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In the future, the world of telecommunications will be vastly dif-
ferent than it is today. The driving force will be the seamless inte-
gration of real-time communications (e.g., voice, video, music, etc.)
and data into a single network, with ubiquitous access to that net-
work anywhere, anytime, and by a wide range of devices. The only
currently available ubiquitous access device to the network is the
telephone, and the only ubiquitous user access technology mode is
spoken voice commands and natural language dialogues with ma-
chines. In the future, new access devices and modes will augment
speech in this role, but are unlikely to supplant the telephone and ac-
cess by speech anytime soon. Speech technologies have progressed
to the point where they are now viable for a broad range of com-
munications services, including compression of speech for use over
wired and wireless networks; speech synthesis, recognition, and un-
derstanding for dialogue access to information, people, and mes-
saging; and speaker verification for secure access to information
and services. This paper provides brief overviews of these technolo-
gies, discusses some of the unique properties of wireless, plain old
telephone service, and Internet protocol networks that make voice
communication and control problematic, and describes the types of
voice services available in the past and today, and those that we
foresee becoming available over the next several years.

Keywords—Dialogue management, speaker recognition, speech
coding, speech processing, speech recognition, speech synthesis,
spoken language understanding.

I. INTRODUCTION

The world of communication in the twentieth century was
characterized by two major trends, namely person-to-person
voice communication over the traditional telephone network
and data communications over the evolving data networks,
especially the Internet. In the new millennium, the world
of telecommunications will be vastly different. The driving
force will be the seamless integration of real-time com-
munications (e.g., voice, video, music, etc.) and data into
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a single network, with ubiquitous access to that network
anywhere, anytime, and by a wide range of devices. From
a human perspective, the new network will increase the
range of communication services to include expanded
people-to-people communications (i.e., audio and video
conferencing, distance learning, telecommuting, etc.) and
people-to-machine interactions (i.e., messaging, search,
help, commerce, entertainment services, etc.). These new
services will meet the basic human needs for communi-
cation, entertainment, security, sense of community and
belonging, and learning, and will increase productivity in
numerous ways.

In order to understand the role of speech and language pro-
cessing in the communications environment of the twenty-
first century, we first have to look at how things will change
as we build out the new network. There are five areas where
there will be major changes to the communication paradigm
as we know it today.

1) Thenetworkwill evolve from a circuit-switched con-
nection-oriented network with a 64-kb/s connection
dedicated to every voice and dialed-up data call to a
packet-switched connectionless network based on In-
ternet protocol (IP).

2) Accessto the network will evolve from narrow-band
voice and data to broad-band multimedia integrating
voice, image, video, text, handwriting, and all types of
data in a seamless access infrastructure.

3) Devicesconnected to the network will evolve from
standard telephones and PCs (personal computers) to
a range of universal communication devices including
wireless adjuncts, mobile adjuncts, appliances, cars,
etc. The common characteristic of such devices is that
they have IP addresses and can be networked together
to communicate over the IP network.

4) Serviceson the network will evolve from simple
dial-up voice and data services to a range of uni-
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versal communication services including communi-
cation, messaging, find, help, sell, entertain, control,
storage, and community services. These services will
be synergistic with each other and with features of
the network that enable them to seamlessly inter-
operate with all devices and methods of access to
the network.

5) Operations will evolve from people-oriented pro-
cesses (which are extremely expensive and highly
inefficient) to machine-oriented processes, including
natural language voice interactions with computer-
ized agents, self-provisioning of services, web-based
billing and accounting, web-based customer care, and
automated testing and maintenance procedures.

The new network provides a wide range of opportunities
for speech and language processing to become a major
component of the telecommunications environment of the
new millennium. First of all, the need for speech and audio
coding and compression remains high, even as bandwidth
increases dramatically to the home, to the office, and in
wireless environments. This need remains because the new
network offers the opportunity for high-speed streaming of
voice, CD-quality audio, and HDTV-quality video, and each
of these technologies imposes tight constraints on network
performance to maintain high quality with low delay. Coding
and compression enable networks to provide high levels of
quality at low delays without requiring excessive amounts
of network resources.

The second major opportunity for speech and language
processing occurs at the access and device levels. Although
there is a range of new devices and access methods that will
dramatically change the user experience in interacting with
the network and its associated services, there exists only a
single device that could become the ubiquitous IP access de-
vice, and that is the standard telephone. In order for the tele-
phone to achieve this status, several things need to occur so
that any IP-based service can work with the ordinary tele-
phone (we call this capability being voice-enabled). First, we
need a way to express the voice-enabled service dialogue in
a mode compatible with a range of access devices (e.g., a
scripting language like VXML). Next, we need a platform for
accessing the voice-enabled service via telephone. One such
platform, created at AT&T Labs, is called PhoneWeb, for
phone access to web services [1]. Next, we need to provide
services with user interfaces that are multimodal, namely ca-
pable of identifying the service access device and modifying
the user interface to work properly with whatever capabili-
ties exist within the chosen access device. Finally, we need
to have a high-quality voice interface in order for the service
to work properly when accessed using an ordinary telephone.
Hence, we need a capability of generating spoken commands
from text [text-to-speech (TTS) synthesis], as well as the
ability to recognize spoken inputs (speech recognition), un-
derstand their meaning (speech understanding), and maintain
a dialogue (spoken dialogue) with the user so as to conduct
transactions and provide service.

A third opportunity for speech processing is in the area
of user authentication. Speaker verification technology can

be used as a convenient and accurate method of authenti-
cating the claimed identity of a user for access to secure or
restricted services. Speaker verification via spoken voice ut-
terances provides a degree of robustness and reliability that
simply cannot be achieved by using conventional logons and
passwords.

Finally, in the area of services and operations, the oppor-
tunities for speech and language processing are almost lim-
itless. First of all, there is the area of voice command and
control, whereby a service or an operation would be initiated
via voice commands. Clear examples of such services are
voice-activated agents, voice access to information such as
movie schedules, airline schedules, etc. A second area where
voice processing plays a major role is in communications and
messaging systems, where voice signaling can be used to add
new people to a teleconference or where TTS can be used to
convert a text message (e-mail) to a voice message (voice
mail) so it can be heard over a voice communication system
with no display capabilities. A third area where voice pro-
cessing plays an important role is in help or customer care.
Here, the voice processing system acts as a surrogate for an
attendant or an operator who would handle the query and ei-
ther provide the desired information or direct the call to the
appropriate resource. Perhaps the ultimate use of voice and
natural language processing in the new network is the re-
placement of dial tone (the way we conventionally interact
with the telecommunications system today) with voice tone,
where we initiate all service requests via voice commands.
In this manner we can make calls, access messages, get help,
find people, be entertained, etc.

The bottom line is that the telecommunications environ-
ment of the new millennium is ripe for voice and natural lan-
guage processing to be a major component for service de-
livery and ease-of-use considerations. In the remainder of
this paper, we review the basic technologies of voice and nat-
ural language processing and show how they have evolved to
be used in services in the existing telecommunications net-
work and how they will evolve to be used in new services of
the next-millennium network.

II. SPEECH ANDLANGUAGE PROCESSINGTECHNOLOGIES

A. Speech Coding

Speech coding is a fundamental technology that has ex-
isted for more than 60 years, beginning in the 1930s with
Dudley’s original vocoder [2], [79]. At that time, the goal of
speech coding was to provide a compression technology that
would enable copper wires to handle the continual growth in
voice traffic on the AT&T network. Fortunately, the original
need for voice coding never materialized due to the invention
of alternate broad-band transport capabilities provided ini-
tially by microwave radio systems, and ultimately by optical
fiber transport systems. Most recently, the need for speech
coding has resurfaced due to the rapid growth in wireless
systems (where digital speech coding is essential for han-
dling the ever-growing traffic), and in voice over IP (VoIP)
systems, where speech is just one (very important) data type
transported over the IP network.
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Table 1 Taxonomy of Speech Coder Types

The goal of a speech coder is to compress the speech
signal (i.e., reduce the bit rate necessary to represent a
speech signal) for either storage or transmission without
excessively distorting it. Speech coding is distinct from the
more general problem of audio coding in that the primary
signal of interest is the speech itself. Other signals (e.g.,
background noises or music) may be present along with the
speech and, therefore, will be compressed and coded along
with the speech. However, such signals are generally inci-
dental in speech coding and generally will be disregarded in
our presentation.

In this section, we briefly describe some of the funda-
mental issues in speech coding. We begin with a cursory
taxonomy of the various types of speech coders, charac-
terized by their bit rates, and the resulting speech quality.
Next, we review some of the peripheral issues associated
with telecommunications, such as performance over various
types of networks and in noisy environments. We conclude
with a brief discussion of open issues.

Speech coders compress speech by analyzing and then
quantizing features of the speech waveform in ways that at-
tempt to minimize any audible impairment. The simplest and
most widely used coders in standard telecommunications
are little more than basic waveform quantizers (calleddirect
quantizationin Table 1). International Telecommunications
Union (ITU) Recommendation G.711 defines two (A-law
and mu-law) 8-bit log pulse PCM quantizers. For a variety
of input levels, these quantizers maintain an approximate
35-dB signal-to-quantization noise ratio. This noise level
is almost inaudible for telephone bandwidth (200–3400
Hz) speech. The speech sampling rate is 8 kHz, yielding
an overall coded speech bit rate of 64 kb/s. Virtually all
existing telecommunications applications begin with speech
coded by this standard. Although this coding rate is more
than acceptable for telecommunications, it limits the quality
of the speech (to what we call telephone-quality speech)
and, therefore, affects the performance of not just speech
coders, but also speech recognition systems. An alternative
to telephone bandwidth speech is wide-band speech, also
known as commentary-quality speech. Here, the bandwidth
is 50–7000 Hz, the sampling rate is 16 kHz, and the quan-

tizer is usually 14-bit uniform PCM. The resulting coded
wide-band speech not only sounds better than telephone
bandwidth speech, but is also more intelligible for humans
and works well with modern speech recognition systems.

The next class of coders is known aswaveform following
coders. These coders attempt to reproduce a likeness of the
original speech waveform. As a smaller number of speech
features are utilized, greater degrees of compression can be
realized (with increased levels of distortion). Two principal
attributes of the speech that must be preserved (and tracked
over time) reliably with such coders are the local pitch (or
fundamental frequency) and the local formants (resonant
frequencies of the vocal tract). One waveform following
method, called adaptive differential PCM (ADPCM) [3],
uses a backward adaptive infinite impulse response (IIR)
filter that implicitly “tracks” the formants over time. The
difference signal between the unquantized speech signal
and the one predicted by the prediction filter is quantized.
Another waveform following method, called either code-
book excited linear prediction (CELP) or multipulse excited
(MPE) [4], contains both a formant tracking filter (known as
a short-term predictor) and a pitch tracking filter (known as
a long-term prediction filter or an adaptive codebook). The
short-term prediction filter is based on an all-pole model of
the local speech spectrum obtained through a method called
linear prediction analysis. In the encoder, the two prediction
filters are used to remove all predictable “redundancy” from
the speech waveform. What remains is a residual signal. If
this residual were used as an excitation signal for the two
filters, the original waveform could be exactly reproduced.
In order to reduce the bit rate, the residual signal is approx-
imated by a few pulses to form an approximateexcitation
signal. If these pulses are selected sequentially, the coder is
a multipulse coder, while if they are selected jointly from
a codebook of possible excitation sequences, it is a CELP
coder. The selection of appropriate excitation pulses is
carried out in aperceptually weighteddomain, rather than
just minimizing the mse in the waveform domain so that the
quantization noise is less audible to the listener.

ADPCM coders have been created for bit rates ranging
from 16 to 40 kb/s, with 32 and 40 kb/s giving good to ex-
cellent quality coded speech. Below these rates, the resulting
speech quality is fair to poor. CELP and multipulse speech
coders have been created with bit rates from 4.75 to 16 kb/s.
The speech quality of these coders ranges from fair to ex-
cellent, depending on the particular coder. CELP coders are
widely used for wireless applications because of the high de-
gree of compression they achieve.

