-
ganizing Intelligent Systems at Utah State University.

References

1. A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. Royal Statiscal Soc., Ser. B, vol.
39, no.1, pp.1-38, 1977.

2. For an extensive list of references to papers describing applications of the
EM algorithm, see http://www.engineering/usu.edu/Departments/ece/Publi-
cations/Moon on the World-Wide Web.

3. C. Jiang, “The use of mixture models to detect effects of major genes on
quantitative characteristics in a plant-breeding experiment,” Genetics, vol.
136, no. 1, pp. 383-394, 1994.

4. R. Redner and H.F. Walker, “Mixture densities, maximum-likelihood
estimation and the EM algorithm (review),” SIAM Rev., vol. 26, no. 2, pp.
195-237, 1984,

5.J. Schmee and G.J. Hahn, “Simple method for regression analysis with
censored data,” Technometrics, vol. 21, no. 4, pp. 417-432, 1979.

6. R.Little and D.Rubin, “On jointly estimating parameters and missing data
by maximizing the complete-data likelihood,” Am. Statistn., vol. 37, no. 3,
pp- 218-200, 1983.

7. L.A. Shepp and Y.Vardi, “Maximum likelihood reconstruction for emis-
sion tomography,” IEEE Med. Im., vol.1, pp. 113-122, October 1982.

8. D.L. Snyder and D.G. Politte, “Image reconstruction from list-mode data
in an emission tomography system having time-of-flight measurements,”
IEEE Nucl. S., vol. 30, no. 3, pp. 1843-1849, 1983.

9. L. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” P. IEEE, vol. 77, no. 2, pp. 257-286, 1989.

NOVEMBER 1996

10. L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Prentice-Hall, 1993.

11. JR. Deller, J.G. Proakis, and J.H.L. Hansen, Discrete-Time Processing
of Speech Signals. Macmillan, 1993.

12. M. Segal and E. Weinstein, “Parameter estimation of continuous dynami-
cal linear systems given discrete time observations,” P. IEEE, vol.7 5, no. 5,
pp. 727-729, 1987.

13. S. Zabin and H. Poor, “Efficient estimation of class-A noise parameters
via the EM algorithm,” IEEE Trans. Info. T., vol. 37, no. 1, pp. 60-72, 1991.

14. A. Isaksson, “Identification of ARX models subject to missing data,”
IEEE Auto C, vol. 38, no. 5, pp. 813-819, 1993.

15. I. Ziskind and D. Hertz, “Maximum likelihood localization of narrow-
band autoregressive sources via the EM algorithm,” IEEE Trans. Sig. Proc.,
vol. 41, no. 8, pp. 2719-2724, 1993.

16. R. Lagendijk, J. Biemond, and D. Boekee, “Identification and restoration
of noisy blurred images using the expectation-maximization algorithm,”
{EEE Trans. ASSP, vol. 38, no. 7, pp. 1180-1191, 1990.

17. A. Katsaggelos and K. Lay, “Maximum likelihood blur identification and
image restoration using the algorithm,” IEEE Trans. Sig. Proc., vol. 39, no.
3, pp. 729-733, 1991.

18. A. Ansari and R. Viswanathan, “Application of EM algorithm to the
detection of direct sequence signal in pulsed noise jamming,” IEEE Trans.
Com., vol. 41, no. 8, pp. 1151-1154, 1993.

19. M. Feder, “Parameter estimation and extraction of helicopter signals
observed with a wide-band interference,” IEEE Trans. Sig. Proc., vol. 41,
no. 1, pp. 232-244, 1993.

20. G. Kaleh, “Joint parameter estimation and symbol detection for linear
and nonlinear unknown channels,” IEEE Trans. Com., vol. 42, no. 7, pp.
2506-2413, 1994.

21. W. Byrne, “Alternating minimization and Boltzman machine learning,”
1EEE Trans. Neural Net., vol. 3, no. 4, pp. 612-620, 1992.

22. M. Jordan and R. Jacobs, “Hierarchical mixtures of experts and the EM
algorithm,” Neural Comp., vol. 6, no. 2, pp. 181-214, 1994.

23. R. Streit and T. Luginbuh, “ML training of probabilistic neural net-
works,” IEEE Trans. Neural Net., vol. 5, no. 5, pp. 764-783, 1994.

24. M. Miller and D. Fuhrmann, “Maximum likelihood narrow-band direc-
tion finding and the EM algorithm,” JEEE Trans. ASSP, vol. 38, no. 9, pp.
1560-1577, 1990.

