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Appendix A

Mathematical foundations

O
ur goal here is to present the basic results and definitions from linear algebra,
probability theory, information theory and computational complexity that serve

as the mathematical foundations for pattern recognition. We will try to give intuitive
insight whenever appropriate, but do not attempt to prove these results; systematic
expositions can be found in the references.

A.1 Notation

Here are the terms and notation used throughout the book. In addition, there are
numerous specialized variables and functions whose definitions and usage should be
clear from the text.

variables, symbols and operations
≃ approximately equal to
≡ equivalent to (or defined to be)
∝ proportional to
∞ infinity
x→ a x approaches a
t← t + 1 in an algorithm: assign to variable t the new value t + 1
lim
x→a

f(x) the value of f(x) in the limit as x approaches a

arg max
x

f(x) the value of x that leads to the maximum value of f(x)

arg min
x

f(x) the value of x that leads to the minimum value of f(x)

⌈x⌉ ceiling of x, i.e., the least integer not smaller than x (e.g., ⌈3.5⌉ = 4)
⌊x⌋ floor of x, i.e., the greatest integer not larger than x (e.g., ⌊3.5⌋ = 3)
m mod n m modulo n, the remainder when m is divided by n (e.g., 7 mod 5

= 2)
ln(x) logarithm base e, or natural logarithm of x
log(x) logarithm base 10 of x
log2(x) logarithm base 2 of x
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4 APPENDIX A. MATHEMATICAL FOUNDATIONS

exp[x] or ex exponential of x, i.e., e raised to the power of x
∂f(x)/∂x partial derivative of f with respect to x
b∫

a

f(x)dx the integral of f(x) between a and b. If no limits are written, the
full space is assumed

F (x; θ) function of x, with implied dependence upon θ
Q.E.D., quod erat demonstrandum (“which was to be proved ”) —
used to signal the end of a proof

mathematical operations
<x> expected value of random variable x
x̄ mean or average value of x
E [f(x)] the expected value of function f(x) where x is a random variable
Ey[f(x, y)] the expected value of function over several variables, f(x, y), taken

over a subset y of them
Varf [·] the variance, i.e., Ef [(x− Ef [x])2]
n∑

i=1

ai the sum from i = 1 to n: a1 + a2 + ... + an

n∏

i=1

ai the product from i = 1 to n: a1 × a2 × ...× an

f(x) ⋆ g(x) convolution of f(x) with g(x)

vectors and matrices
Rd d-dimensional Euclidean space
x,A, ... boldface is used for (column) vectors and matrices
f(x) vector-valued function (note the boldface) of a scalar
f(x) vector-valued function (note the boldface) of a vector
I identity matrix, square matrix having 1s on the diagonal and 0

everywhere else
1i vector of length i consisting solely of 1’s
diag(a1, a2, ..., ad) matrix whose diagonal elements are a1, a2, ..., ad, and off-diagonal

elements 0
xt transpose of vector x
‖x‖ Euclidean norm of vector x
Σ covariance matrix
tr[A] the trace of A, i.e., the sum of its diagonal components: tr[A] =

d∑

i=1

aii

A−1 the inverse of matrix A

A† pseudoinverse of matrix A

|A| or Det[A] determinant of A
λ eigenvalue
e eigenvector
ui unit vector in the ith direction in Euclidean space
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sets
A,B, C,D, ... “Calligraphic” font generally denotes sets or lists, e.g., data set

D = {x1, ...,xn}
x ∈ D x is an element of set D
x /∈ D x is not an element of set D
A ∪ B union of two sets, i.e., the set containing all elements of A and B
|D| the cardinality of set D, i.e., the number of (possibly non-distinct)

elements in it; occassionally written card|D|
max

x
[D] the maximum x value in set D

probability, distributions and complexity
ω state of nature
P (·) probability
p(·) probability density
P (a, b) the joint probability , i.e., the probability of having both a and b
p(a, b) the joint probability density, i.e., the probability density of having

both a and b
Pr{·} the probability of a condition being met, e.g., Pr{x < x0} means

the probability that x is less than x0

p(x|θ) the conditional probability density of x given θ

w weight vector
λ(·, ·) loss function

∇ =








d
dx1
d

dx2

...
d

dxd








gradient operator in Rd, sometimes written grad

∇θ =








d
dθ1
d

dθ2

...
d

dθd








gradient operator in θ coordinates, sometimes written gradθ

θ̂ maximum likelihood value of θ

∼ “has the distribution,” e.g., p(x) ∼ N(µ, σ2) means that the density
of x is normal, with mean µ and variance σ2

N(µ, σ2) normal or Gaussian distribution with mean µ and variance σ2

N(µ,Σ) multidimensional normal or Gaussian distribution with mean µ

and covariance matrix Σ

U(xl, xu) a one-dimensional uniform distribution between xl and xu

U(xl,xu) a d-dimensional uniform density, i.e., uniform density within the
smallest axes-aligned bounding box that contains both xl and xu,
and zero elsewhere

T (µ, δ) triangle distribution, having center µ and full half-width δ
δ(x) Dirac delta function
Γ(·) Gamma function
n! n factorial = n× (n− 1)× (n− 2)× ...× 1
(
n
k

)
= n!

k!(n−k)! binomial coefficient, n choose k for n and k integers
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O(h(x)) big oh order of h(x)
Θ(h(x)) big theta order of h(x)
Ω(h(x)) big omega order of h(x)
sup

x
f(x) the supremum value of f(x) — the global maximum of f(x) over

all values of x

A.2 Linear algebra

A.2.1 Notation and preliminaries

A d-dimensional column vector x and its transpose xt can be written as

x =








x1

x2

...
xd








and xt = (x1 x2 . . . xd), (1)

where all components can take on real values. We denote an n × d (rectangular)
matrix M and its d× n transpose Mt as

M =








m11 m12 m13 . . . m1d

m21 m22 m23 . . . m2d

...
...

...
. . .

...
mn1 mn2 mn3 . . . mnd








and (2)

Mt =










m11 m21 . . . mn1

m12 m22 . . . mn2

m13 m23 . . . mn3

...
...

. . .
...

m1d m2d . . . mnd










. (3)

In other words, the jith entry of Mt is the ijth entry of M.

A square (d × d) matrix is called symmetric if its entries obey mij = mji; it is
called skew-symmetric (or anti-symmetric) if mij = −mji. A general matrix is called
non-negative if mij ≥ 0 for all i and j. A particularly important matrix is the identity

matrix, I — a d×d (square) matrix whose diagonal entries are 1’s, and all other entriesidentity

matrix 0. The Kronecker delta function or Kronecker symbol, defined as

Kronecker

delta δij =

{
1 if i = j
0 otherwise,

(4)

can serve to define the entries of an identity matrix. A general diagonal matrix (i.e.,
one having 0 for all off diagonal entries) is denoted diag(m11,m22, ...,mdd), the entries
being the successive elements m11,m22, . . . ,mdd. Addition of vectors and of matrices
is component by component.

We can multiply a vector by a matrix, Mx = y, i.e.,
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






m11 m12 . . . m1d

m21 m22 . . . m2d

...
...

. . .
...

mn1 mn2 . . . mnd















x1

x2

...
xd








=











y1

y2

...

...
yn











, (5)

where

yj =
d∑

i=1

mjixi. (6)

Note that the number of columns of M must equal the number of rows of x. Also, if
M is not square, the dimensionality of y differs from that of x.

A.2.2 Inner product

The inner product of two vectors having the same dimensionality will be denoted here inner

productas xty and yields a scalar:

xty =
d∑

i=1

xiyi = ytx. (7)

It is sometimes also called the scalar product or dot product and denoted x • y, or
more rarely (x, y). The Euclidean norm or length of the vector is Euclidean

norm

‖x‖ =
√
xtx. (8)

we call a vector “normalized” if ‖x‖ = 1. The angle between two d-dimensional
vectors obeys

cos θ =
xty

||x|| ||y|| , (9)

and thus the inner product is a measure of the colinearity of two vectors — a natural
indication of their similarity. In particular, if xty = 0, then the vectors are orthogonal,
and if ||xty|| = ||x|| ||y||, the vectors are colinear. From Eq. 9, we have immediately
the Cauchy-Schwarz inequality, which states

‖xty‖ ≤ ||x|| ||y||. (10)

We say a set of vectors {x1,x2, . . . ,xn} is linearly independent if no vector in the linear

independ-

ence

set can be written as a linear combination of any of the others. Informally, a set of d
linearly independent vectors spans an d-dimensional vector space, i.e., any vector in
that space can be written as a linear combination of such spanning vectors.

A.2.3 Outer product

The outer product (sometimes called matrix product or dyadic product) of two vectors matrix

productyields a matrix
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M = xyt =








x1

x2

...
xd








(y1 y2 . . . yn) =








x1y1 x1y2 . . . x1yn

x2y1 x2y2 . . . x2yn

...
...