A third type of waveform coders, calledfrequency-domain
codersin Table 1, is based on performing a frequency-do-
main analysis of the speech waveform [5]. The time-domain
waveform is used as input to a filterbank. The outputs of
each individual filter (in the filterbank) are critically sam-
pled, resulting in the same number of samples per unit time
as the original time waveform. The compression advantage
is obtained by exploiting properties of human hearing and by
limiting the number of bands actually transmitted. The fre-
quencies that are not transmitted must either be inaudible (be-
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cause of masking properties of the human hearing system) or
must be recreated using noise excitation at the decoder. Fre-
quency-domain coders have been selected as the basis for a
new wide-band coding recommendation by the ITU-T [6].

Another class of coders, calledparametric codersin
Table 1, does not attempt to reproduce an approximation to
the original waveform. Instead, this class attempts to produce
a signal that sounds like the original by using a parametric
model of speech, analyzing the speech to estimate these
parameters, and then quantizing only the parameters. The
uncoded parameters are insufficient to reproduce the exact
waveform, but are capable of producing a signal similar in
sound to the original. A variety of parametric models exist,
as shown in Table 1 [7]–[9]; these methods are capable of
producing speech whose quality is judged to be between fair
and good.

1) Speech Coder Attributes:Speech coders are charac-
terized by four general attributes: bit rate, quality, signal
delay, and complexity. The bit rate is a measure of how
much the “speech model” has been exploited in the coder;
the lower the bit rate, the greater the reliance on the speech
production model. Bit rate can be either fixed or variable. If
the number of bits provided by the coder over time is always
the same, the rate is fixed. If the number of bits is controlled
by the activity of the speech or by the network, the rate is
variable.

Quality is a measure of degradation of the coded speech
signal and can be measured in terms of speech intelligibility
and perceived speech naturalness as measured by formal sub-
jective testing. Perceived speech quality is a function not only
of the coder’s ability to preserve the speech signal accurately,
but also of things like background noise and other acoustic
factors. Speech quality is also affected by the transmission
system, especially when the bitstream is corrupted by errors
or lost entirely for periods of time (as occurs in wireless ap-
plications during a fade).

Signal delay is a measure of the duration of the speech
signal used to estimate coder parameters reliably for both the
encoder and the decoder, plus any delay inherent in the trans-
mission channel. ITU-T Recommendation G.192 provides
limits on the amount of delay that is acceptable for real-time
conversations. If the round-trip delay is held below 300 ms
and there is sufficient echo cancellation, the quality is quite
acceptable. Above this delay, there is increasing difficulty in
communication. Eventually, a push-to-talk protocol is neces-
sary to facilitate a two-way communication.

Finally, complexity is a measure of computation (and
memory) required to implement the coder in digital signal
processing (DSP) hardware.

The “ideal” speech coder has a low bit rate, high perceived
quality, low signal delay, and low complexity. No ideal coder
as yet exists with all these attributes. Real coders make trade-
offs among these attributes, e.g., trading off higher quality for
increased bit rate, increased delay, or increased complexity.

2) Speech Coding Issues:Several signal-processing
techniques have evolved to improve the quality of speech
coders in the presence of impairments due to the acoustic

environment of the speech, the transmission system over
which it is sent, and other factors:

1) speech enhancement methods that attempt to suppress
or eliminate background noise, thereby rendering the
output speech quality more acceptable to listeners;

2) voice activity detectors (VAD) that attempt to deter-
mine whether speech is actually present so as to utilize
the channel more efficiently when speech is absent and
to avoid trying to code background signals as speech;

3) frame erasure concealment methods, which detect the
loss of long sections of the coded speech parameters
(due to lost packets, fading channels, etc.) and attempt
to interpolate the speech parameters so as to provide
some degree of continuity during the lost intervals
[10], [80].

Each of these signal processing methods has achieved var-
ious levels of success in applied speech coding systems.

B. TTS Synthesis

TTS synthesis technology gives machines the ability to
convert arbitrary text into audible speech, with the goal of
being able to provide textual information to people via voice
messages. Key target TTS applications in communications
include voice rendering of text-based messages such as
e-mail or fax, as well as voice rendering of visual/text
information (e.g., web pages). In the more general case, TTS
systems provide voice output for all kinds of information
stored in databases (e.g., phone numbers, addresses, car
navigation information) and information services (e.g.,
restaurant locations and menus, movie guides, etc.). Ul-
timately, TTS could also be used for reading books (i.e.,
talking books) and for voice access to large information
stores such as encyclopedias, reference books, law volumes,
etc.

TTS systems are characterized by two factors: the intelli-
gibility of the speech that is produced and the naturalness of
the overall message that is spoken. For the past 30 years or
more, intelligibility has been the driving factor in building
TTS systems, since without high intelligibility, TTS systems
serve no useful purpose. As a result, most modern TTS
systems are highly intelligible, with formal tests showing
TTS word intelligibility approaching that of naturally
spoken speech. Significantly less success has been achieved
in making the synthetic speech sound natural. Studies have
shown that, even with high intelligibility, there exists a
minimum level of voice quality that is essential (we call this
“customer quality”) before consumers will agree to both
listen to synthetic speech on a regular basis and pay for the
services associated with using the synthetic speech. Hence,
the objective of most modern research in TTS systems is to
preserve the high intelligibility of the synthetic speech, and
at the same time to provide synthetic speech that is customer
quality or higher.

1) TTS Systems:A block diagram of a typical TTS
system is shown in Fig. 1. The first block is the message text
analysis module that takes ASCII message text and converts
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Fig. 1. Block diagram of a TTS synthesis system.

it to a series of phonetic symbols and prosody (fundamental
frequency, duration, and amplitude) targets. The text analysis
module actually consists of a series of modules with sepa-
rate, but in many cases intertwined, functions. Input text is
first analyzed and transcribed. For example, in the sentence
“Dr. Smith lives on Elm Dr.,” the first “Dr.” is transcribed
as “Doctor,” while the second one is transcribed as “Drive.”
Next, a syntactic parser (recognizing the part of speech
for each word in the sentence) disambiguates the sentence
constituent pieces in order to generate the correct string of
phones, with the help of a pronunciation dictionary. Thus,
for the above sentence, the verb “lives” is disambiguated
from the (potential) noun “lives” (plural of “life”). If the
dictionary look up fails (e.g., for cases like unusual proper
nouns), general letter-to-sound rules are used. Finally, with
punctuated text, syntactic, and phonological information
available, a prosody module predicts sentence phrasing and
word accents and, from those, generates targets, e.g., for
fundamental frequency, phoneme duration, and amplitude.
The second block in Fig. 1 assembles the units according
to the list of targets set by the front-end. Then, the selected
units are fed into a back-end speech synthesizer that gener-
ates the speech waveform for presentation to the listener. For
a more general introductory overview of TTS technology,
see, e.g., [11].

2) From Diphone-Based Synthesis to Unit-Selection Syn-
thesis: During the past decade, concatenative synthesis has
been the preferred method in industry for creating high-intel-
ligibility synthetic speech from text. Concatenative synthesis
consists of storing, selecting, and smoothly concatenating
prerecorded segments of speech after modifying prosodic at-
tributes like phone durations or fundamental frequency. Until
recently, the majority of concatenative TTS systems have
been diphone-based. A diphone unit encompasses the por-
tion of speech from one quasi-stationary speech sound to
the next: for example, from approximately the middle of the
/ih/ to approximately the middle of the /n/ in the word “in.”
For American English, a diphone-based concatenative syn-
thesizer has, at a minimum, about 1000 diphone units in its
inventory. Diphone units are usually obtained from record-
ings of a specific speaker reading either “diphone-rich” sen-
tences or “nonsense” words. In both cases, the speaker is
asked to articulate clearly and use a rather monotone voice.
Diphone-based concatenative synthesis has the advantage of
a small memory footprint (on the order of Mb), since one di-

Fig. 2. Illustration of unit selection for the word “two.”

phone unit is used for all possible contexts. However, since
speech databases recorded for the purpose of providing di-
phones for synthesis do not sound “lively” and “natural”
from the outset, the resulting synthetic speech tends to sound
monotonous and unnatural.

Recently, a new paradigm has emerged for obtaining cus-
tomer-quality TTS. This new method is called unit-selec-
tion synthesis. Based on earlier work done at ATR in Japan
[12], this new method employs speech databases recorded
using a “natural” (lively) speaking style. The database may
be focused on narrow-domain applications (such as “travel
reservations” or “telephone number synthesis”), or it may
be used for general applications like e-mail or news reading.
In the latter case, unit-selection synthesis can require on the
order of ten hours of recording of spoken general material to
achieve customer quality, and several dozen hours for “nat-
ural quality.”1 In contrast with earlier concatenative synthe-
sizers, unit-selection synthesis automatically picks the op-
timal synthesis units (on the fly) from an inventory that can
contain thousands of examples of a specific diphone and con-
catenates them to produce the synthetic speech. This process
is outlined in Fig. 2, which shows how the method must dy-
namically find the best path through the unit-selection net-
work corresponding to the sounds for the word “two.” The
optimal choice of units depends on factors such as spectral
similarity at unit boundaries and on matching prosodic tar-
gets set by the front-end. There are two good reasons why the
method of unit-selection synthesis is capable of producing
customer-quality or even natural-quality speech synthesis.
First, on-line selection of speech segments allows for longer
units (whole words, potentially even whole sentences) to be
used in the synthesis if they are found in the inventory. This
is the reason why unit selection appears to be well suited for
limited-domain applications such as synthesizing telephone
numbers to be embedded within a fixed carrier sentence.
Even for open-domain applications, such as e-mail reading,
advanced unit selection can reduce the number of unit-to-unit
transitions per sentence synthesized and, consequently, in-
crease the segmental quality of the synthetic output. Second,
the use of multiple instantiations of a unit in the inventory,

1A “natural-quality” TTS system would pass the Turing test of speech
synthesis in that a listener would no longer be able, within the intended ap-
plication of the system, to say with certainty whether the speech heard was
recorded or synthesized.
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taken from different linguistic and prosodic contexts, reduces
the need for prosody modifications that degrade naturalness.

Unit-selection synthesis, as defined in the original CHATR
system [12], requires a set of speech units that can be clas-
sified into a small number of categories such that sufficient
examples of each unit are available to make statistical selec-
tion viable. In order to arrive at a robust paradigm (i.e., one
that results in consistently high synthesis quality), we have
chosen to use half phones as the basic units of synthesis in
a way that allows both diphone and phone-based synthesis,
and mixtures thereof. This assures a synthesis intelligibility
that is comparable to (or better than) that of diphone syn-
thesis with significantly increased naturalness. More details
can be found in [13] and [81].

3) Visual TTS: In the future, applications such as virtual
operators, as well as customer care/help desks on the web,
will require realistic “visual agents” that look reasonably
human and speak naturally. For these types of applications,
lip synchronization of audio TTS and visual TTS (VTTS)
is essential. Whether such visual agents are implemented
as cartoon-like characters (avatars) using three-dimensional
models [14] or synthesized using photo-realistic two-dimen-
sional image technologies (sample-based VTTS) [15], ulti-
mately both approaches will be driven by an MPEG4-stan-
dard interface [16].

C. Automatic Speech Recognition

Innovative speech-controlled user interfaces will unify
services in the emerging desktop industry with those avail-
able within the traditional telephony industry. For this to
succeed, we need to understand and utilize several speech
and language technologies for delivering appropriate user
interfaces. The most basic of these technologies isautomatic
speech recognition(ASR)—the ability to automatically
recognize human speech (on a word-by-word basis). Since
humans are able to recognize and understand speech so
easily, most people naturally fail to appreciate the difficulties
that this task poses for machines. In this section, we review
the state-of-the-art in speech recognition while presenting
the limitations and challenges that still remain to be solved.