25.S. Vaseghi and P. Rayner, “Detection and suppression of impulsive noise
in speech communication systems,” JEE Proc-1, vol. 137, no. 1, pp. 38-46,
1990.

26. E. Weinstein, A. Oppenheim, M. Feder, and J. Buck, “Iterative and
sequential algorithms for multisensor signal enhancement,” IEEE Trans. Sig.
Proc., vol. 42, no. 4, pp. 846-859, 1994.

27. S.E. Bialkowski, “Expectation-maximization (EM) algorithm for regres-
sion, deconvolution, and smoothing of shot-noise limited data,” Journal of
Chemometrics, 1991.

28. C. Georghiades and D. Snyder, “The EM algorithm for symbol unsyn-
chronized sequence detection,” IEEE Comun., vol. 39,no. 1, pp. 54-61, 1991.

29. N. Antoniadis and A. Hero, “Time-delay estimation for filtered Poisson
processes using an EM-type algorithm,” IEEE Trans. Sig. Proc., vol. 42, no.
8, pp. 2112-2123, 1994.

30. M. Segal and E. Weinstein, “The cascade EM algorithm,” P. IEEE, vol.
76, no. 10, pp. 1388-1390, 1988.

31. C. Gyulai, S. Bialkowski, G. S. Stiles, and L. Powers, “A comparison of
three multi-platform message-passing interfaces on an expecation-maximi-
zation algorithm,” in Proceedings of the 1993 World Conference on
Transputers, pp. 451-464, 1993.

32. R.E. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE Trans. Infor. Th., vol. 18, pp. 460-473, July 1972.

33. I. Csiszar and G. Tusnday, “Information geometry and altcrnating
minimization procedures,” Statistics and Decisions, Supplement Issue I,
1984.

IEEE SIGNAL PROCESSING MAGAZINE 59



34. J.G. Proakis, Digital Communications. McGraw Hill, 3rd ed., 1995.

35. R.0O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
Wiley, 1973.

36. P.J. Bickel and K.A. Doksum, Mathematical Statistics. Holden-Day,
1977.

37. C. Wu, “On the convergence properties of the EM algorithm,” Ann.
Statist., vol. 11, no. 1, pp. 95-103, 1983.

38. R.A. Boyles, “On the convergence of the EM algorithm,” J. Roy. Sta. B.,
vol.45, no. 1, pp. 47-50, 1983.

39. B. Widrow and S.D. Stearns, Adaptive Signal Processing. Prentice-Hall,
198s.

40.1.C. Stevens and K.K. Ahuja, “Recent advances in active noise control,”
AIAA Journal, vol. 29, no. 7, pp. 1058-1067, 1991.

41. M. Feder, A. Oppenheim, and E. Weinstein, “Maximum likelihood noise
cancellation using the EM algorithm,” IEEE Trans. ASSP., vol. 37, no. 2, pp.
204-216, 1989.

42. S.M. Kay, Modern Spectral Estimation. Prentice-Hall, 1988.

43.Y. Singer, “Dynamical encoding of cursive handwriting,” Biol. Cybern.,
vol. 71, no. 3, pp. 227-237, 1994.

60 IEEE SIGNAL PROCESSING MAGAZINE

44.J. Picone, “Continuous speech recognition using hidden Markov mod-
els,” Signal Processing Magazine, vol. 7, p. 41, July 1990.

45. L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions of
Markov chains,” Ann. Math. Stat., vol. 41, no. 1, pp. 164-171, 1970.

46. S. Verdu, “Optimum multiuser asymptotic efficiency,” IEEE Trans.
Com., vol. COM-34, no. 9, pp. 890-896, September 1986.

47.H.V. Poor, “On parameter estimation in DS/SSMA formats,” in Proceed-
ings of the International Conference on Advances in Communications and
Control Systems, 1988.

48. R. Lupas and S. Verdu, “Near-far resistance of multiuser detectors in
asynchronous channels,” IEEE Trans. Comm, vol. 38, pp. 496-508, April
1990.

49. A.V. Oppenheim, E. Weinsten, K. C. Zangi, M. Feder, and D. Gauger,
“Single-sensor active noise cancellation based on the EM algorithm,”
ICASSP, 1992.

50. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time
Series Analysis. Addison Wesley, 1991.

51. HL.V. Trees, Detection, Estimation, and Modulation Theory, Part I.
New York: John Wiley and Sons, 1968.

NOVEMBER 1996