. . .
...

xdy1 xdy2 . . . xdyn








, (11)

that is, the components of M are mij = xiyj . Of course, if the dimensions of x and
y are not the same, then M is not square.

A.2.4 Derivatives of matrices

Suppose f(x) is a scalar-valued function of d variables xi, i = 1, 2, ...d, which we
represent as the vector x. Then the derivative or gradient of f with respect to this
vector is computed component by component, i.e.,

∇f(x) = gradf(x) =
∂f(x)

∂x
=















∂f(x)
∂x1

∂f(x)
∂x2

...

∂f(x)
∂xd















. (12)

If we have an n-dimensional vector-valued function f (note the use of boldface),
of a d-dimensional vector x, we calculate the derivatives and represent them as the
Jacobian matrixJacobian

matrix

J(x) =
∂f(x)

∂x
=







∂f1(x)
∂x1

. . . ∂f1(x)
∂xd

...
. . .

...
∂fn(x)

∂x1
. . . ∂fn(x)

∂xd







. (13)

If this matrix is square, its determinant (Sect. A.2.5) is called simply the Jacobian or
occassionally the Jacobian determinant.

If the entries of M depend upon a scalar parameter θ, we can take the derivative
of M component by component, to get another matrix, as

∂M

∂θ
=








∂m11

∂θ
∂m12

∂θ . . . ∂m1d

∂θ
∂m21

∂θ
∂m22

∂θ . . . ∂m2d

∂θ
...

...
. . .

...
∂mn1

∂θ
∂mn2

∂θ . . . ∂mnd

∂θ








. (14)

In Sect. A.2.6 we shall discuss matrix inversion, but for convenience we give here the
derivative of the inverse of a matrix, M−1:

∂

∂θ
M−1 = −M−1 ∂M

∂θ
M−1. (15)
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Consider a matrix M that is independent of x. The following vector derivative
identities can be verified by writing out the components:

∂

∂x
[Mx] = M (16)

∂

∂x
[ytx] =

∂

∂x
[xty] = y (17)

∂

∂x
[xtMx] = [M + Mt]x. (18)

In the case where M is symmetric (as for instance a covariance matrix, cf. Sect. A.4.10),
then Eq. 18 simplifies to

∂

∂x
[xtMx] = 2Mx. (19)

We first recall the use of second derivatives of a scalar function of a scalar x in
writing a Taylor series (or Taylor expansion) about a point:

f(x) = f(x0) +
df(x)

dx

∣
∣
∣
∣
∣
x=x0

(x− x0) +
1

2!

d2f(x)

dx2

∣
∣
∣
∣
∣
x=x0

(x− x0)
2 + O((x− x0)

3). (20)

Analogously, if our scalar-valued f is a instead function of a vector x, we can expand
f(x) in a Taylor series around a point x0:

f(x) = f(x0) +

[

∂f

∂x
︸︷︷︸

J

]t

x=x0

(x− x0) +
1

2!
(x− x0)

t

[

∂2f

∂x2
︸︷︷︸

H

]t

x=x0

(x− x0) + O(||x− x0||3), (21)

where H is the Hessian matrix, the matrix of second-order derivatives of f(·), here Hessian

matrixevaluated at x0. (We shall return in Sect. A.8 to consider the O(·) notation and the
order of a function used in Eq. 21 and below.)

A.2.5 Determinant and trace

The determinant of a d × d (square) matrix is a scalar, denoted |M|, and reveals
properties of the matrix. For instance, if we consider the columns of M as vectors, if
these vectors are not linearly independent, then the determinant vanishes. In pattern
recognition, we have particular interest in the covariance matrix Σ, which contains
the second moments of a sample of data. In this case the absolute value of the
determinant of a covariance matrix is a measure of the d-dimensional hypervolume
of the data that yielded Σ. (It can be shown that the determinant is equal to the
product of the eigenvalues of a matrix, as mentioned in Sec. A.2.7.) If the data
lies in a subspace of the full d-dimensional space, then the columns of Σ are not
linearly independent, and the determinant vanishes. Further, the determinant must
be non-zero for the inverse of a matrix to exist (Sec. A.2.6).

The calculation of the determinant is simple in low dimensions, and a bit more
involved in high dimensions. If M is itself a scalar (i.e., a 1 × 1 matrix M), then
|M | = M . If M is 2×2, then |M| = m11m22−m21m12. The determinant of a general
square matrix can be computed by a method called expansion by minors, and this expansion

by minors
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leads to a recursive definition. If M is our d × d matrix, we define Mi|j to be the

(d− 1)× (d− 1) matrix obtained by deleting the ith row and the jth column of M:

j

i
















m11 m12 · · · ⊗ · · · · · · m1d

m21 m22 · · ·
⊗

· · · · · · m2d

...
...

. . .
⊗

· · · · · ·
...

...
... · · · ⊗ · · · · · ·

...
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

...
... · · ·

⊗
· · · . . .

...
md1 md2 · · · ⊗ · · · · · · mdd
















= Mi|j . (22)

Given the determinants |Mx|1|, we can now compute the determinant of M the ex-
pansion by minors on the first column giving

|M| = m11|M1|1| −m21|M2|1|+ m31|M3|1| − · · · ±md1|Md|1|, (23)

where the signs alternate. This process can be applied recursively to the successive
(smaller) matrixes in Eq. 23.

Only for a 3×3 matrix, this determinant calculation can be represented by “sweep-
ing” the matrix, i.e., taking the sum of the products of matrix terms along a diagonal,
where products from upper-left to lower-right are added with a positive sign, and those
from the lower-left to upper-right with a minus sign. That is,

|M| =

∣
∣
∣
∣
∣
∣

m11 m12 m13

m21 m22 m23

m31 m32 m33

∣
∣
∣
∣
∣
∣

(24)

= m11m22m33 + m13m21m32 + m12m23m31

−m13m22m31 −m11m23m32 −m12m21m33.

Again, this “sweeping” mnemonic does not work for matrices larger than 3× 3.
For any matrix we have |M| = |Mt|. Furthermore, for two square matrices of

equal size M and N, we have |MN| = |M| |N|.
The trace of a d × d (square) matrix, denoted tr[M], is the sum of its diagonal

elements:

tr[M] =
d∑

i=1

mii. (25)

Both the determinant and trace of a matrix are invariant with respect to rotations of
the coordinate system.

A.2.6 Matrix inversion

So long as its determinant does not vanish, the inverse of a d× d matrix M, denoted
M−1, is the d× d matrix such that

MM−1 = I. (26)

We call the scalar Cij = (−1)i+j |Mi|j | the i, j cofactor or equivalently the cofactor ofcofactor
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the i, j entry of M. As defined in Eq. 22, Mi|j is the (d− 1)× (d− 1) matrix formed
by deleting the ith row and jth column of M. The adjoint of M, written Adj[M], is adjoint

the matrix whose i, j entry is the j, i cofactor of M. Given these definitions, we can
write the inverse of a matrix as

M−1 =
Adj[M]

|M| . (27)

If M is not square (or if M−1 in Eq. 27 does not exist because the columns of M are
not linearly independent) we typically use instead the pseudoinverse M†, defined as pseudo-

inverse

M† = [MtM]−1Mt. (28)

The pseudoinverse is useful because it insures M†M = I.

A.2.7 Eigenvectors and eigenvalues

Given a d× d matrix M a very important class of linear equations is of the form

Mx = λx (29)

for scalar λ, which can be rewritten

(M− λI)x = 0, (30)

where I the identity matrix, and 0 the zero vector. The solution vector x = ei and
corresponding scalar λ = λi to Eq. 29 are called the eigenvector and associated eigen-

value. There are d (possibly non-distinct) solution vectors {e1, e2, . . . , ed} each with
an associated eigenvalue {λ1, λ2, . . . , λd}. Under multiplication by M the eigenvectors
are changed only in magnitude — not direction:

Mej = λjej . (31)

If M is diagonal, then the eigenvectors are parallel to the coordinate axes.

One method of finding the eigenvectors and eigenvalues is to solve the character-

istic equation (or secular equation), character-

istic

equation

secular

equation

|M− λI| = λd + a1λ
d−1 + . . . + ad−1λ + ad = 0, (32)

for each of its d (possibly non-distinct) roots λj . For each such root, we then solve a
set of linear equations to find its associated eigenvector ej .