Speech recognition is basically treated as a problem in
pattern matching. The goal is to take one pattern, the speech
signal, and classify it as a sequence of previously learned
patterns, e.g., words or subword units such as phonemes. If
speech was invariant to external factors, such as the speaker,
the acoustic background, the context, the emotion of the
speaker, etc., speech recognition would be a trivial (and
solved) problem. However, this is not the case, because the
speech signal varies with many factors.

1) Speaker—each voice is unique; hence, creating tech-
niques that can accurately and reliably recognize
anyone’svoice andanydialect of a given language is
a major challenge.

2) Coarticulation—the spectral characteristics of a
spoken word (or sounds within the word) vary de-
pending on what words (or sounds) surround it.

Fig. 3. Building blocks of the speech recognition process.

3) Speaking rate and style—people speak at different
rates and with different pronunciations for the same
sounds, thereby making it difficult to get stable pat-
terns for sounds or words that can be used with all
speakers and speaking rates and styles.

4) Environmental conditions—speech can be difficult to
recognize in home environments (background speech
from radios or TV), when spoken in a car (road noise
distortions), or in noisy backgrounds (airports, train
stations).

Each of the above factors contributes some degree of vari-
ability to the speech signal. These sources of variability must
be carefully considered when developing applications based
on speech recognition technology, as it is these characteris-
tics that will ultimately determine whether a speech recog-
nizer will work well in the real world. In addition, people
will access the next generation of IP-based services through
broad-band digital pipes, using wireless technologies, and in
a hands-free mode. Speech scientists are only now beginning
to understand and address the difficult problems associated
with such diverse methods of access to the network.

1) Speech Recognition Components:Fig. 3 shows a
block diagram of a speech recognition system. The basic
elements of the system consist of the following.

a) Feature analysis:The first step in any speech
recognition system is extracting, from the input signal, rele-
vant information (i.e., spectral features) that can be used to
distinguish one utterance from another. These features must
also be computed in such a way as to disregard irrelevant
information such as background signals, channel distortion,
and speaker dependencies. The greater the ability a speech
recognizer has in handling these sources of variability, the
more we say that the system isrobust. Robustness is essen-
tial for maintaining a high level of recognition performance
across the wide variety of dynamically changing acoustic
environments in which a speech recognition system must
inevitably operate.

b) Acoustic modeling:Currently, most speech recog-
nition systems use statistical models, such ashidden Markov
models (HMMs), to represent the basic speech patterns
(generally referred to as acoustic units) required by the
recognizer [17], [18]. Training methods utilize large speech
databases and generate statistical models representative
of the acoustic units. In the HMM framework, speech is
modeled as a two-stage probabilistic process [17], [18]. In
the first stage, speech is modeled as a sequence of transitions
(the changing sounds) through a directed graph. The states
themselves are not directly observable but are represented as
observations or features. In the second stage, the features in
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a state (the individual sounds) are represented as a mixture
of probability density functions over the space of features.

c) Language modeling and lexicon:The model of
Fig. 3 can, in theory, generate almost an unlimited number
of sentences from a large vocabulary of words (the so-called
word lexicon). Only a small fraction of these sentences
are syntactically correct or semantically meaningful. Since
a speech recognition system cannot,a priori, determine
which sentences are syntactically correct, it is the task of
the language model to aid in the discrimination between
syntactically likely and unlikely sentences. The most suc-
cessful and common language model is an-gram word
grammar, where the conditional probability of each word in
the sentence is a function of the previous words, and
the probability of a sentence (a sequence of words) is the
product of these conditional probabilities [19], [20]. Large
amounts of printed text are generally used as training data to
precompute the conditional probability of observed-grams
and to estimate probabilities for unseen word subsequences.

d) Pattern classification:The heart of any speech
recognition system is the pattern classification algorithm,
which aligns a sequence of feature vectors from the input
utterance to a stored set of previously trained acoustic
models. For each input feature vector, the pattern classifier
computes the likelihood that the new feature vector was
generated from each state in each HMM. The language
model probabilities are then combined with the acoustic
model likelihoods to compute a score for each possible word
sequence. Finally, a decoder searches through the entire
space of possible recognition choices to yield the optimum
sequence (the one with the highest probability) of words.

e) Utterance verification and decision:In order to be
able to identify possible recognition errors or nonvocabulary
events within the signal, it is important to have a reliable con-
fidence measure of the output of the classifier. If a confidence
score is low, this indicates that the best matching sentence is
still highly unlikely; in this case the user may be asked to re-
peat or clarify his input. Utterance verification is generally
thought of as being a hypothesis test on the output of the
classifier [21]. A measure of confidence is assigned to the
recognized string, and the decision box can either accept or
reject the hypothesized words by comparing the confidence
scores to a decision threshold.

2) Performance of State-of-the-Art Speech Recog-
nizers: Over the past several years, many voice-enabled
applications have become common in the telecommunica-
tions marketplace. At the same time, PC-based software for
voice dictation of documents (with unlimited word vocabu-
laries) is being sold by many vendors. Speech recognition
technology is now viable in a wide range of applications. In
this section, we review current capabilities and performance
in the area of unlimited vocabulary recognition.

a) Unlimited vocabulary speech recognition:Advanc-
es in large-vocabulary speech recognition have been focused
in two main areas—creatingsearch algorithmsthat can ef-
ficiently scan the space of possible recognition outcomes
and developingacoustic modeling techniquesthat more ac-

Fig. 4. Evolution in speech recognition capability.

curately represent input speech and, therefore, improve the
raw recognition word accuracy of the system.

Remarkable progress has been made over the past 30
years at developing search techniques that support an
ever-increasing word vocabulary size. In 1970, the research
community was working hard to develop techniques that
could recognize two isolated words (Yes and No) using
minicomputers. Today, we can effectively recognize any
size vocabulary in real time on a general-purpose personal
computer. Fig. 4 shows the evolution of speech recognition
capability over this time period. This growth in capability
was made possible by a number of advancements.

1) Increased speed in computing—Since 1970, computer
speeds have increased by a factor of about 100 000, as
they follow Moore’s law and double every 18 months.
This increase in speed and memory has allowed re-
searchers to experiment with more increasingly com-
plex algorithms.

2) Improvements in network search algorithms—Most
recognition systems use various types of probabilistic
finite-state models to represent the components of
the recognition system shown in Fig. 3. For example,

-gram word grammars are used to represent language
models, multiple-pronunciation dictionaries (derived
from the statistics of written language) are used to
represent the recognizer’s lexicon, and hidden Markov
models are used to represent the acoustic models of
the speech units. Combining the various finite-state
models into a unified network that can rapidly and
efficiently be searched has been a major roadblock in
building large vocabulary recognition systems until
recently. In 1996, Mohriet al. presented a frame-
work for efficiently unifying the different finite-state
models used in modern speech recognition systems
[22], [23]. The result is that techniques now exist for
fast (i.e., real time) computation of the optimal path
through the network of possible recognition outcomes
for virtually any size recognition vocabulary, thus
allowing us to break the barrier of vocabulary size and
language complexity within modern day recognition
systems. This is reflected in Fig. 4, where we see that
the slope of the vocabulary growth curve changed
radically in 1996.

The current capabilities in speech recognition, in terms of
word error rates on some standard corpora, are summarized
in Table 2. It can be seen that performance is very good for
highly constrained tasks (e.g., digit strings, travel reserva-
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Table 2 Word Error Rates for Several Speech Recognition Tasks

tion) but that the word error rate increases rapidly for uncon-
strained conversational speech [24]–[27]. It can also be seen
that even for a small vocabulary of 11 digits, the digit error
rate varies by a factor of 15-to-1 between highly constrained
spoken strings (as low as 0.3%) and digit strings embedded in
conversational speech, where the digit error rate is 5% [the
“How May I Help You” (HMIHY) customer care task de-
scribed in more detail in the next section]. Theresource man-
agementtask was the first large vocabulary recognition task
to be uniformly used by all the major speech research labs
in the world. For this task, users carefully articulated read
speech using a high-quality microphone and a 1000-word vo-
cabulary. Over a four-year period, the error rate on this task
was reduced from about 15% per word to about 2% per word.
Over the years, National Institute of Science and Technology
(NIST) has sponsored progressively harder tasks, with the
hardest,Switchboard, being a 28 000-word task derived from
people having natural conversations over the telephone. At
present, the error rate on this difficult task is about 37%
per word [25]. Additionally, in 1998, AT&T Labs began ex-
perimenting with two very large recognition tasks: a 1-mil-
lion-word directory information task (i.e., spoken first and
last name) and a 460 000 word dictation task whose real-time
accuracy is very close to that of the DARPA North American
Business News (NAB) task [28], [29].

D. Spoken Language Understanding

The goal of spoken language understanding (SLU) is
to extract meaning from the string of recognized words
or the set of candidate word strings output by the speech
recognizer and to execute an action based on the extracted
meaning. Language understanding in spoken dialogue sys-
tems typically involves three components: 1) a knowledge
representation of the task the system is designed to accom-
plish; 2) a syntactic analysis of the output of the recognizer;
and 3) interpretation of the meaning of the recognizer output
in terms of the task representation. This section provides
a brief overview of each of these components and then
describes three different spoken dialogue systems to provide
illustrative examples of different strategies for under-
standing. For a more comprehensive review of approaches

to syntactic analysis, see [31]; for knowledge representation
and semantic interpretation in spoken dialogue systems, see
[32].

There are many types of knowledge that influence under-
standing in human–human conversation [33], including:

1) acoustic-phonetic knowledge of the relation between
sound and phonemes of speech;

2) phonotactic knowledge of the rules governing legal
phonemic sequences and pronunciation variations in
a language;

3) syntactic knowledge of the structure of words, phrases,
and sentences;

4) semantic knowledge about the meaning of and rela-
tionships among words in a sentence;

5) pragmatic knowledge, encompassing knowledge
about discourse, the beliefs of the participants in the
interaction, the history of the interaction, the task, and
general world knowledge.

In spoken-language systems, the first two of these knowl-
edge sources are implicitly embedded in the recognizer’s
acoustic and language models. As mentioned above, spoken
language understanding usually refers to the combination of
syntactic analysis, based on grammatical constructs, and se-
mantic interpretation, sometimes also making use of contex-
tual knowledge from the interaction history.

There is a large body of literature on natural language
understanding from text (see [34] for an overview). Lan-
guage understanding systems for text typically generate a
parse tree from word strings in order to perform a complete
syntactic analysis of the phrase and sentence structure of
the input before trying to interpret meaning of the words
in a sentence, so that the information afforded by the
parse (e.g., part of speech, grammatical dependencies) can
be brought to bear for the interpretation. Unfortunately,
achieving complete parses of spoken language is often
problematic, because of recognition errors and the frequent
nongrammatical forms observed in spontaneous speech
(including hesitations, restarts, and repairs) [35]. As a result,
spoken language understanding systems tend to rely less
on complete syntactic analysis than Natural Language Un-
derstanding (NLU) systems for text. Fortunately, for many
applications, a word-for-word transcription and complete
analysis of sentence structure is not required—rather, the
task can be completed successfully even if the system only
detects keywords and phrases or uses only partial parses of
the input [36].

Many spoken dialogue systems restrict their “language”
to cover only the limited domain related to the application
that the systems addresses, using syntactic information pri-
marily to set constraints on the recognizer output. These con-
straints can explicitly predefine the set of legal sentences in
the application’s “language” using a manually constructed
grammar, or they can be imposed implicitly, based on the sta-
tistical distributions of grammatical forms in labeled corpora
that are used to automatically train stochastic grammars [31].
The output of the recognizer, constrained by these grammars,
is one or more word string hypotheses. The meaning of the
word string is obtained by determining the relationship of the
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words in the string to the meaning units in the task’s knowl-
edge representation. The following examples illustrate dif-
ferent approaches to spoken language understanding.