Finally, it can be shown that the determinant of a matrix is just the product of
its eigenvalues:

|M| =
d∏

i=1

λi. (33)



12 APPENDIX A. MATHEMATICAL FOUNDATIONS

A.3 Lagrange optimization

Suppose we seek the position x0 of an extremum of a scalar-valued function f(x),
subject to some constraint. If a constraint can be expressed in the form g(x) = 0,
then we can find the extremum of f(x) as follows. First we form the Lagrangian
function

L(x, λ) = f(x) + λg(x)
︸ ︷︷ ︸

=0

, (34)

where λ is a scalar called the Lagrange undetermined multiplier. We convert this con-undeter-

mined

multiplier

strained optimization problem into an unconstrained problem by taking the derivative,

∂L(x, λ)

∂x
=

∂f(x)

∂x
+ λ

∂g(x)

∂x
= 0, (35)

and using standard methods from calculus to solve the resulting equations for λ and
the extremizing value of x. (Note that the last term on the left hand side does not
vanish, in general.) The solution gives the x position of the extremum, and it is a
simple matter of substitution to find the extreme value of f(·) under the constraints.

A.4 Probability Theory

A.4.1 Discrete random variables

Let x be a discrete random variable that can assume any of the finite number m of
different values in the set X = {v1, v2, . . . , vm}. We denote by pi the probability that
x assumes the value vi:

pi = Pr{x = vi}, i = 1, . . . ,m. (36)

Then the probabilities pi must satisfy the following two conditions:

pi ≥ 0 and
m∑

i=1

pi = 1. (37)

Sometimes it is more convenient to express the set of probabilities {p1, p2, . . . , pm}
in terms of the probability mass function P (x), which must satisfy the following twoprobability

mass

function

conditions:

P (x) ≥ 0 and
∑

x∈X
P (x) = 1and (38)

∑

x/∈X
P (x) = 0. (39)
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A.4.2 Expected values

The expected value, mean or average of the random variable x is defined bymean

E [x] = µ =
∑

x∈X
xP (x) =

m∑

i=1

vipi. (40)

If one thinks of the probability mass function as defining a set of point masses, with
pi being the mass concentrated at x = vi, then the expected value µ is just the center
of mass. Alternatively, we can interpret µ as the arithmetic average of the values in a
large random sample. More generally, if f(x) is any function of x, the expected value
of f is defined by

E [f(x)] =
∑

x∈X
f(x)P (x). (41)

Note that the process of forming an expected value is linear, in that if α1 and α2 are
arbitrary constants,

E [α1f1(x) + α2f2(x)] = α1E [f1(x)] + α2E [f2(x)]. (42)

It is sometimes convenient to think of E as an operator — the (linear) expectation

operator. Two important special-case expectations are the second moment and the expectation

operator

second

moment

variance:

variance

E [x2] =
∑

x∈X
x2P (x) (43)

Var[x] ≡ σ2 = E [(x− µ)2] =
∑

x∈X
(x− µ)2P (x), (44)

where σ is the standard deviation of x. The variance can be viewed as the moment of standard

deviationinertia of the probability mass function. The variance is never negative, and is zero
if and only if all of the probability mass is concentrated at one point.

The standard deviation is a simple but valuable measure of how far values of x
are likely to depart from the mean. Its very name suggests that it is the standard
or typical amount one should expect a randomly drawn value for x to deviate or
differ from µ. Chebyshev’s inequality (or Bienaymé-Chebyshev inequality) provides a Chebyshev’s

inequalitymathematical relation between the standard deviation and |x− µ|:

Pr{|x− µ| > nσ} ≤ 1

n2
. (45)

This inequality is not a tight bound (and it is useless for n < 1); a more practical rule
of thumb, which strictly speaking is true only for the normal distribution, is that 68%
of the values will lie within one, 95% within two, and 99.7% within three standard
deviations of the mean (Fig. A.1). Nevertheless, Chebyshev’s inequality shows the
strong link between the standard deviation and the spread of a distribution. In
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addition, it suggests that |x−µ|/σ is a meaningful normalized measure of the distance
from x to the mean (cf. Sect. A.4.12).

By expanding the quadratic in Eq. 44, it is easy to prove the useful formula

Var[x] = E [x2]− (E [x])2. (46)

Note that, unlike the mean, the variance is not linear. In particular, if y = αx, where
α is a constant, then Var[y] = α2Var[x]. Moreover, the variance of the sum of two
random variables is usually not the sum of their variances. However, as we shall see
below, variances do add when the variables involved are statistically independent.

In the simple but important special case in which x is binary valued (say, v1 = 0
and v2 = 1), we can obtain simple formulas for µ and σ. If we let p = Pr{x = 1},
then it is easy to show that

µ = p and

σ =
√

p(1− p). (47)

A.4.3 Pairs of discrete random variables

Let x and y be random variables which can take on values in X = {v1, v2, . . . , vm},
and Y = {w1, w2, . . . , wn}, respectively. We can think of (x, y) as a vector or a point
in the product space of x and y. For each possible pair of values (vi, wj) we have aproduct

space joint probability pij = Pr{x = vi, y = wj}. These mn joint probabilities pij are non-
negative and sum to 1. Alternatively, we can define a joint probability mass function

P (x, y) for which

P (x, y) ≥ 0 and
∑

x∈X

∑

y∈Y
P (x, y) = 1. (48)

The joint probability mass function is a complete characterization of the pair of ran-
dom variables (x, y); that is, everything we can compute about x and y, individually
or together, can be computed from P (x, y). In particular, we can obtain the separate
marginal distributions for x and y by summing over the unwanted variable:marginal

distribu-

tion

Px(x) =
∑

y∈Y
P (x, y)

Py(y) =
∑

x∈X
P (x, y). (49)

We will occassionally use subscripts, as in Eq. 49, to emphasize the fact that
Px(x) has a different functional form than Py(y). It is common to omit them and
write simply P (x) and P (y) whenever the context makes it clear that these are in
fact two different functions — rather than the same function merely evaluated with
different variables.
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A.4.4 Statistical independence

Variables x and y are said to be statistically independent if and only if

P (x, y) = Px(x)Py(y). (50)

We can understand such independence as follows. Suppose that pi = Pr{x = vi} is
the fraction of the time that x = vi, and qj = Pr{y = wj} is the fraction of the time
that y = wj . Consider those situations where x = vi. If it is still true that the fraction
of those situations in which y = wj is the same value qj , it follows that knowing the
value of x did not give us any additional knowledge about the possible values of y;
in that sense y is independent of x. Finally, if x and y are statistically independent,
it is clear that the fraction of the time that the specific pair of values (vi, wj) occurs
must be the product of the fractions piqj = P (vi)P (wj).

A.4.5 Expected values of functions of two variables

In the natural extension of Sect. A.4.2, we define the expected value of a function
f(x, y) of two random variables x and y by

E [f(x, y)] =
∑

x∈X

∑

y∈Y
f(x, y)P (x, y), (51)

and as before the expectation operator E is linear:

E [α1f1(x, y) + α2f2(x, y)] = α1E [f1(x, y)] + α2E [f2(x, y)]. (52)

The means (first moments) and variances (second moments) are:

µx = E [x] =
∑

x∈X

∑

y∈Y
xP (x, y)

µy = E [y] =
∑

x∈X

∑

y∈Y
yP (x, y)

σ2
x = V [x] = E [(x− µx)2] =

∑

x∈X

∑

y∈Y
(x− µx)2P (x, y)

σ2
y = V [y] = E [(y − µy)2] =

∑

x∈X

∑

y∈Y
(y − µy)2P (x, y). (53)

An important new “cross-moment” can now be defined, the covariance of x and covar-

iancey:

σxy = E [(x− µx)(y − µy)] =
∑

x∈X

∑

y∈Y
(x− µx)(y − µy)P (x, y). (54)

We can summarize Eqs. 53 & 54 using vector notation as:

µ = E [x] =
∑

x∈{XY}
xP (x) (55)

Σ = E [(x− µ)(x− µ)t], (56)
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where {XY} respresents the space of all possible values for all components of x and
Σ is the covariance matrix (cf., Sect. A.4.9).

The covariance is one measure of the degree of statistical dependence between x
and y. If x and y are statistically independent, then σxy = 0. If σxy = 0, the variables
x and y are said to be uncorrelated. It does not follow that uncorrelated variables mustuncorre-

lated be statistically independent — covariance is just one measure of dependence. However,
it is a fact that uncorrelated variables are statistically independent if they have a
multivariate normal distribution, and in practice statisticians often treat uncorrelated
variables as if they were statistically independent. If α is a constant and y = αx, which
is a case of strong statistical dependence, it is also easy to show that σxy = ασ2

x. Thus,
the covariance is positive if x and y both increase or decrease together, and is negative
if y decreases when x increases.

There is an important Cauchy-Schwarz inequality for the variances σx and σy andCauchy-

Schwarz

inequality

the covariance σxy. It can be derived by observing that the variance of a random
variable is never negative, and thus the variance of λx + y must be non-negative no
matter what the value of the scalar λ. This leads to the famous inequality

σ2
xy ≤ σ2

xσ
2
y, (57)

which is analogous to the vector inequality (xty)2 ≤ ‖x‖2 ‖y‖2 given in Eq. 8.
The correlation coefficient, defined ascorrelation

coefficient

ρ =
σxy

σxσy
, (58)

is a normalized covariance, and must always be between −1 and +1. If ρ = +1,
then x and y are maximally positively correlated, while if ρ = −1, they are maxi-
mally negatively correlated. If ρ = 0, the variables are uncorrelated. It is common for
statisticians to consider variables to be uncorrelated for practical purposes if the mag-
nitude of their correlation coefficient is below some threshold, such as 0.05, although
the threshold that makes sense does depend on the actual situation.

If x and y are statistically independent, then for any two functions f and g

E [f(x)g(y)] = E [f(x)]E [g(y)], (59)

a result which follows from the definition of statistical independence and expectation.
Note that if f(x) = x − µx and g(y) = y − µy, this theorem again shows that
σxy = E [(x− µx)(y − µy)] is zero if x and y are statistically independent.

A.4.6 Conditional probability

When two variables are statistically dependent, knowing the value of one of them
lets us get a better estimate of the value of the other one. This is expressed by the
following definition of the conditional probability of x given y:

Pr{x = vi|y = wj} =
Pr{x = vi, y = wj}

Pr{y = wj}
, (60)

or, in terms of mass functions,

P (x|y) =
P (x, y)

P (y)
. (61)
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Note that if x and y are statistically independent, this gives P (x|y) = P (x). That
is, when x and y are independent, knowing the value of y gives you no information
about x that you didn’t already know from its marginal distribution P (x).

Consider a simple illustration of a two-variable binary case where both x and y
are either 0 or 1. Suppose that a large number n of pairs of xy-values are randomly
produced. Let nij be the number of pairs in which we find x = i and y = j, i.e., we
see the (0, 0) pair n00 times, the (0, 1) pair n01 times, and so on, where n00 + n01 +
n10 + n11 = n. Suppose we pull out those pairs where y = 1, i.e., the (0, 1) pairs and
the (1, 1) pairs. Clearly, the fraction of those cases in which x is also 1 is

n11

n01 + n11
=

n11/n

(n01 + n11)/n
. (62)

Intuitively, this is what we would like to get for P (x|y) when y = 1 and n is large.
And, indeed, this is what we do get, because n11/n is approximately P (x, y) and

n11/n
(n01+n11)/n is approximately P (y) for large n.

A.4.7 The Law of Total Probability and Bayes’ rule

The Law of Total Probability states that if an event A can occur in m different ways
A1, A2, . . . , Am, and if these m subevents are mutually exclusive — that is, cannot
occur at the same time — then the probability of A occurring is the sum of the
probabilities of the subevents Ai. In particular, the random variable y can assume
the value y in m different ways — with x = v1, with x = v2, . . ., and x = vm. Because
these possibilities are mutually exclusive, it follows from the Law of Total Probability
that P (y) is the sum of the joint probability P (x, y) over all possible values for x.
Formally we have

P (y) =
∑

x∈X
P (x, y). (63)

But from the definition of the conditional probability P (y|x) we have

P (x, y) = P (y|x)P (x), (64)

and after rewriting Eq. 64 with x and y exchanged and a trivial math, we obtain

P (x|y) =
P (y|x)P (x)
∑

x∈X
P (y|x)P (x)

, (65)

or in words,

posterior =
likelihood× prior

evidence
,

where these terms are discussed more fully in Chapt. ??.
Equation 65 is called Bayes’ rule. Note that the denominator, which is just P (y), is

obtained by summing the numerator over all x values. By writing the denominator in
this form we emphasize the fact that everything on the right-hand side of the equation
is conditioned on x. If we think of x as the important variable, then we can say that
the shape of the distribution P (x|y) depends only on the numerator P (y|x)P (x); the
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denominator is just a normalizing factor, sometimes called the evidence, needed to evidence

insure that the P (x|y) sum to one.
The standard interpretation of Bayes’ rule is that it “inverts” statistical connec-

tions, turning P (y|x) into P (x|y). Suppose that we think of x as a “cause” and y as
an “effect” of that cause. That is, we assume that if the cause x is present, it is easy
to determine the probability of the effect y being observed; the conditional probability
function P (y|x) — the likelihood — specifies this probability explicitly. If we observelikelihood

the effect y, it might not be so easy to determine the cause x, because there might
be several different causes, each of which could produce the same observed effect.
However, Bayes’ rule makes it easy to determine P (x|y), provided that we know both
P (y|x) and the so-called prior probability P (x), the probability of x before we makeprior

any observations about y. Said slightly differently, Bayes’ rule shows how the prob-
ability distribution for x changes from the prior distribution P (x) before anything is
observed about y to the posterior P (x|y) once we have observed the value of y.posterior

A.4.8 Vector random variables

To extend these results from two variables x and y to d variables x1, x2, . . . , xd, it is
convenient to employ vector notation. As given by Eq. 48, the joint probability mass
function P (x) satisfies P (x) ≥ 0 and

∑
P (x) = 1, where the sum extends over all

possible values for the vector x. Note that P (x) is a function of d variables, and can
be a very complicated, multi-dimensional function. However, if the random variables
xi are statistically independent, it reduces to the product

P (x) = Px1(x1)Px2(x2) · · ·Pxd
(xd)

=

d∏

i=1

Pxi(xi). (66)

where we have used the subscripts just to emphasize the fact that the marginal distri-
butions will generally have a different form. Here the separate marginal distributions
Pxi

(xi) can be obtained by summing the joint distribution over the other variables.
In addition to these univariate marginals, other marginal distributions can be ob-
tained by this use of the Law of Total Probability. For example, suppose that we have
P (x1, x2, x3, x4, x5) and we want P (x1, x4), we merely calculate

P (x1, x4) =
∑

x2

∑

x3

∑

x5

P (x1, x2, x3, x4, x5). (67)

One can define many different conditional distributions, such as P (x1, x2|x3) or
P (x2|x1, x4, x5). For example,

P (x1, x2|x3) =
P (x1, x2, x3)

P (x3)
, (68)

where all of the joint distributions can be obtained from P (x) by summing out the un-
wanted variables. If instead of scalars we have vector variables, then these conditional
distributions can also be written as

P (x1|x2) =
P (x1,x2)

P (x2)
, (69)
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and likewise, in vector form, Bayes’ rule becomes

P (x1|x2) =
P (x2|x1)P (x1)
∑

x1

P (x2|x1)P (x1)
. (70)

A.4.9 Expectations, mean vectors and covariance matrices

The expected value of a vector is defined to be the vector whose components are
the expected values of the original components. Thus, if f(x) is an n-dimensional,
vector-valued function of the d-dimensional random vector x,

f(x) =








f1(x)
f2(x)

...
fn(x)







, (71)

then the expected value of f is defined by

E [f ] =








E [f1(x)]
E [f2(x)]

...
E [fn(x)]








=
∑

x

f(x)P (x). (72)

In particular, the d-dimensional mean vector µ is defined by mean

vector

µ = E [x] =








E [x1]
E [x2]

...
E [xd]








=








µ1

µ2

...
µd








=
∑

x

xP (x). (73)

Similarly, the covariance matrix Σ is defined as the (square) matrix whose ijth element covariance

matrixσij is the covariance of xi and xj :

σij = σji = E [(xi − µi)(xj − µj)] i, j = 1 . . . d, (74)

as we saw in the two-variable case of Eq. 54. Therefore, in expanded form we have

Σ =








E [(x1 − µ1)(x1 − µ1)] E [(x1 − µ1)(x2 − µ2)] . . . E [(x1 − µ1)(xd − µd)]
E [(x2 − µ2)(x1 − µ1)] E [(x2 − µ2)(x2 − µ2)] . . . E [(x2 − µ2)(xd − µd)]

...
...

. . .
...

E [(xd − µd)(x1 − µ1)] E [(xd − µd)(x2 − µ2)] . . . E [(xd − µd)(xd − µd)]








=








σ11 σ12 . . . σ1d

σ21 σ22 . . . σ2d

...
...

. . .
...

σd1 σd2 . . . σdd








=








σ2
1 σ12 . . . σ1d

σ21 σ2
2 . . . σ2d

...
...

. . .
...

σd1 σd2 . . . σ2
d







. (75)

We can use the vector product (x− µ)(x− µ)t, to write the covariance matrix as

Σ = E [(x− µ)(x− µ)t]. (76)
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Thus, Σ is symmetric, and its diagonal elements are just the variances of the in-
dividual elements of x, which can never be negative; the off-diagonal elements are
the covariances, which can be positive or negative. If the variables are statistically
independent, the covariances are zero, and the covariance matrix is diagonal. The
analog to the Cauchy-Schwarz inequality comes from recognizing that if w is any d-
dimensional vector, then the variance of wtx can never be negative. This leads to the
requirement that the quadratic form wtΣw never be negative. Matrices for which
this is true are said to be positive semi-definite; thus, the covariance matrix Σ must
be positive semi-definite. It can be shown that this is equivalent to the requirement
that none of the eigenvalues of Σ can be negative.