1) Grammar-Based Semantic Specification:For appli-
cations where a handcrafted grammar explicitly defines the
set of legal sentences, the syntactic and semantic specifi-
cations can be integrated [37]. In these systems, semantic
specifications are associated with particular word classes or
sentences in the grammar, and when those grammatical con-
structs are recognized, the semantic specification is returned
along with the recognized word or phrase. The semantic
specification then results in a call to a function that performs
the desired action. For example, in a voice-dialing applica-
tion, all possible actions (e.g., “call,” “fax,” “page”) may be
associated with the semantic specification “METHOD” and
the names in the subscriber’s voice dialing list associated
with the semantic specification “NAME.” The recognition
result for the utterance “Call John Doe” is returned to the
application along with the applicable specification. The text
output of the recognizer is parsed into a parse tree containing
attribute-value pairs: in the voice-dialing example, the pairs
are METHOD: call and NAME: John Doe. Evaluation of
the semantic specification NAME generates a database
query to retrieve the telephone number associated with the
value of NAME (i.e., “John Doe”), and evaluation of the
semantic specification METHOD (with value “call”) results
in initiating a telephone call to the phone number returned in
the database query. Thus, the knowledge representation of
the task is directly embedded in the recognizer’s grammar.
Similarly, the structural relationships among the semantic
categories are explicitly enumerated in the grammar and
associated with desired actions. The interpretation phase
consists of initiating the action using the specific values of
the relevant semantic attributes. This strategy for imple-
menting “understanding” using handcrafted grammars with
embedded semantic specifications is effective for simple
applications but results in relatively brittle systems that
are unable to handle unanticipated or incomplete input
gracefully and that are difficult to port efficiently to new
application domains.

2) Understanding Systems Using Stochastic Gram-
mars: Spoken language systems that are intended to deal
with unconstrained spontaneous speech must be able to
process fragmentary input. In these systems, initial syntactic
constraints are generally imposed by stochastic language
models (described in Section II-C) that are trained on a
large corpus of domain-specific utterances. The spoken
language understanding components of these systems take
the output of the recognizer and focus on understanding
only those elements that are critical for task completion,
generally ignoring portions of the utterance that cannot be
successfully recognized or parsed. In these systems, the
constraints imposed by the language model and grammars
and the focus on recognizing only task-critical elements
combine to yield a more robust system than can be achieved
by attempting complete understanding of the input speech.
This section describes two understanding systems that work
with the output of stochastic grammars.

Fig. 5. CHRONUS speech understanding system.

a) CHRONUS: The CHRONUS understanding
system [38], which was first applied to the DARPA Air
Travel Information System (ATIS) task, assumes that a
spoken utterance is a noisy version of the meaning it was
intended to convey, and that an utterance can be modeled
by an HMM process whose hidden states correspond to
meaning units called concepts. A functional diagram of the
CHRONUS understanding system is shown in Fig. 5. The
system includes a lexical analyzer that takes the output of
the speech recognizer and generates a lattice of hypotheses
interpreting the words and phrases according to predefined
semantic categories. In the ATIS application, most of the
categories correspond to classes of attributes in the air
travel database (e.g., cities, numbers, and dates). The lexical
analyzer also merges certain word forms (e.g., singular and
plural, idiomatic variants of an airport name) to a canonical
representation. The conceptual decoder takes the lattice
produced by the lexical analyzer and finds the most likely
sequence of concepts, by segmenting the sentence into
phrases and assigning each phrase to a concept. The set
of concepts is predefined, based on the task requirements.
Conceptual units for the ATIS task included “destination,”
“origin,” “ground-transportation,” and “departure-time,” as
well as some more abstract units related more to the structure
of the sentence than to task-related attributes. Based on the
output segmentation produced by the conceptual decoder,
the template generator produces a meaning representation
of the sentence in a data structure of attribute/value pairs.
(Thus the knowledge representation in CHRONUS is the
template of attribute/value pairs.) The semantic interpre-
tation phase is rule-based, resolving ambiguities in the
template and merging information from previous sentences
in the interaction with the current information. The tem-
plate is then used to construct an SQL query of the travel
information database. In CHRONUS, the definitions of the
lexical classes, the concepts, and the interpretation rules are
handcrafted. The conceptual HMM used in the decoder is
trained on a large sample of sentences that were segmented
by hand into concepts. In the final formal ATIS evaluation in
1994, the CHRONUS understanding system had the lowest
word error rate (6%) [38]. ASR word error rates without the
NL component were about 9%.

b) Task-structure graphs for SLU:Wright et al. [39]
described a task-structure graph approach to understanding
in spoken dialogue systems. This system has a knowledge
representation structure for classification and interpretation
that is closely coupled both to the language models used in
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Fig. 6. Task-structure graph understanding system.

recognition as well as the dialogue management module. The
application addressed in this work was AT&T’s HMIHY cus-
tomer care application. In this call-routing application, the
primary role of the SLU component is to categorize the input
utterance into one of a small set of categories of call types
(e.g., dialing instructions, billing credit, “dial for me,” etc.).
That call type is then mapped to an appropriate action or re-
sponse, after the system also extracts any auxiliary informa-
tion necessary for task completion [40]. In order to accom-
plish this task, it is not necessary to recognize and under-
stand every word, but only those fragments that are salient
to the classification task [41], [42]. Salience is a quantita-
tive measure of the information content of an utterance for a
given task. For example, in the HMIHY task, when the phrase
“wrong number” is recognized, it is highly likely that the user
wants a billing credit for the wrong number and is much less
interested in any other possible action, so the phrase “wrong
number” is highly salient for call type “Billing Credit.”

The method used to accomplish understanding for this task
first involves automatically acquiring the salient grammar
fragments from a labeled training corpus by modeling the
parts of the language that are meaningful to the task, along
with their statistical associations to the task. The variable-
length salient phrases are automatically generated and se-
lected during the same process that determines the associa-
tions between phrases and actions [40]. For robustness and
parsimony, these phrases are then automatically clustered
into salient grammar fragments, represented as finite-state
machines (FSMs). The system then recognizes these phrases
in fluent speech by searching the output of a large-vocabu-
lary speech recognizer that uses a statistical language model,
which incorporates the FSMs for salient grammar fragments.

The recognized sentence, along with the recognizer’s
confidence for each recognized fragment and the current
dialogue context, are then input to an understanding module,
shown in Fig. 6, that consists of a preprocessor, a classi-
fier, and an interpreter [39]. The preprocessor provides a
canonical representation of certain classes of words and
word strings. The classifier outputs a set of rank-ordered
hypotheses for the most likely call type, given the recog-
nized fragments. The knowledge representation used by the
interpreter module is a graphical representation of the task
that is also used by the dialogue manager in this system.
The graph nodes consist of call-type labels, and labels for

auxiliary information necessary for completing subtasks,
and the graph arcs represent the is-a and has-a relationships
between labels [43]. The interpreter performs an inference
about the focus of the utterance using the task structure
graph, the dialogue context, and the classification of the
current sentence. The final result is a set of probabilities for
the nodes on the graph, which is returned to the dialogue
manager, and which the dialogue manager then uses to
determine the appropriate action to initiate. Thus, in this
instantiation, the understanding component is coupled
tightly with both the structure of the language model used
in ASR and with the task structure used by the dialogue
manager. This tight coupling makes the system design less
modular and, therefore, perhaps less easy to modify for
experimenting with new classification or interpretation
algorithms. However, in a deployed system, this drawback
may be outweighed by the benefits that this coupling among
components affords in terms of improved understanding
performance.

The use of data-driven techniques to learn the structure and
parameters of mapping of salient phrase fragments to classi-
fier categories (for HMIHY) and the mapping of acoustic se-
quences to concepts (for CHRONUS) has been a significant
advance for the field of spoken language understanding, be-
cause the resultant systems achieve more robust performance
while permitting more natural and unconstrained input. This
ultimately results in more successful computer-human inter-
actions. Obviously, these techniques require a large corpus
of labeled input to achieve robust estimates of the model pa-
rameters and adequate coverage of the language used. For
many applications, it is likely that the process for creating
an understanding module will be iterative, beginning with
a hand-crafted “best guess” at the grammar and evolving
the grammar and understanding components as data is col-
lected during system use. This will allow the system to adapt
its parameters to better match the language that is actually
being used, including tuning the parameters for each dia-
logue state so that they appropriately reflect the distribution
of user responses at any given point in a dialogue. In addi-
tion, Riccardi and Gorin [44] have shown that the language
of the HMIHY customers changed substantially over time as
the system evolved and as users had more experience with
the system. This finding suggests that incremental updates
of system parameters is a good strategy for continually im-
proving understanding.

E. Response Generation

If spoken language understanding is viewed as the
mapping of a string of recognized words into the meaning
representation for the task, then response generation can be
thought of as the reverse process. That is, the information
to be conveyed to the user is held in the data structure
containing the knowledge representation of the task, and
the response generation component constructs a sentence
(or sentences) whose structure is based on the relationships
among the task attributes that need to be conveyed, and
whose content is the current values of those attributes. For
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example, in the ATIS task, a confirmation query about the
origin and destination cities might be structured as “Do
you want to travel from ORIGIN to DESTINATION?”
If the values of ORIGIN and DESTINATION (obtained
from the user on previous dialogue turns) are Boston and
Chicago, respectively, then the text generated as input to
a text-to-speech synthesis system would be “Do you want
to travel from Boston to Chicago?” In a system without
text-to-speech, response generation may simply be a lookup
table of prerecorded prompts for the beginning of the
sentence (i.e., “Do you want to travel from”), the origin city,
the word “to,” and the destination city. For more complex
systems where the use of recorded prompts is not an option,
customer-quality TTS is required to correctly convey the
output of the response generation module. An advanced re-
sponse generation system could also incorporate knowledge
of recognizer certainty, context, and conversational conven-
tions. For example, if the ASR confidence about the term
Boston is in doubt, the system could generate the textual
sentence with appropriate XML markup for TTS prosody to
highlight the system’s uncertainty about the origin city. By
keeping track of previous output, the response generation
system can make appropriate use of pronoun forms and
indirect reference, as well as producing natural reductions
that typically occur in conversational interactions (e.g.,
“The first name is Mary. Middle name is Jane. Last name
Jones”). For a more detailed review of response generation
techniques, see [45].

F. Spoken Dialogue Systems

Spoken dialogue systems extend the functionality of
automated telecommunication services beyond simple
limited-choice command and control applications to more
complex goal-directed tasks that require more than a single
dialogue turn between the user and the system. Effective
and efficient dialogue systems not only require accurate
and robust speech recognition, language modeling, natural
language understanding, and speech generation components,
but also must incorporate a dialogue management function
that oversees the entire interaction.

Fig. 7 shows a block diagram of components of a generic
spoken dialogue system. In addition to the speech recog-
nition element discussed above, these systems also include
resources for producing and controlling output generation
(using recorded prompts or TTS synthesis), accessing
databases or other information sources needed to perform
the task at hand, and interfacing with the user (in the scope of
this paper, telephony control or control of an IP connection).
In this figure, there is a separate resource manager to handle
low-level coordination of these resources. The role of the
dialogue manager is to orchestrate the interaction through
the resource manager, including:

1) specifying what information needs to be collected
from and delivered to the user;

2) deciding what to say to the user to elicit the required
input to the recognizer;

Fig. 7. Block diagram of a generic spoken dialogue system.

3) identifying appropriate dialogue strategies to use on
subsequent dialogue turns, based on the language un-
derstanding module’s interpretation of the user’s cur-
rent response and the past context (the dialogue his-
tory);

4) determining when to query the database;
5) translating the retrieved information into an appro-

priate spoken form (response generation).
The roles of the external resources and the language under-
standing modules have been described in previous sections.
This section describes dialogue strategy and the use of con-
text, and also discusses some of the challenges that remain
for spoken dialogue systems.

1) Dialogue Strategy:To date, the most widely applied
metaphor for human–computer spoken dialogue systems has
been human–human task-oriented dialogue [46], where it is
assumed that the user is interested in accomplishing a task
that requires the transfer of various pieces of information
from the user to the system and vice versa. Levinet al. [47]
define a dialogue system as a Markov decision process. In
this formalism, the dialogue can be described in terms of
a state space, an action space, and a strategy. The dialogue
state is all the knowledge the system has of the components
it interacts with, including the task representation. Dialogue
state changes when an action is taken. The action set is all the
possible actions the system can perform (e.g., prompting the
user, receiving information from the user, accessing a data-
base). The dialogue strategy specifies the next action to be in-
voked for each state that is reached during a dialogue session.
The dialogue manager is responsible for obtaining the neces-
sary information for accomplishing the task by executing the
appropriate sequence of dialogue strategies. Dialogue strate-
gies used in an interaction include subdialogues with the fol-
lowing goals.

1) Confirmation—used to ascertain correctness of the
recognized utterance or utterances.

2) Error recovery—to get the dialogue back on track after
a user indicates that the system has misunderstood
something.

3) Reprompting—when the system expected input but did
not receive any.

4) Completion—to elicit missing input information from
the user.

5) Constraining—to reduce the scope of the request so
that a reasonable amount of information is retrieved,
presented to the user, or otherwise acted upon.
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6) Relaxation—to increase the scope of the request when
no information has been retrieved.

7) Disambiguation—to resolve inconsistent input from
the user (e.g., “I want to travel at 10 a.m. in the
evening”).

8) Greeting/Closing—to maintain social protocol at the
beginning and end of an interaction.

2) Dialogue Initiative and the Use of Context:Spokendi-
alogue systems in use today span a range of flexibility. In the
earliest implementations of spoken dialogue systems, the task
was often embedded directly in the structure of the applica-
tion. In these systems, the user was asked a sequence of ques-
tions requesting the information elements in a specific order,
and the user was obliged to respond with a valid input to each
prompt. These systems were often successful for form-filling
taskswhereonlya limitednumberofelementalattributeswere
required, only a limited number of values were possible for
each attribute, and the dialogue sequence was well known or
intuitive to the user. However, these systems were quite brittle
to unexpected inputs, often failing in an ungraceful manner.
A major advance in spoken dialogue systems occurred when
designers of dialogue systems separated the representation of
the task (i.e., what information elements are required in order
to accomplish the task) from the dialogue structure (i.e., the
sequence of dialogue strategies used to elicit the necessary in-
formation from the user). This abstraction of the problem into
task representation and dialogue strategies not only facilitated
reuse of systems for different tasks but also opened up the pos-
sibilityformixedinitiativedialogue,inwhicheitherthesystem
ortheusercantakecontrolofthedialogueatanypoint.Because
the systemalways has the representation ofall the information
that is required for the task, if the user chooses to provide more
than one information element in an utterance, the system can
make use of everything that the understanding component is
able to extract from the utterance. Contrast the following sub-
dialogues from the air travel reservation application.

System-Initiative Dialogue:

• System: Welcome to the Automated Travel System.
Please say the city you want to travel to.

• User: Chicago
• System: Please say the city you are traveling from.
• User: New York
• System: On what date do you want to travel from New

York to Chicago?
• User: May 14th.

Mixed-Initiative Dialogue:

• System: Welcome to the Automated Travel System.
Where would you like to travel?

• User: I need to go from New York to Chicago.
• System: When do you want to travel from New York to

Chicago?
• User: May 14th, about 4 in the afternoon.

In the mixed-initiative system, because the user provided
both the origin and destination cities, the system skipped
ahead to the next missing piece of information (the travel
date), streamlining the interaction and making it more nat-
ural and conversational. If the user had answered the first

question with “Chicago,” the system would have asked for
the origin city.

Having a separate task representation available and using
mixed initiative strategies also allows the system to react to
context switches by the user. For example, in the HMIHY
customer care task described earlier, the graphical task
representation used by both the understanding component
and the dialogue manager includes all the information
elements and relationships needed for any of the different
call-type categories. As a result, if the dialogue manager
is proceeding on a path to collect information necessary
for making a credit-card call, but the user’s next request is
interpreted as asking for rate information, the system has the
ability to change context to accomplish the user’s new goal
(i.e., to find out how much the call will cost).

Context-Switching Dialogue 1:

• System: How may I help you?
• User: I’d like to make a credit-card call to area code

973-360-8000.
• System: Please say the credit-card number.
• User: How much will that call cost?
• System: Please hold for rate information.

3) Challenges for Dialogue Systems:Mixed-initiative
spoken dialogue systems are a reality and are being used
for a variety of applications, including information retrieval
(e.g., train schedules, traffic, weather, stock quotes), travel
planning and ticketing, conference registration, and cus-
tomer care. However, most of the systems are still limited
to a relatively narrow domain. In general, task success rates
are lower with mixed initiative systems than with their
system initiative counterparts, both because the recognition
performance for the less restricted systems tends to be
slightly poorer [48], [49] and because novice users who
are unfamiliar with the system may be less comfortable
with open-ended prompts than with explicit prompting [50].
Obviously, improving robustness of ASR and language
understanding will increase the success of mixed initiative
dialogue systems. However, Litman and Pan [50] observed
that allowing naïve users to switch from mixed-initiative to
system-driven dialogue resulted in higher user satisfaction
and higher task success, suggesting that automatically
detecting when users begin having difficulty and switching
to a more system-directed, but “helpful” strategy would
result in more successful interactions.

Another factor that could improve the naturalness of inter-
actions would be to maintain and use information from the di-
alogue history that dialogue theory suggests would be useful.
Dialogue theory incorporates the notion that in order to accu-
rately interpret an utterance and respond appropriately, par-
ticipants in a dialogue recognize the speaker’s intentions and
beliefs [51]. Plan-based approaches try to infer the beliefs
and intentions of the speaker, with the goal of producing ac-
tions that correspond to the speaker’s plan for achieving the
goal. By reasoning about the speaker’s intention, these sys-
tems have been used for tasks that include handling clarifi-
cation subdialogues and repairs and generating helpful re-
sponses [51]. Currently, theories in the area of dialogue pro-
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cessing rely on algorithms for planning and reasoning that
depend on well-formed input, and so have been difficult to
apply to real-time spoken dialogue systems [52]. As a result,
most systems do not represent the user’s goals, the system’s
goals, or many features of the dialogue history, but rather take
a strictly structural approach to dialogue, specifying the dia-
logue as a finite-state automaton (or a stochastic FSA) where
each system-user turn constitutes a dialogue state, and transi-
tion to the next state is determined by the interpretation of the
user’s input for the current state. Developing new algorithms
for fast and simple identification of a user’s goals and incor-
porating that information in the task representation of today’s
systems might be a first step toward more natural and intel-
ligent strategies for error detection and recovery or response
generation. Similarly, making richer use of dialogue history
could also improve interactions. For example, in the HMIHY
example above, by maintaining a dialogue history, after the
rate goal is satisfied, the system could ask the user whether
the previous goal for initiating a credit-card call was still
valid, and if so, pick up and complete that dialogue, picking
up from the point of the context switch.

Context-Switching Dialogue 2:

• System: Please hold for rate information. [provides
rate]

• System: Do you want to make the call to 973-360-8000?
• User: Yes.
• System: Please tell me the credit card number

Another effective use of dialogue history would reduce the
occurrence of sequences of repeated errors. For example, if
the user’s actions explicitly indicate that the system has mis-
recognized an utterance, then if that same recognition result
is obtained on a subsequent response to the same prompt,
the system might anticipate that the same misrecognition has
occurred, and modify the dialogue strategy in an attempt to
make progress toward the goals, rather than simply repeating
the tactic that the user had already flagged as being in error.
Use of dialogue history could also improve language genera-
tion by allowing the system 1) to match the user’s vocabulary
in order to mirror the grounding function in human–human
conversation [53]; 2) to make appropriate indirect references;
and 3) to apply appropriate prosodic contours to indicate
which pieces of information in the output utterance are new
as opposed to given (i.e., previously provided).

Another challenge that remains for spoken dialogue sys-
tems is the lack of a widely accepted evaluation framework.
Without such a framework, it is difficult to generalize find-
ings from one system to another. Walkeret al. [54] have
proposed a framework for evaluating dialogue systems that
models performance of a dialogue system as a function of
what gets accomplished in the interaction (e.g., task success)
and how the task gets accomplished (the costs of the interac-
tion). This framework has been applied in several compara-
tive studies of dialogue systems [55].

G. Speaker Verification

Speaker verification is a speech technology that can be
used for security and user authentication. Here, the individual

claims an identity and the system’s task is to accept or reject
that claim. Speaker verification provides a reasonably good
measure of security for access to a network or a service or to
personalized information.

For speaker verification, speech features of the input ut-
terance are analyzed and compared to the features of the
claimed speaker. The features most often selected are the
same features used for speech recognition. However, for ver-
ifying speakers, they are used quite differently. The combina-
tion of the speaker’s vocal tract and speaking style are what
characterize his or her speech, making it distinctive. The
vocal tract information and the speaking style are captured
in both the instantaneous features and their evolution over
time. These features can be compared to statistical models to
determine the likelihood of a match from which a decision is
made to accept or reject the claimed identity.

Several different types of systems exist for speaker verifi-
cation. The simplest system conceptually is a fixed password
system. After an initial training session (or sessions), the in-
dividual makes an identity claim, then speaks his password
phrase. The system is conceptually simple because the se-
quential features should always be similar, as they are spoken
in the same order. The features of the utterance are compared
to the statistical model for this speaker, and the identity claim
is accepted if the features match well and rejected if they are
more like those from a background model. The problem with
a fixed password system is that it can be thwarted simply by
playing a recording of the real individual saying the password
phrase. A more secure version of the system can be achieved
if the user is asked to speak a given random phase. Ideally,
this random phrase, which could be just a string of digits or
other words, should include features that are the most char-
acteristic of that speaker.

The remaining question is how well speaker verification
technology works in practice. The simplest systems, such as
spoken password systems, have the highest accuracy. The
performance of any system is measured using a “receiver
operating characteristic.” There are two types of errors that
occur: an identity claim could be falsely verified or it could
be falsely rejected. By setting thresholds appropriately, ei-
ther of these types of errors can be reduced arbitrarily or
even eliminated entirely, but at the expense of a large rise
in the other type of error. Thus, the entire operating charac-
teristic actually defines the system performance. One partic-
ular number that is also of interest is the equal error rate. In
practice, equal error rates on the order of 0.5% have been
obtained for spoken digit string speaker verification under
laboratory conditions [56]–[59]. When a real system is de-
ployed, thresholds must be seta priori, although they can be
made adaptive during ongoing use of the system. As a result,
actual live system performance often has error rates that are
two to three times as large.

III. N ETWORKING ISSUES FORSPEECH ANDLANGUAGE

PROCESSING

Speech and natural language systems are intended to be
essential components of the user interface for services in the
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telecommunications network of the twenty-first century. For
these interfaces to be successful, they need to work reliably
and robustly across a range of access devices and on a variety
of networks, including the conventional plain old telephone
service (POTS) network, the evolving wireless network, the
cable network, and for all types of data (IP) networks. In this
section, we review the unique issues that arise when speech
and natural language systems are used in the range of envi-
ronments that will constitute the communications network of
the twenty-first century.

A. Circuit-Switched POTS Telephony

The current circuit-switched telephone network (and the
telephone devices connected to the network) introduces lim-
itations that often make speech processing a challenge, in-
cluding the following.