A.4.10 Continuous random variables

When the random variable x can take values in the continuum, it no longer makes
sense to talk about the probability that x has a particular value, such as 2.5136,
because the probability of any particular exact value will almost always be zero.
Rather, we talk about the probability that x falls in some interval (a, b); instead of
having a probability mass function P (x) we have a probability mass density functionmass

density p(x). The mass density has the property that

Pr{x ∈ (a, b)} =

b∫

a

p(x) dx. (77)

The name density comes by analogy with material density. If we consider a small
interval (a, a + ∆x) over which p(x) is essentially constant, having value p(a), we see
that p(a) = Pr{x ∈ (a, a + ∆x)}/∆x. That is, the probability mass density at x = a
is the probability mass Pr{x ∈ (a, a + ∆x)} per unit distance. It follows that the
probability density function must satisfy

p(x) ≥ 0 and
∞∫

−∞

p(x) dx = 1. (78)

In general, most of the definitions and formulas for discrete random variables carry
over to continuous random variables with sums replaced by integrals. In particular,
the expected value, mean and variance for a continuous random variable are defined
by

E [f(x)] =

∞∫

−∞

f(x)p(x) dx

µ = E [x] =

∞∫

−∞

xp(x) dx (79)

Var[x] = σ2 = E [(x− µ)2] =

∞∫

−∞

(x− µ)2p(x) dx,



A.4. PROBABILITY THEORY 21

and, as in Eq. 46, the variance obeys σ2 = E [x2]− (E [x])2.
The multivariate situation is similarly handled with continuous random vectors x.

The probability density function p(x) must satisfy

p(x) ≥ 0 and
∞∫

−∞

p(x) dx = 1, (80)

where the integral is understood to be a d-fold, multiple integral, and where dx is the
element of d-dimensional volume dx = dx1dx2 · · · dxd. The corresponding moments
for a general n-dimensional vector-valued function are

E [f(x)] =

∞∫

−∞

∞∫

−∞

· · ·
∞∫

−∞

f(x)p(x) dx1dx2 . . . dxd =

∞∫

−∞

f(x)p(x) dx (81)

and for the particular d-dimensional functions as above, we have

µ = E [x] =

∞∫

−∞

xp(x) dx (82)

Σ = E [(x− µ)(x− µ)t] =

∞∫

−∞

(x− µ)(x− µ)tp(x) dx.

If the components of x are statistically independent, then the joint probability density
function factors as

p(x) =
d∏

i=1

p(xi) (83)

and the covariance matrix is diagonal.
Conditional probability density functions are defined just as conditional mass func-

tions. Thus, for example, the density for x given y is given by

p(x|y) =
p(x, y)

p(y)
(84)

and Bayes’ rule for density functions is

p(x|y) =
p(y|x)p(x)

∞∫

−∞

p(y|x)p(x) dx

, (85)

and likewise for the vector case.
Occassionally we will need to take the expectation with respect to a subset of the

variables, and in that case we must show this as a subscript, for instance

Ex1 [f(x1, x2)] =

∞∫

−∞

f(x1, x2)p(x1) dx1. (86)
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A.4.11 Distributions of sums of independent random variables

It frequently happens that we know the densities for two independent random variables
x and y, and we need to know the density of their sum z = x+ y. It is easy to obtain
the mean and the variance of this sum:

µz = E [z] = E [x + y] = E [x] + E [y] = µx + µy,

σ2
z = E [(z − µz)2] = E [(x + y − (µx + µy))2] = E [((x− µx) + (y − µy))2]

= E [(x− µx)2] + 2 E [(x− µx)(y − µy)]
︸ ︷︷ ︸

=0

+E [(y − µy)2] (87)

= σ2
x + σ2

y,

where we have used the fact that the cross-term factors into E [x− µx]E [y− µy] when
x and y are independent; in this case the product is manifestly zero, since each of
the component expectations vanishes. Thus, in words, the mean of the sum of two
independent random variables is the sum of their means, and the variance of their
sum is the sum of their variances. If the variables are random yet not independent —
for instance y = −x, where x is randomly distributed — then the variance is not the
sum of the component variances.

It is only slightly more difficult to work out the exact probability density function
for z = x+y from the separate density functions for x and y. The probability that z is
between ζ and ζ +∆z can be found by integrating the joint density p(x, y) = p(x)p(y)
over the thin strip in the xy-plane between the lines x + y = ζ and x + y = ζ + ∆z.
It follows that, for small ∆z,

Pr{ζ < z < ζ + ∆z} =

{ ∞∫

−∞

p(x)p(ζ − x) dx

}

∆z, (88)

and hence that the probability density function for the sum is the convolution of theconvolution

probability density functions for the components:

p(z) = p(x) ⋆ p(y) =

∞∫

−∞

p(x)p(z − x) dx. (89)

As one would expect, these results generalize. It is not hard to show that:

• The mean of the sum of d independent random variables x1, x2, . . . , xd is the
sum of their means. (In fact the variables need not be independent for this to
hold.)

• The variance of the sum is the sum of their variances.

• The probability density function for the sum is the convolution of the separate
density functions:

p(z) = p(x1) ⋆ p(x2) ⋆ . . . ⋆ p(xd). (90)
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A.4.12 Univariate normal density

One of the most important results of probability theory is the Central Limit Theorem,Central

Limit

Theorem

which states that, under various conditions, the distribution for the sum of d inde-
pendent random variables approaches a particular limiting form known as the normal

distribution. As such, the normal or Gaussian probability density function is very Gaussian

important, both for theoretical and practical reasons. In one dimension, it is defined
by

p(x) =
1√
2πσ

e−1/2((x−µ)/σ)2 . (91)

The normal density is traditionally described as a “bell-shaped curve”; it is com-
pletely determined by the numerical values for two parameters, the mean µ and the
variance σ2. This is often emphasized by writing p(x) ∼ N(µ, σ2), which is read as
“x is distributed normally with mean µ and variance σ2.” The distribution is sym-
metrical about the mean, the peak occurring at x = µ and the width of the “bell”
is proportional to the standard deviation σ. The parameters of a normal density in
Eq. 91 satisfy the following equations:

E [1] =

∞∫

−∞

p(x) dx = 1

E [x] =

∞∫

−∞

x p(x) dx = µ (92)

E [(x− µ)2] =

∞∫

−∞

(x− µ)2p(x) dx = σ2.

Normally distributed data points tend to cluster about the mean. Numerically, the
probabilities obey

Pr{|x− µ| ≤ σ} ≃ 0.68

Pr{|x− µ| ≤ 2σ} ≃ 0.95 (93)

Pr{|x− µ| ≤ 3σ} ≃ 0.997,

as shown in Fig. A.1.
A natural measure of the distance from x to the mean µ is the distance |x − µ|

measured in units of standard deviations:

r =
|x− µ|

σ
, (94)

the Mahalanobis distance from x to µ. (In the one-dimensional case, this is sometimes Mahalanobis

distancecalled the z-score.) Thus for instance the probability is 0.95 that the Mahalanobis
distance from x to µ will be less than 2. If a random variable x is modified by
(a) subtracting its mean and (b) dividing by its standard deviation, it is said to be
standardized. Clearly, a standardized normal random variable u = (x−µ)/σ has zero standardized

mean and unit standard deviation, that is,
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Figure A.1: A one-dimensional Gaussian distribution, p(u) ∼ N(0, 1), has 68% of its
probability mass in the range |u| ≤ 1, 95% in the range |u| ≤ 2, and 99.7% in the
range |u| ≤ 3.

p(u) =
1√
2π

e−u2/2, (95)

which can be written as p(u) ∼ N(0, 1). Table A.1 shows the probability that a value,
chosen at random according to p(u) ∼ N(0, 1), differs from the mean value by less
than a criterion z.

Table A.1: The probability a sample drawn from a standardized Gaussian has absolute
value less than a criterion, i.e., Pr[|u| ≤ z]

z Pr[|u| ≤ z] z Pr[|u| ≤ z] z Pr[|u| ≤ z]
0.0 0.0 1.0 0.682 2.0 0.954
0.1 0.080 1.1 0.728 2.1 0.963
0.2 0.158 1.2 0.770 2.326 0.980
0.3 0.236 1.3 0.806 2.5 0.988
0.4 0.310 1.4 0.838 2.576 0.990
0.5 0.382 1.5 0.866 3.0 0.9974
0.6 0.452 1.6 0.890 3.090 0.9980
0.7 0.516 1.7 0.910 3.291 0.999
0.8 0.576 1.8 0.928 3.5 0.9996
0.9 0.632 1.9 0.942 4.0 0.99994

A.5 Gaussian derivatives and integrals

Because of the prevalence of Gaussian functions throughout statistical pattern recog-
nition, we often have occassion to integrate and differentiate them. The first three
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derivatives of a one-dimensional (standardized) Gaussian are

∂

∂x

[
1√
2πσ

e−x2/(2σ2)

]

= −x√
2πσ3

e−x2/(2σ2) =
−x

σ2
p(x)

∂2

∂x2

[
1√
2πσ

e−x2/(2σ2)

]

= 1√
2πσ5

(
−σ2 + x2

)
e−x2/(2σ2) =

−σ2 + x2

σ4
p(x) (96)

∂3

∂x3

[
1√
2πσ

e−x2/(2σ2)

]

= 1√
2πσ7

(
3xσ2 − x3

)
e−x2/(2σ2) =

−3xσ2 − x3

σ6
p(x),

and are shown in Fig. A.2.