1) Reduced signal bandwidth—A wide-band speech
signal contains useful information from about 50 Hz
to about 7000 Hz, whereas the POTS network limits
the signal bandwidth to 200–3200 Hz, thus removing
two important spectral bands of speech information,
which often help greatly in recognizing speech.

2) Speech impairments due to transmission facili-
ties—The telephone network sometimes introduces
impairments that can affect the performance of speech
recognition systems. Such impairments include loss
of signal level and network echoes.

3) variable handset quality—Up until about 20 years ago,
all handsets used carbon button microphones. Today,
modern day electret microphones are used in almost all
handsets. The transmission characteristics for each of
these types of microphones are very different, leading
to variability in speech recognition.

4) Accommodation of hands-free environments, espe-
cially speakerphones—Key issues including poor
microphone design and acoustic echoes introduced by
varying room acoustics and feedback from the speaker
to the microphone cause major problems for speech
recognition systems and for conversational systems.

Each of these impairments must be carefully handled by the
speech processing system for the technologies of Section II
to be effective in network applications of speech processing
systems.

B. Wireless Networks

Current estimates for the United States are that there
are over 100 million cellular or personal communications
services (PCS) phones in use as of mid-2000. It is clear
that wireless phones already generate a significant fraction
of voice traffic in the network and will continue to do so
in the future. Key technologies fueling this growth are
speech coding, which enables greater capacity systems, and
speech recognition and synthesis, which provide alternative
inputs and outputs to compensate for the steadily shrinking
keyboards and displays on wireless phones. The marriage
of small computing devices, such as personal digital assis-

tants (PDAs), with wireless technology provides a further
promising avenue for speech processing technologies.

Wireless networks present some unique challenges to
speech processing technologies. The first issue, common to
all radio links, is fading. Because of the existence of multiple
paths between the transmitter (the cellular phone) and the
receiver, the speech signal strength at the receiver goes
through periods when it is strong and weak. During strong
periods, digital signals can usually be demodulated with no
errors whatsoever. During weak periods, bit errors can occur
due to interfering signals or general background noise. The
bandwidth of the channel, in combination with the ratio of
the average signal strength to either the average background
noise or the interference level, determines the average ca-
pacity of the channel, i.e., the effective bit rate. This impacts
the speech coding bit rate that can be transmitted over the
channel—hence, the perceived quality of wireless speech. It
also implicitly impacts speech recognition performance on
the speech transmitted over wireless channels.

The second issue with wireless networks is scarcity of
bandwidth. The more users that can share the fixed band-
width of the network, the less cost there is and the greater the
capacity of the network. Therefore, all digital wireless net-
works use speech coding to increase their capacity. As noted
previously, speech coding to low bit rates (order of 4 kb/s)
also tends to degrade the performance of speech recognizers.

In summary, the challenges of wireless generally are how
to achieve greater capacity in a limited resource (bandwidth)
and how to deal with an imperfect channel. For speech
processing technologies, the first challenge puts a stress on
low-bit-rate speech coding and feature extraction for speech
recognition. The second challenge results in a requirement
for robust performance on noisy channels for any speech
technology. Wireless has been growing at a fast rate for some
years, making it a significant fraction of all telecommuni-
cations traffic. Thus, it is essential for speech processing
technology to perform robustly for wireless channels. Owing
to their small size and limited channel capacity, wireless
devices and services provide great opportunities to utilize
speech processing technology.

C. Internet Protocol (TCP/IP)

IP is the dominant packet protocol for data in use today.
In the future, it is expected to become the dominant protocol
for transporting voice and other multimedia data. Transmis-
sion control protocol (TCP) is the protocol to ensure that the
entire data stream is successfully transmitted over the net-
work (end-to-end). TCP is a “best-effort” protocol, meaning
that when data packets are lost, it is assumed they will be re-
transmitted and eventually will successfully be transmitted
and received.

IP voice systems essentially compress speech and chop
it up into packets for transport over a TCP/IP data network.
Each individual packet encounters a range of switching
points (usually routers) on its path from the source to the
destination, and different packets from the same speech
stream can traverse the IP network over different routes,
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depending on the traffic at each of the switching points. This
leads to three generic problems with VoIP systems.

1) Variable transit time through the network—Each
packet can, in theory, take a completely different path
through the network. Different paths mean different
transit times through the network. Even when every
packet takes the exact same path, there is variable
transit time since the packet processing time at each
switching point depends on local traffic at the time
the packet reaches the router.

2) Generally larger delays than a circuit-switched
network—This is due to the need for compressing
the speech and packetizing it into speech packets.
Hence, rather than processing the speech on a
sample-by-sample basis, as is done in the con-
ventional POTS network, frames of speech are
compressed and packetized, thereby leading to extra
delays for buffering speech, compressing the buffered
speech, packetizing the compressed speech, and the
inverse operations at the destination.

3) Lost packets when there is congestion in the net-
work—This is due to the nature of TCP/IP, which
is a best effort delivery mechanism on top of the IP
protocol. There are times when congestion at a router
or switch is so high that the buffers cannot handle
the overflow traffic. In such cases, entire packets are
lost with the intention of having the source retransmit
the packet at a later time. For speech, this retransmis-
sion mechanism serves no value since a lost packet
represents a gap in a “real-time” signal that needs to
be filled with some type of signal processing on the
received packets.

It will always be necessary to include mechanisms in the
speech processing system to deal with each of these data net-
working problems.

IV. COMMUNICATION SERVICES USING VOICE AND

NATURAL LANGUAGE PROCESSING

We stated at the beginning of this paper that there were
unlimited opportunities for speech and natural language pro-
cessing to play a major role in the telecommunications envi-
ronment of the twenty-first century. In the previous sections,
we reviewed the capabilities of several speech and natural
language processing technologies and listed some of the lim-
itations imposed by means of access to the network. In this
section, we discuss the role that speech and natural language
processing have already played, the role that these technolo-
gies are playing today, and the role we foresee in the future.

There are several market forces that play key roles in
the success of future telecommunication-based services,
including:

1) the convergence of the computer and telephony indus-
tries is moving forward at an ever-increasing pace;

2) people are gettingoverloadedby technology; they
want asimpler and easierlifestyle.

Given these factors, what will differentiate telecommuni-
cations services in the twenty-first century are innovative

and compelling user interfaces that create a “media center,”
unifying emerging desktop services with traditional tele-
phony services. This will allow people to utilize the services
they want, whenever they want, and from wherever they
are. Such user interfaces will lead to services that are
“more intelligent.” As networks automatically learn their
customers’ needs and desires, and customers invest their
time to learn how to use these intelligent user interfaces,
a strong, “sticky” bond will be formed. Automatic speech
and speaker recognition, spoken language understanding,
and text-to-speech synthesis technologies will play a critical
role in achieving the vision of a simple-to-use intuitive user
experience.

We can think of applications based on speech technologies
as being divided into several categories.

1) Command/control—For these applications, speech
technologies are used to replace or augment other
types of input modalities, e.g., touch-tones, to control
simple applications, for example, extending simple
interactive voice response (IVR) applications with the
ability to “press or say 1 if you want hardware” or call
handling automation via commands like “collect call
please.” The deployment of speech technologies for
these services is mostly driven from the standpoint of
reducing the cost of offering the service or making the
service more versatile.

2) Information access—For this class of applications,
speech technologies are used to automatically (without
human involvement) access information that would
otherwise not be possible if speech technologies
did not exist, e.g., getting stock quotes or movie
reviews, accessing e-mail, or getting directions over
the phone. Another class of information services
involves obtaining access to anything that is on the
web via voice commands, e.g., “Get me the latest
CNN stories on Bill Clinton.” These types of services
are generally motivated by being able to create new
revenue generating opportunities.

3) Customer care—As new services or products are
offered to the marketplace, the costs associated with
providing customer care or help desk functions keep
increasing. For this class of applications, speech
technologies are being used to replace human agents,
thereby automating many of the service support
functions and reducing the overall cost of the service.

4) Audio indexing—There are a large number of hours of
archival speech and video existing in the world today
in such forms as movies, TV shows, voice mail, doc-
umentaries, and music. In order for the information
in these databases to be truly useful, there must be
easy-to-use search methods for accessing the informa-
tion. For example, users should be able to query a data-
base of such material by speaking commands such as
“Get me all the news stories on Kosovo from January
1st till today.” For textual information, there are sev-
eral highly effective search engines in existence today.
The need for searching audio information using voice
or text commands is spawning a new service industry
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calledaudio indexing. Information retrieval (IR) tech-
nologies are being combined with powerful speech
recognition engines tolisten toand efficiently search
audio databases to give customers the information they
desire [60]–[63].

In the remainder of this section, we review the voice-enabled
services that have been created over the past several years
and look at the new services that will exist as a result of new
capabilities in speech and natural language processing.

A. Voice-Enabled Services—Yesterday

Services based on speech technology are on their way to
becoming a billion-dollar industry. Today, billions of tele-
phone calls each year are being routinely automated based
on speech technology. Millions of copies of speech recogni-
tion software for dictating letters and memos are sold annu-
ally in retail stores by companies such as IBM, Dragon, and
Lernout & Hauspie—rivaling that of the best-selling com-
puter games. Speech technologies have truly come a long
way.

It is important to bear in mind that speech technologies,
despite all the advances, are not perfect. Therefore, most of
the early voice-enabled services in telecommunications are
those that had the following characteristics:

1) simplicity—the resulting services have been easy to
use;

2) evolutionary growth—the early applications have been
extensions of existing systems, such as utilizing voice
input to supplement touch-tone data entry for interac-
tive voice-response systems;

3) tolerance of errors—given that every speech rec-
ognizer, speech synthesizer, or speaker verification
system makes occasional errors, the applications must
be “fail soft”—i.e., they must be able to gracefully
recover from recognition errors.

Several systems that meet the above criteria are described
below.

1) Anser—The First Deployed Voice-Enabled Service:It
has been almost two decades since the first widespread
deployment of automatic speech recognition was introduced
in the telephone network. In 1981, NTT combined speech
recognition and synthesis technologies in a telephone infor-
mation system calledAnser—Automatic Answer Network
System for Electrical Requests [64]. This system provides
telephone-based information services for the Japanese
banking industry. Anser is deployed in more than 70 cities
across Japan serving over 600 banks. Currently, more than
360 million calls a year are automatically processed through
Anser, bringing in about $30 million in revenue to NTT
annually.

Using a 16-word lexicon consisting of the ten Japanese
digits and six control words, this speaker-independent iso-
lated word speech recognition system enables customers to
make voice inquiries and to obtain information through a
well-structured dialogue with a computer over a standard
telephone. At last report, about 25% of the customers chose

to use the ASR capabilities, with a reported word recognition
accuracy of 96.5% [65].

Anser provides a win–win scenario for both the service
provider and the customer. From the customer’s standpoint,
the cost of obtaining information about bank accounts is low
(approximately the cost of a local telephone call). Also, be-
cause most banks are on the Anser network, there is unifor-
mity in accessing banking information across the banking in-
dustry. Therefore, customers can access any bank computer
using a consistent set of procedures. For the banking industry,
Anser allows the banks to provide a much needed service to
its customers without having to hire large numbers of people
or invest heavily in extra hardware.

2) Automation of Operator Services:There are two
classes of applications that have spurred the growth of
voice-enabled services within the telecommunications
industry—those that led to reducing costs of currently
offered services and those that created new services and,
therefore, new revenue opportunities. Far and away the
bigger opportunity has been in the area of cost reduction,
mostly notably in the area of automating operator services.

In 1989, Bell Northern Research began deploying Auto-
mated Alternate Billing Services (AABS) through local tele-
phone companies in the United States, with Ameritech being
the first to offer this service [66]. For this application, ASR
technology was used to automate the back-end of “collect”
and “bill-to-third-number” calls. After the customer placed a
call, a speech-recognition device was used to recognize the
called party’s response to the question: “You have a collect
call. Please say yes to accept the charges or no to refuse the
charges.”

In 1992, AT&T deployed its first service using speech
recognition technology to automate a portion of calls origi-
nally handled by operators. The introduction of this service,
called voice recognition call processing(VRCP), greatly
reduced operator workload while increasing the overall
efficiency of operator handled calls. The exact task deployed
was the automation of the billing functions:collect, calling
card, person-to-person, operator-assisted, andbill-to-third
number. Customers were asked to identify verbally the type of
call they wished to make without directly speaking to a human
operator. A simple five-word vocabulary (the function names)
was designed, built, trialed, and deployed from 1986 to 1992.
This service is today considered successful not just from a
technological perspective but also from a business point of
view. From a technology point of view, key advancements
in speech recognition technology were achieved to support
the needs of the service. For example, both word-spotting
and barge-in technologies, commonly used in most new
voice-enabled services, were perfected and introduced for the
first time in VRCP [67]. From a business perspective, VRCP
currently handles more than 1.3 billion recognition attempts
per year, more thanall voice-enabled services in the world
put together, with only a 0.3% word error rate. This level of
performancehas led tosavings forAT&Tofover$300million
per year or well over $1 billion since its introduction in 1992.
The introduction of the VRCP service marked the beginning
of the use of voice-enabled services for the mass market.
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3) Credit-Card Account Entry:There is a whole class of
telephone-based services in which users must first identify
themselves to the system by entering their account numbers.
Usually these services ask customers to enter their account
number via touch-tone input. However, there is a large per-
centage of customers (about 25%) who cannot perform this
operation (i.e., they do not have a touch-tone phone) or have
problems entering their account number via the touch-tone
user interface, and, therefore, must wait for a live agent to
come on the line. This increases call holding times and re-
quires more live agents to be available to service the account.
In both cases, this means a more expensive service. Sev-
eral companies have been proactive in trying to reduce costs
by using a speech recognition system to allow customers to
speak their account number. In 1994, AT&T Universal Card
Services customer care help line upgraded their service to use
speech technology. Customers now get a prompt asking them
to speak or touch-tone their account numbers. Today, mil-
lions of calls a years (approximately 60 million calls in 1999)
are automated using this feature with a raw string recognition
accuracy of over 97% and close to perfect string accuracy
after doing appropriate database “dips” to determine whether
a recognized string corresponds to an assigned user account
in the database.

4) Reverse Directory Assistance:In 1993, Ameritech de-
ployed a service calledautomated customer name and ad-
dress(ACNA) [68]. In this service, customers were provided
with name and address information associated with a partic-
ular telephone number. After the user provided a telephone
number using touch-tone input (currently no speech recogni-
tion technology is being used), a search was made in a reverse
directory database and text-to-speech synthesis was used to
return the desired information to the user. Nynex trialed a
similar service in 1992 [69]. For these types of voice-based
information access services, where the number of responses
that the system must provide the user is extremely large, it
is infeasible to record each message, store it, and provide a
mechanism to enter new information and change existing in-
formation. Therefore, TTS capabilities are an essential com-
ponent for this service to be successful.

B. Voice-Enabled Services—Today

Yesterday’s voice-enabled applications typically provided
voice interfaces to existing IVR services or to applications
that could have been implemented on an IVR system. Today,
however, voice-enabled systems are handling applications
where IVR either is not viable or is too cumbersome for one
or more of the following reasons.

1) The number of choices available to the user is very
large (e.g., tens of thousands of stock names in a stock
quote service, or hundreds of cities and airports in an
air travel application).

2) The complexity of the interaction would require a deep
and bushy IVR menu. Traversing extensive menus
using a touch-tone keypad can be quite cumbersome,
and, for usability, the number of options at any point
in an IVR dialogue must be kept small (typically no

more than five) and the nesting of options should
not be too deep. High-performance spoken language
systems that permit natural speech input allow the
user to bypass the rigid hierarchies imposed by DTMF
menus.

3) The terms the user is likely to use to describe what
he/she wants may not match well to the terms the sys-
tems offers in its menu choices. The use of advanced
spoken language systems can reduce the memory load
on the user by eliminating the need to remember the
mapping between what the user wants to accomplish
and the specific vocabulary used in the system’s
prompts or their corresponding DTMF sequences.

4) IVR methods for specifying what the user wants (e.g.,
by spelling) are ambiguous.

As a result of improved ASR performance and advances in
the design of dialogue systems, there are a variety of applica-
tions working over the telephone today, including advanced
communication services like voice dialing and messaging, as
well as services providing information access and transaction
management. Speaker verification technology is also incor-
porated in some transaction and information access systems
to ensure secure access to private accounts or information.
This section describes a sampling of the voice-enabled ap-
plications currently available.

1) Voice Access to People/Voice Dialing:One of the
biggest opportunities for speech technologies in telecommu-
nications is voice dialing. Currently, to reach an individual,
we must have access to the phone number for everyone
we want to speak to. Even worse, we have to remember
multiple numbers (e.g., home phone, cell phone, business
phone, beeper, etc.) for many people and, therefore, need to
know when to dial each number. Since telephone numbers
are often ten digits long, and with new area codes being
introduced at an ever increasing rate, it is becoming im-
possible to keep track of all the phone numbers of friends
and colleagues. Modern speech technologies provide a
way to obtain both the convenience of calling people by
name (rather than number) and to utilize the power and
capabilities of modern telecommunication networks. For
broad acceptance, this voice dialing capability must:

1) be universallyavailable from everywhere (i.e., from
home, office, pay phones, cell phones, PCs);

2) be available for all calls (i.e., POTS, wireless, cable,
and IP telephony);

3) work under all conditions;
4) work from a single voice dialing list of names (i.e., a

common address book).

Unless the above conditions are met, there will be no incen-
tive for customers to change their dialing habits and use voice
dialingforall calls.This isevidencedbypreviousvoicedialing
offeringsfromNynex,AT&T,BellAtlantic,Sprint,andothers.
Such systems have been deployed in only one environment,
e.g., only for calls from home, only for calling-card calls, or
only for calls from cellular phones. Although these systems
have been shown, for the most part, to perform well from the
speech technology standpoint (name accuracies greater than
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95%), they have had very limited market success because of
this lack of ubiquity of access to the voice dialing capabilities.
Despite this lack of success with practical systems, voice di-
aling remainsapotential killerapplicationwithin the telecom-
munications industry.

2) Unified Messaging:Voice-enabled access to unified
messaging is another application that we believe will grow
into a major business for AT&T and others. People want to
have ubiquitous access to their messages, including e-mail,
voice mail, and fax (and eventually video-mail). When
accessing messages from the desktop, unified messaging is
a relatively easy service to provide. However, when users
are away from the desktop and want to access the message
store via telephone, then speech technologies are essential
for providing the most effective and useful service. For
example, text-to-speech synthesis is required for reading
e-mail to users. Speech recognition is necessary for pro-
viding a simple voice-controlled interface to messaging
functions, e.g., “Play (or read) my next message” or “Delete
this message,” and for indexing voice mail for easy retrieval,
e.g., “Do I have any messages about my meeting with Larry
tomorrow?” Voice control of messaging (and voice dialing)
functionality from a customer’s cell phone has the additional
advantage of alleviating the potentially dangerous situation
that currently exists when a user has to take his or her eyes
off the road to access the keys on a touch-tone pad in order
to enter commands.

In the marketplace, we are beginning to see services using
speech technologies that provide remote access to e-mail
and/or voice mail. General Magic, partnering with Excite,
offersmytalk2 for remote access to e-mail over the telephone
using TTS to subscribers of their e-mail system. To cope
with the fact that users may have multiple voice and e-mail
accounts to contend with, AT&T is currently prototyping
services that allow customers to easily voice-enable their
currentvoice mail or e-mail services without having to sign
up for new messaging services.

3) Information Access and Transaction Applica-
tions: Automated IVR systems that use DTMF menus to
specify queries, retrieve information, and initiate transac-
tions have been deployed by large companies for many years.
This section describes a variety of automated information
and transaction services that are currently available over
the telephone only because of the existence of high-quality
voice-enabled interfaces.

a) Brokerage services: In the brokerage industry,
several large corporations have deployed spoken language
systems that allow customers to make trades, review ac-
counts and orders, and obtain market indexes and stock,
mutual fund, and options quotes. Currently, these systems
span a range of dialogue capabilities. Some systems pro-
vide only a system-driven prompting strategy, while other
systems allow the user more flexibility and control over
the interaction.3 These systems have been very effective at

2http://mytalk.com.
3Audio examples of several different brokerage applications are avail-

able on the web; for a demonstration of ETrade’s Telemaster service, see
http://www.speechworks.com/customers/customer_listing.cfm.

reducing the percentage of calls that require a human agent,
as well as reducing the time it takes users to get information.
For example, Fidelity Investment’s system is designed to
handle an average of 250 000 calls per day, and Schwab’s
stock quotation system handles more than 50 000 calls per
day.

b) Extended banking services:As might be predicted,
given the success of the ANSER application described
in Section IV-A, the banking industry has also started to
embrace more advanced spoken dialogue systems. The
functionality provided in banking applications includes
retrieving account balances, transferring funds, paying bills,
and making general inquiries about loan rates and other
services. Many of these services are also provided using
IVR systems, but by allowing natural speech input, the
spoken language systems provide more efficient access
to the particular information the customer wants, as well
as offering access to customers who do not have DTMF
telephones. (DTMF penetration is not as widespread in
some countries as it is in the United States)

c) Inventory and tracking systems:Systems where
long strings (containing both numbers and alphabetic
symbols) are used to specify model numbers, customer
identifiers, or tracking numbers are also problematic for
touch-tone input, because it is difficult to encode these com-
plex strings unambiguously using the touch-tone keypad.
Although correct recognition of alphanumeric strings is also
a difficult task for speech recognition, performance is very
good for strings of known length and composition, verified
with checksums or against a database of “valid” numbers.
As a result, speech-enabled applications for these tasks are
more usable than their touch-tone counterparts. Sample
applications in this domain include:

1) the UPS automated package tracking application,
where the customer speaks the alphanumeric tracking
number to get information about the delivery status of
a package;

2) Hewlett-Packard’s Y2K Compliance customer infor-
mation service, where the customer speaks the catalog
number of the software product to find out about that
product’s Y2K compliance;

3) General Electric’s Price and Availability Line, which
provides customers with current information on price
and availability of parts and products.

Such systems are more usable than their touch-tone counter-
parts.4

d) Travel information and reservations:The set of
information access and transaction applications in the travel
domain that are currently deployed or in trial is expanding
rapidly, including airline reservations and ticket purchase
(e.g., United Airlines’ internal system for their employees5

and Andersen Consulting’s internal Via World Network
reservation system, train timetable information [70]–[72],

4For audio clips of the Hewlett-Packard systems, see http://speech-
works.com/customers/customer_listing.cfm; for descriptions of the UPS
and General Electric systems, see http://www.nuance.com.

5http://speechworks.com/customers/customer_listing.cfm.
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rental car reservation systems [73], and access to local in-
formation, including weather, area restaurants information,
and sports (the Bell South Voice Access Link).