-4 -2 2 4

x

f '''

f

f '

f ''

Figure A.2: A one-dimensional Gaussian distribution and its first three derivatives,
shown for f(x) ∼ N(0, 1).

An important finite integral of the Gaussian is the so-called error function, defined error

functionas

erf(u) =

√

2

π

u∫

0

e−x2/2dx. (97)

As can be seen from Fig. A.1, erf(0) = 0, erf(1) = 0.68 and lim
x→∞

erf(x) = 1. There

is no closed analytic form for the error function, and thus we typically use tables,
approximations or numerical integration for its evaluation (Fig. A.3).

In calculating moments of Gaussians, we need the general integral of powers of x
weighted by a Gaussian. Recall first the definition of a gamma function gamma

function

Γ(n + 1) =

∞∫

0

xne−xdx, (98)

where the gamma function obeys

Γ(n) = nΓ(n− 1) (99)

and Γ(1/2) =
√
π. For n an integer we have Γ(n+1) = n ×(n−1)×(n−2) . . . 1 = n!,

read “n factorial.” factorial
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Figure A.3: The error function corresponds to the area under a standardized Gaussian
(Eq. 97) between −u and u, i.e., it describes the probability that a sample drawn
from a standardized Gaussian obeys |x| ≤ u. Thus, the complementary probability,
1 − erf(u) is the probability that a sample is chosen with |x| > u. Chebyshev’s
inequality states that for an arbitrary distribution having standard deviation = 1,
this latter probability is bounded by 1/u2. As shown, this bound is quite loose for a
Gaussian.

Changing variables in Eq. 98, we find the moments of a (normalized) Gaussian
distribution as

2

∞∫

0

xn e−x2/(2σ2)

√
2πσ

dx =
2n/2σn

√
π

Γ

(
n + 1

2

)

, (100)

where again we have used a pre-factor of 2 and lower integration limit of 0 in order
give non-trivial (i.e., non-vanishing) results for odd n.

A.5.1 Multivariate normal densities

Normal random variables have many desirable theoretical properties. For example, it
turns out that the convolution of two Gaussian functions is again a Gaussian function,
and thus the distribution for the sum of two independent normal random variables is
again normal. In fact, sums of dependent normal random variables also have normal
distributions. Suppose that each of the d random variables xi is normally distributed,
each with its own mean and variance: p(xi) ∼ N(µi, σ

2
i ). If these variables are

independent, their joint density has the form

p(x) =
d∏

i=1

p(xi) =
d∏

i=1

1√
2πσi

e−1/2((xi−µi)/σi)
2

=
1

(2π)d/2

d∏

i=1

σi

exp

[

−1

2

d∑

i=1

(
xi − µi

σi

)2
]

. (101)

This can be written in a compact matrix form if we observe that for this case the
covariance matrix is diagonal, i.e.,
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Σ =








σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

d







, (102)

and hence the inverse of the covariance matrix is easily written as

Σ−1 =








1/σ2
1 0 . . . 0

0 1/σ2
2 . . . 0

...
...

. . .
...

0 0 . . . 1/σ2
d







. (103)

Thus, the exponent in Eq. 101 can be rewritten using

d∑

i=1

(
xi − µi

σi

)2

= (x− µ)tΣ−1(x− µ). (104)

Finally, by noting that the determinant of Σ is just the product of the variances, we
can write the joint density compactly in terms of the quadratic form

p(x) =
1

(2π)d/2|Σ|1/2
e
−1

2
(x− µ)tΣ−1(x− µ)

. (105)

This is the general form of a multivariate normal density function, where the covari-
ance matrix Σ is no longer required to be diagonal. With a little linear algebra, it
can be shown that if x obeys this density function, then

µ = E [x] =

∞∫

−∞

x p(x) dx

Σ = E [(x− µ)(x− µ)t] =

∞∫

−∞

(x− µ)(x− µ)tp(x) dx, (106)

just as one would expect. Multivariate normal data tend to cluster about the mean
vector, µ, falling in an ellipsoidally-shaped cloud whose principal axes are the eigen-
vectors of the covariance matrix. The natural measure of the distance from x to the
mean µ is provided by the quantity

r2 = (x− µ)tΣ−1(x− µ), (107)

which is the square of the Mahalanobis distance from x to µ. It is not as easy
to standardize a vector random variable (reduce it to zero mean and unit covariance
matrix) as it is in the univariate case. The expression analogous to u = (x−µ)/σ is u =
Σ−1/2(x−µ), which involves the “square root” of the inverse of the covariance matrix.
The process of obtaining Σ−1/2 requires finding the eigenvalues and eigenvectors of
Σ, and is just a bit beyond the scope of this Appendix.
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A.5.2 Bivariate normal densities

It is illuminating to look at the bivariate normal density, that is, the case of two
normally distributed random variables x1 and x2. It is convenient to define σ2

1 =
σ11, σ

2
2 = σ22, and to introduce the correlation coefficient ρ defined by

ρ =
σ12

σ1σ2
. (108)

With this notation, the covariance matrix becomes

Σ =

[
σ11 σ12

σ21 σ22

]

=

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]

, (109)

and its determinant simplifies to

|Σ| = σ2
1σ

2
2(1− ρ2). (110)

Thus, the inverse covariance matrix is given by

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]

=
1

1− ρ2

[
1/σ2

1 −ρ/(σ1σ2)
−ρ/(σ1σ2 1/σ2

2

]

. (111)

Next we explicitly expand the quadratic form in the normal density:

(x− µ)tΣ−1(x− µ)

= [(x1 − µ1) (x2 − µ2)]
1

1− ρ2

[
1/σ2

1 −ρ/(σ1σ2)
−ρ/(σ1σ2) 1/σ2

2

] [
x1 − µ1

x2 − µ2

]

=
1

1− ρ2

[(
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)

+

(
x2 − µ2

σ2

)2
]

. (112)

Thus, the general bivariate normal density has the form

px1x2
(x1, x2) =

1

2πσ1σ2

√

1− ρ2
× (113)

exp

[

− 1

2(1− ρ2)

[(x1 − µ1

σ1

)2

− 2ρ
(x1 − µ1

σ1

)(x2 − µ2

σ2

)

+
(x2 − µ2

σ2

)2]
]

.

As we can see from Fig. A.4, p(x1, x2) is a hill-shaped surface over the x1x2 plane.
The peak of the hill occurs at the point (x1, x2) = (µ1, µ2), i.e., at the mean vector µ.
The shape of the hump depends on the two variances σ2

1 and σ2
2 , and the correlation

coefficient ρ. If we slice the surface with horizontal planes parallel to the x1x2 plane,
we obtain the so-called level curves, defined by the locus of points where the quadratic
form

(x1 − µ1

σ1

)2

− 2ρ
(x1 − µ1

σ1

)(x2 − µ2

σ2

)

+
(x2 − µ2

σ2

)2

(114)
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is constant. It is not hard to show that |ρ| ≤ 1, and that this implies that the level
curves are ellipses. The x and y extent of these ellipses are determined by the variances
σ2

1 and σ2
2 , and their eccentricity is determined by ρ. More specifically, the principal

axes of the ellipse are in the direction of the eigenvectors ei of Σ, and the different principal

axeswidths in these directions
√
λi. For instance, if ρ = 0, the principal axes of the ellipses

are parallel to the coordinate axes, and the variables are statistically independent. In
the special cases where ρ = 1 or ρ = −1, the ellipses collapse to straight lines. Indeed,
the joint density becomes singular in this situation, because there is really only one
independent variable. We shall avoid this degeneracy by assuming that |ρ| < 1.

p(x)

x1

µ

µ2|1

x2

x1ˆ

Figure A.4: A two-dimensional Gaussian having mean µ and non-diagonal covariance
Σ. If the value on one variable is known, for instance x1 = x̂1, the distribution over
the other variable is Gaussian with mean µ2|1.

One of the important properties of the multivariate normal density is that all
conditional and marginal probabilities are also normal. To find such a density explic-
itly, which we denote px2|x1

(x2|x1), we substitute our formulas for px1x2
(x1, x2) and

px1(x1) in the defining equation

px2|x1
(x2|x1) =

px1x2(x1, x2)

px1(x1)

=

[

1

2πσ1σ2

√

1− ρ2
e
− 1

2(1−ρ2)

[(
x1−µ1

σ1

)2
−2ρ
(

x1−µ1
σ1

)
+
(

x2−µ2
σ2

)2]
]

×
[√

2πσ1e
1
2

(
x1−µ1

σ1

)2]

(115)

=
1√

2πσ2

√

1− ρ2
exp

[

− 1

2(1− ρ2)

[
x2 − µ2

σ2
− ρ

x1 − µ1

σ1

]2
]

=
1√

2πσ2

√

1− ρ2
exp



−1

2

(

x2 − [µ2 + ρσ2

σ1
(x1 − µ1)]

σ2

√

1− ρ2

)2


 .
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Thus, we have verified that the conditional density px1|x2
(x1|x2) is a normal distri-

bution. Moreover, we have explicit formulas for the conditional mean µ2|1 and theconditional

mean conditional variance σ2
2|1:

µ2|1 = µ2 + ρ
σ2

σ1
(x1 − µ1) and

σ2
2|1 = σ2

2(1− ρ2), (116)

as illustrated in Fig. A.4.
These formulas provide some insight into the question of how knowledge of the

value of x1 helps us to estimate x2. Suppose that we know the value of x1. Then
a natural estimate for x2 is the conditional mean, µ2|1. In general, µ2|1 is a linear
function of x1; if the correlation coefficient ρ is positive, the larger the value of x1,
the larger the value of µ2|1. If it happens that x1 is the mean value µ1, then the best
we can do is to guess that x2 is equal to µ2. Also, if there is no correlation between
x1 and x2, we ignore the value of x1, whatever it is, and we always estimate x2 by
µ2. Note that in that case the variance of x2, given that we know x1, is the same
as the variance for the marginal distribution, i.e., σ2

2|1 = σ2
2 . If there is correlation,

knowledge of the value of x1, whatever the value is, reduces the variance. Indeed,
with 100% correlation there is no variance left in x2 when the value of x1 is known.

A.6 Hypothesis testing

Suppose samples are drawn either from distribution D0 or they are not. In pattern
classification, we seek to determine which distribution was the source of any sample,
and if it is indeed D0, we would classify the point accordingly, into ω1, say. Hypothesis
testing addresses a somewhat different but related problem. We assume initially that
distribution D0 is the source of the patterns; this is called the null hypothesis, and
often denoted H0. Based on the value of any observed sample we ask whether we can
reject the null hypothesis, that is, state with some degree of confidence (expressed as
a probability) that the sample did not come from D0.

For instance, D0 might be a standardized Gaussian, p(x) ∼ N(0, 1), and our null
hypothesis is that a sample comes from a Gaussian with mean µ = 0. If the value of
a particular sample is small (e.g., x = 0.3), it is likely that it came from the D0; after
all, 68% of the samples drawn from that distribution have absolute value less than
x = 1.0 (cf. Fig. A.1). If a sample’s value is large (e.g., x = 5), then we would be
more confident that it did not come from D0. At such a situation we merely conclude
that (with some probability) the sample was drawn from a distribution with µ "= 0.

Viewed another way, for any confidence — expressed as a probability — there
exists a criterion value such that if the sampled value differs from µ = 0 by more
than that criterion, we reject the null hypothesis. (It is traditional to use confidences
of .01 or .05.) We then say that the difference of the sample from 0 is statistically

significant. For instance, if our null hypothesis is a standardized Gaussian, then ifstatistical

signifi-

cance

our sample differs from the value x = 0 by more than 2.576, we could reject the null
hypothesis “at the .01 confidence level,” as can be deduced from Table A.1. A more
sophisticated analysis could be applied if several samples are all drawn from D0 or
if the null hypothesis involved a distribution other than a Gaussian. Of course, this
usage of “significance” applies only to the statistical properties of the problem — it
implies nothing about whether the results are “important.” Hypothesis testing is of
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great generality, and useful when we seek to know whether something other than the
assumed case (the null hypothesis) is the case.

A.6.1 Chi-squared test

Hypothesis testing can be applied to discrete problems too. Suppose we have n
patterns — n1 of which are known to be in ω1, and n2 in ω2 — and we are interested
in determining whether a particular decision rule is useful or informative. In this case,
the null hypothesis is a random decision rule — one that selects a pattern and with
some probability P places it in a category which we will call the “left” category, and
otherwise in the “right” category. We say that a candidate rule is informative if it
differs signficantly from such a random decision.

What we need is a clear mathematical definition of statistical significance under
these conditions. The random rule (the null hypothesis) would place Pn1 patterns
from ω1 and Pn2 from ω2 independently in the left category and the remainder in
the right category. Our candidate decision rule would differ significantly from the
random rule if the proportions differed significantly from those given by the random
rule. Formally, we let niL denote the number of patterns from category ωi placed in
the left category by our candidate rule. The so-called chi-squared statistic for this
case is

χ2 =
2∑

k=1

(niL − nie)
2

nie
. (117)

where according to the null hypothesis, the number of patterns in category ωi that we
expect to be placed in the left category is nie = Pni. Clearly χ2 is non-negative, and
is zero if and only if all the observed match the expected numbers. The higher the χ2,
the less likely it is that the null hypothesis is true. Thus, for a sufficiently high χ2, the
difference between the expected and observed distributions is statistically significant,
we can reject the null hypothesis, and can consider our candidate decision rule is
“informative.” For any desired level of significance — such as .01 or .05 — a table
gives the critical values of χ2 that allow us to reject the null hypothesis (Table A.2).

There is one detail that must be addressed: the number of degrees of freedom.
In the situation described above, once the probability P is known, there is only one
free variable needed to describe a candidate rule. For instance, once the number of
patterns from ω1 placed in the left category are known, all other values are determined
uniquely. Hence in this case the number of degrees of freedom is 1. If there were more
categories, or if the candidate decision rule had more possible outcomes, then df would
be greater than 1. The higher the number of degrees of freedom, the higher must be
the computed χ2 to meet a disired level of significance.

We denote the critical values as, for instance, χ2
.01(1) = 6.64, where the subscript

denotes the significance, here .01, and the integer in parentheses is the degrees of
freedom. (In the Table, we conform to the usage in statistics, where this positive
integer is denoted df , despite the possible confusion in calculus where it denotes an
infinitessimal real number.) Thus if we have one degree of freedom, and the observed
χ2 is greater than 6.64, then we can reject the null hypothesis, and say that, at the
.01 confidence level our results did not come from a (weighted) random decision.
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Table A.2: Critical values of chi-square (at two confidence levels) for different degrees
of freedom (df)

df .05 .01 df .05 .01 df .05 .01
1 3.84 6.64 11 19.68 24.72 21 32.67 38.93
2 5.99 9.21 12 21.03 26.22 22 33.92 40.29
3 7.82 11.34 13 22.36 27.69 23 35.17 41.64
4 9.49 13.28 14 23.68 29.14 24 36.42 42.98
5 11.07 15.09 15 25.00 30.58 25 37.65 44.31
6 12.59 16.81 16 26.30 32.00 26 38.88 45.64
7 14.07 18.48 17 27.59 33.41 27 40.11 46.96
8 15.51 20.09 18 28.87 34.80 28 41.34 48.28
9 16.92 21.67 19 30.14 37.57 29 42.56 49.59

10 18.31 23.21 20 31.41 37.57 30 43.77 50.89

A.7 Information theory

A.7.1 Entropy and information

Assume we have a discrete set of symbols {v1 v2 . . . vm} with associated probabilities
Pi. The entropy of the discrete distribution — a measure of the randomness or
unpredictability of a sequence of symbols drawn from it — is

H = −
m∑

i=1

Pi log2 Pi, (118)

where since we use the logarithm base 2 entropy is measured in bits. In case anybit

of the probabilities vanish, we use the relation 0 log 0 = 0. One bit corresponds
to the uncertainty that can be resolved by the answer to a single yes/no question.
(For continuous distributions, we often use logarithm base e, denoted ln, in which
case the unit is nat.) The expectation operator (cf. Eq. 41) can be used to write
H = E [log 1/P ], where we think of P as being a random variable whose possible
values are P1, P2, . . . , Pm. The term log21/P is sometimes called the surprise — ifsurprise

Pi = 0 except for one i, then there is no surprise when the corresponding symbol
occurs.

Note that the entropy does not depend on the symbols themselves, just on their
probabilities. For a given number of symbols m, the uniform distribution in which
each symbol is equally likely, is the maximum entropy distribution (and H = log2 m
bits) — we have the maximum uncertainty about the identity of each symbol that
will be chosen. Clearly if x is equally likely to take on integer values 0, 1, ..., 7, we
need 3 bits to describe the outcome and H = log22

3 = 3. Conversely, if all the pi

are 0 except one, we have the minimum entropy distribution (H = 0 bits) — we are
certain as to the symbol that will appear.

For a continuous distribution, the entropy is

H = −
∞∫

−∞

p(x) ln p(x)dx, (119)
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and again H = E [ln 1/p]. It is worth mentioning that among all continuous density
functions having a given mean µ and variance σ2, it is the Gaussian that has the
maximum entropy (H = .5 + log2 (

√
2πσ) bits). We can let σ approach zero to find

that a probability density in the form of a Dirac delta function, i.e., Dirac

delta

δ(x− a) =

{
0 if x "= a
∞ if x = a,

with

∞∫

−∞

δ(x)dx = 1, (120)

has the minimum entropy (H = −∞ bits). For a Dirac function, we are sure that the
value a will be selected each time.

Our use of entropy in continuous functions, such as in Eq. 119, belies some sub-
tle issues which are worth pointing out. If x had units, such as meters, then the
probability density p(x) would have to have units of 1/x. There would be something
fundamentally wrong in taking the logarithm of p(x) — the argument of the loga-
rithm function should be dimensionless. What we should really be dealing with is a
dimensionless quantity, say p(x)/p0(x), where p0(x) is some reference density function
(cf., Sect. A.7.2).

For discrete variable x and arbitrary function f(·), we have H(f(x)) ≤ H(x), i.e.,
processing decreases entropy. For instance, if f(x) = const, the entropy will vanish.
Another key property of the entropy of a discrete distribution is that it is invariant to
“shuffling” the event labels. The related question with continuous variables concerns
what happens when one makes a change of variables. In general, if we make a change of
variables, such as y = x3 or even y = 10x, we will get a different value for the integral
of
∫
q(y)log q(y) dy, where q is the induced density for y. If entropy is supposed

to measure the intrinsic disorganization, it doesn’t make sense that y would have a
different amount of intrinsic disorganization than x, since one is always derivable from
the other; only if there were some randomness (e.g., shuffling) incorporated into the
mapping could we say that one is more disorganized than the other.

Fortunately, in practice these concerns do not present important stumbling blocks
since relative entropy and differences in entropy are more fundamental than H taken
by itself. Nevertheless, questions of the foundations of entropy measures for continu-
ous variables are addressed in books listed in Bibliographical Remarks.

A.7.2 Relative entropy

Suppose we have two discrete distributions over the same variable x, p(x) and q(x).
The relative entropy or Kullback-Leibler distance (which is closely related to cross Kullback-

Leibler

distance

entropy, information divergence and information for discrimination) is a measure of
the “distance” between these distributions:

DKL(p(x), q(x)) =
∑

x

q(x)ln
q(x)

p(x)
. (121)

The continuous version is

DKL(p(x), q(x)) =

∞∫

−∞

q(x)ln
q(x)

p(x)
dx. (122)
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Although DKL(p(·), q(·)) ≥ 0 and DKL(p(·), q(·)) = 0 if and only if p(·) = q(·), the
relative entropy is not a true metric, since DKL is not necessarily symmetric in the
interchange p↔ q and furthermore the triangle inequality need not be satisfied.

A.7.3 Mutual information

Now suppose we have two distributions over possibly different variables, e.g., p(x) and
q(y). The mutual information is the reduction in uncertainty about one variable due
to the knowledge of the other variable

I(p; q) = H(p)−H(p|q) =
∑

x,y

r(x, y)log
r(x, y)

p(x)q(y)
, (123)

where r(x, y) is the joint distribution of finding value x and y. Mutual information
is simply the relative entropy between the joint distribution r(x, y) and the product
distribution p(x)q(y) and as such it measures how much the distributions of the vari-
ables differ from statistical independence. Mutual information does not obey all the
properties of a metric. In particular, the metric requirement that if p(x) = q(y) then
I(x; y) = 0 need not hold, in general. As an example, suppose we have two binary
random variables with r(0, 0) = r(1, 1) = 1/2, so r(0, 1) = r(1, 0) = 0. According to
Eq. 123, the mutual information between p(x) and q(y) is log 2 = 1.

The relationships among the entropy, relative entropy and mutual information are
summarized in Fig. A.5. The figure shows, for instance, that the joint entropy H(p, q)
is always larger than individual entropies H(p) and H(q); that H(p) = H(p|q) +
I(p; q), and so on.

H(p,q)

H(q|p)I(p;q)

H(p)

H(q)

H(p|q)

Figure A.5: The mathematical relationships among the entropy of distributions p and
q, mutual information I(p, q), and conditional entropies H(p|q) and H(q|p). From this
figure one can quickly see relationships among the information functions. For instance
we can see immediately that I(p; p) = H(p); that if I(p; q) = 0 then H(q|p) = H(q);
that H(p, q) = H(p|q) + H(q), and so forth.

A.8 Computational complexity

In order to analyze and describe the difficulty of problems and the algorithms de-
signed to solve such problems, we turn now to the technical notion of computational
complexity. For instance, calculating the covariance matrix for a samples is somehow
“harder” than calculating the mean. Furthermore, some algorithms for computing
some function may be faster or take less memory, than another algorithm. We seek
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to specify such differences, independent of the current computer hardware (which is
always changing anyway).

To this end we use the concept of the order of a function and the asymptotic
notations “big oh,” “big omega,” and “big theta.” The three asymptotic bounds
most often used are:

Asymptotic upper bound O(g(x)) = {f(x): there exist positive constants c and
x0 such that 0 ≤ f(x) ≤ cg(x) for all x ≥ x0}

Asymptotic lower bound Ω(g(x)) = {f(x): there exist positive constants c and
x0 such that 0 ≤ cg(x) ≤ f(x) for all x ≥ x0}

Asymptotically tight bound Θ(g(x)) = {f(x): there exist positive constants c1, c2,
and x0 such that 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) for all x ≥ x0}

x x x
x

0
x

0 x
0

f(x)

c g(x)

c g(x)

c2 g(x)

c1 g(x)

f(x) = Ω(g(x))f(x) = O(g(x)) f(x) = Θ(g(x))

a)                                                       b)                                                             c)

f(x)

f(x)

Figure A.6: Three types of asymptotic bounds: a) f(x) = O(g(x)). b) f(x) =
Ω(g(x)). c) f(x) = Θ(g(x)).

Consider the asymptotic upper bound. We say that f(x) is “of order big oh of g(x)” big oh

(written f(x) = O(g(x)) if there exist constants c0 and x0 such that f(x) ≤ c0g(x)
for all x > x0. We shall assume that all our functions are positive and dispense
with taking absolute values. This means simply that for sufficiently large x, an upper
bound on f(x) grows no worse than g(x). For instance, if f(x) = a + bx + cx2 then
f(x) = O(x2) because for sufficiently large x, the constant, linear and quadratic terms
can be “overcome” by proper choice of c0 and x0. The generalization to functions
of two or more variables is straightforward. It should be clear that by the definition
above, the (big oh) order of a function is not unique. For instance, we can describe
our particular f(x) as being O(x2), O(x3), O(x4), O(x2 ln x), and so forth. We use
big omega notation, Ω(·), for lower bounds, and little omega, ω(·), for the tightest
lower bound. Of these, the big oh notation has proven to be most useful since we
generally want an upper bound on the resources when solving a problem.

The lower bound on the complexity of the problem is denoted Ω(g(x)), and is there-
fore the lower bound on any algorithm algorithm that solves that problem. Similarly,
if the complexity of an algorithm is O(g(x)), it is an upper bound on the complexity
of the problem it solves. The complexity of some problems — such as computing the
mean of a discrete set — is known, and thus once we have found an algorithm having
equal complexity, the only possible improvement could be on lowering the constants
of proportionality. The complexity of other problems — such as inverting a matrix



36 APPENDIX A. MATHEMATICAL FOUNDATIONS

— is not yet known, and if fundamental analysis cannot derive it, we must rely on
algorithm developers who find algorithms whose complexity

Approximately.
Such a rough analysis does not tell us the constants c and x0. For a finite size

problem it is possible that a particular O(x3) algorithm is simpler than a particular
O(x2) algorithm, and it is occasionally necessary for us to determine these constants
to find which of several implemementations is the simplest. Nevertheless, for our
purposes the big oh notation as just described is generally the best way to describe
the computational complexity of an algorithm.

Suppose we have a set of n vectors, each of which is d-dimensional and we want to
calculate the mean vector. Clearly, this requires O(nd) multiplications. Sometimes we
stress space and time complexities, which are particularly relevant when contemplat-
ing parallel hardware implementations. For instance, the d-dimensional sample mean
could be calculated with d separate processors, each adding n sample values. Thus
we can describe this implementation as O(d) in space (i.e., the amount of memoryspace

complexity or possibly the number of processors) and O(n) in time (i.e., number of sequential
steps). Of course for any particular algorithm there may be a number of time-space

time

complexity
tradeoffs.
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