The American Airlines Dial-a-Flight system exemplifies
how adding a spoken language option can enhance the ca-
pabilities of an IVR-based application. The dialogue in this
system is structured to be completely system driven, asking
the user for flight number and the date that the flight informa-
tion is needed (“today, tomorrow, or in the future”), one piece
of information at a time, in a fixed order, while asking the
customer to respond after a “beep” tone. This task could be
accomplished with an IVR system, but the spoken dialogue
system allows the service to be extended to users who may
not know the flight number by including a subdialogue that
asks for the cities of origin and destination, in order to deduce
the flight number from information the user does know.6

e) Directory query : Directory assistance applications
have been of interest in the telecommunications arena for
many years, primarily because of the potential cost savings
to be realized from automating such services. In the past five
years, several field trials of automated telephone directory
assistance have been reported. All these systems use system-
driven dialogue initiative, with prompts tailored to elicit a
single information element per turn. These trials ranged from
recognition of localities [74], [75] to the recognition of resi-
dential names in a database of about 25 million listings [76].
Performance for locality recognition in three different areas
(Quebec, Denver, and Kentucky) ranged from 72% to 80%
concept accuracy with 1% false acceptance [75]. The vocab-
ulary sizes for the locality task ranged from about 300 to 800
phrases. For the residential task, 45% of the calls that could
potentially be automated in that trial were successfully au-
tomated, demonstrating the difficulty of the task. The rea-
sons for failure included recognition errors; user “misbehav-
iors,” including the use of natural language utterances and
not knowing some of the information requested by the system
(e.g., locality or first name); and adverse acoustic or trans-
mission conditions [76]. It is notable that the speech recogni-
tion performance on well-formed utterances in this task was
75% for the field trial, where it had been 92% in the labora-
tory, highlighting the discrepancy in performance between
systems tested under controlled laboratory conditions and
real-world usage. This effect has been noted previously in
our discussion of robustness in speech recognition systems.

Systems providing voice-enabled directory query for large
corporate databases have also become more prevalent over
the past five years. Their primary function has been to pro-
vide call redirection to the appropriate extension, after the
caller dials into a general corporate number.

More complex dialogue systems for directory tasks that
allow more natural queries about other attributes associated
with a person in a corporate directory (e.g., fax number,
e-mail address, location), are currently being prototyped
[77]. As mentioned in Section II-C, real-time recognition of
very large vocabularies (1 million entries) is currently fea-
sible. However, accurate speech recognition is only one part

6For an audio clip of this application, see http://www.nuance.com.

of the problem in large directory information access. The
system must be able to deal with the inherent ambiguities
of the directory task. These ambiguities include homonyms
(e.g., if the caller says “What’s John Lee’s fax number?”
did he mean John Lee, Jon Li, or John Leigh?), as well as
multiple people with the same name (e.g., three different
employees, all spelling their name John Lee). In a spoken
dialogue system, both these ambiguities must be resolved to
provide the caller with the information she or he wants. The
homonym ambiguity can be resolved by asking the caller
to spell the name. The multiplicative ambiguity must be
resolved by asking about other disambiguating information
that the system knows and that the system expects the caller
will also know (for example, the work location). Effective
and quick disambiguation strategies will be necessary for
user acceptance of these more complex directory services as
they become available in the near future.

4) Communication Agents:In the last five years, several
services offering voice-activated communication agents or
personal assistants have appeared, including Wildfire,7 We-
bley,8 and General Magic’s Portico.9 These services typi-
cally combine a set of applications, including voice dialing
from a personal address book, outbound messaging, mes-
sage retrieval (both voice mail and e-mail), call routing, per-
sonal calendar, and information retrieval applications (e.g.,
news, stock quotes, weather, traffic, specialized directories)
in a package customized for the user. The agent serves as an
intermediary between the subscriber and people (or entities)
who are trying to contact him/her. The subscriber is provided
with both telephone and web-browser access to the service,
making these applications among the first to recognize that
customers are likely to access these applications over various
access devices at different times, and that some functions,
like setting up a personal address book or personal calling
priorities and profiles, may be cumbersome to administer
without a persistent display. These applications are also cog-
nizant of the need for synchronization of multiple personal
information sources, allowing uploads from personal infor-
mation management systems and access to multiple voice
mail and e-mail systems. Currently, voice-activated access to
the communications agent is limited to the telephone, but it
is easy to envision a future where speech input is also avail-
able with the web interface.

C. Voice-Enabled Services—Tomorrow

As we begin the twenty-first century, and as speech and
language processing capabilities improve dramatically, we
see a number of key voice-enabled services that will help
shape the telecommunications environment. These services
include:

1) agent technologyto manage communications and mes-
saging, to get, index, classify and summarize informa-
tion from the web (e.g., movie reviews, news), to pro-
vide personalized services (to user requirements) and

7http://www.wildfire.com.
8http://www.webley.com/index_set.html.
9http://www.generalmagic.com/portico/portico_home.shtml.

1332 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000



customized services (to user needs), and to adapt to
user preferences;

2) automated customer care attendants, which replace
IVR systems with interactive service;

3) call center automationusing natural language voice
dialogues for booking airline tickets, car rentals, form
filling, catalog ordering, etc.;

4) advanced computer-telephony integration with access
to active user registries to aid in completing communi-
cations, user caches for frequently called parties, adap-
tation to use (automatic addition of new names and ac-
cess numbers), and voice browsers for surfing the web;

5) voice dictation systemsfor generating text responses
to e-mail received via a voice interface.

We describe several such systems, as we believe they will be
realized, in the remainder of this section.

1) Customer Care and Call Routing—“How May I Help
You”: A major opportunity for speech technologies to
change dramatically the way people interact with services is
automation of functions such ascall routing and operations
such ascustomer care. Call routing services are those in
which a customer calls into a central location, then either
by speaking with a live agent or interacting with an auto-
mated touch-tone menu, has their call routed to a person
or automated service that can best handle their needs.Cus-
tomer careoperations are those for which customers have
a question or problem with a product or service and need
help. Billions of dollars per year are spent by corporations
to offer such services to their customers via 800-number
access services; most of the cost supports live customer
agents. In fact, the IVR industry is a multibillion-dollar
industry that was, in some sense, created to automate and
reduce the costs of offering these types ofcall routing and
customer careservices. However, touch-tone-based services
have many limitations (outlined in the previous section) that
a speech-based user experience should be able to overcome.
In the next generation of automated customer care services,
customers will interact directly with machines, expressing
what they want using spoken natural language. Bynatural,
we mean that customers will not be restricted as to what
they can say, or how they say it; the voice-enabled service
will understand what was said and take appropriate action.
This type of service represents a paradigm shift over the
current generation of IVR interfaces, as well as an extension
in scope compared to most speech-enabled applications
deployed today.

In 1996, AT&T Labs created a prototype system, called
HMIHY with the greeting“AT&T. How May I Help You?”
[39], [40], [42]. It combines research in speech recognition,
spoken language understanding, dialogue management, and
text-to-speech synthesis to give users a more natural user in-
terface to the task of automation of operator services. (The di-
alogue aspects of the HMIHY system were described above
in Sections II-D and II-F.) This system was successfully eval-
uated on over 20 000 live customers in the AT&T Network in
1997. For this service, customers called into an AT&T oper-
ator services office and, instead of speaking with a live agent,
were greeted with the voice prompt “AT&T. How may I help

Fig. 8. VoiceTone, the future paradigm for communications.

you?” The automated system then carried on a dialogue with
the customer to try to determine how best to either route the
call (to another service or an attendant) or how to respond to
the user request for service. We have described the dialogue
aspects of this HMIHY system earlier in this paper.

Based on an analysis of many hours of recorded customer
voice queries to the system, it was found that customers for
this service generally needed some type of help on about 15
different topics. Such a service was found not to be viable
using traditional IVR technology, since only five options can
be given to the customers at each menu prompt, and, there-
fore, it generally took multiple prompts before the customer
had access to the desired feature or service. In actual service,
it was shown that an IVR-based service led to only 84% of
the customers getting routed correctly after 40% of the cus-
tomers had bailed out to an operator. By allowing customers
to speak naturally and in conversational speech, as opposed
to using touch-tones, about 90% of the customers could be
routed correctly with only 10% being falsely transferred to an
operator. Clearly, these results show the opportunity speech
technologies have for providing a much higher quality of cus-
tomer care while, at the same time, reducing the costs of pro-
viding the service.

2) VoiceTone:As shown in Fig. 8, at the beginning of the
twentieth century, in order to make a call or get some service,
a customer would pick up a telephone and speak to a live tele-
phone agent, or operator, whom we callMabel. Mabel was
friendly, helpful, understood what the customer wanted, and
could provide a high level of intelligent individualized ser-
vice; Mabel was the local version of an “intelligent agent.”
Since there were no “buttons” or rotary dials on these early
telephones, all requests from the customer to the “network”
were by voice, e.g., “Can I speak with John?” or “Is the
Doctor in today?” Over time, with the advent of rotary dial
and ultimately dial-tone service, the ability to call “by name”
or directly access services by voice requests was replaced by
the necessity to dial directly to phone numbers (associated
with people or services). Thus it became impossible to in-
teract with humans for “simple” information requests such
as “What movie is playing downtown?” The intelligent per-
sonalized services that were offered by operators like Mabel
all but disappeared.

The challenge today is to build the twenty-first century
version of Mabel—namely, an intelligent, personalized,
communications agent, accessible across a range of pow-
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erful, multimodal user interfaces (i.e., speech, text, graphics)
that are available in a consistent way across a range of
communications channels and devices. We call an early
instantiation of such a system theVoiceTonesystem.

The promise ofVoiceToneis to provide a powerful,
yet natural, voice interface to all of the functionality and
information available in the telecommunications network,
the desktop, and the Internet. Whenever a user accesses the
VoiceTonenetwork, he or she is greeted with the generic
spoken response of “How May I Help You?” TheVoiceTone
system provides integrated access to people, messages,
news, directories, and other information services—all coor-
dinated across network-based voice mail, e-mail, calendars,
and address books.

A personalized and automated communications agent lies
at the heart of theVoiceTonesystem. The “intelligent agent”
will not only understand complex spoken requests (expressed
in an unconstrained, conversational manner), but also be able
to act on them. It will be able to learn and adapt to the cus-
tomer’s behavior and store the appropriate information about
each customer within the network. Customers will be able to
access a consistent set of service features, via consistent in-
terfaces, by voice commands, using small hand-held devices,
or from the desktop.

The first service features that will be part of theVoiceTone
service will be voice dialing (using both a user-based and
a common address book) and voice access to unified mes-
saging services. Other potentialVoiceToneservices include
the following.

1) Automated spoken access to personal and network
directories, including white and yellow pages, and
community directories, web searches, and buddy lists
(e.g., “Connect me to Jane Doe in Memphis”).

2) Screening of inbound communications, by automat-
ically identifyingvoices and faces, and by querying
callers (e.g., “John is calling you. Would you like to
take the call?”).

3) Conversion of media, so that text messages (e.g.,
e-mail) can be listened to, or voice messages read
using a video display.

4) One-stop information access to any information
service on the network. Hence, a user can access a
weather service with the query “What’s the weather
in Boston?” or an airlines reservation service with
the query “What flights from Newark to Seattle are
available tomorrow?”

5) Searching and browsing spoken and typed message
stores (i.e., voice mail and e-mail) in order to auto-
matically prioritize and summarize messages (e.g.,
“Are there any messages from my wife?”).

6) Managing calendars; for example, theagentcan coor-
dinate finding the best time for a meeting (including
communicating with the personalized agents of other
attendees).

7) Taking notes during conversations.
8) Language translation of messages, and, ultimately,

live conversations.

9) Assisting with the communication needs of hearing-,
speech-, and sight-impaired users.

10) Simple, yet powerful, access and interactivity with
entertainment and broadcast news (e.g., “Suggest an
old James Dean movie that I would like” or “Show me
the Jets football game from the end zone camera”).

The above list of functionality is not meant to be complete,
but merely illustrative of voice-enabled services that are
being investigated today.

Beyond Voice Telephony—Multimodal Interactive Sys-
tems: As small keyboardless PDAs with voice input and
wireless telephony become more prevalent, the possibility
arises that speech will be the input modality of choice in
many situations, with gesture or pointing to the screen used
as an alternative mode, primarily for selecting among a small
set of options. Currently, applications have generally only
considered whether to use speech input in lieu of DTMF
input, and have not considered the simultaneous availability
of multiple input modes (e.g., stylus and speech). Nor have
they made use of any synergies that might be exploited
when both visual and audio output modes are available. For
example, in a directory query system, a speech-only system
must rely on subdialogues to resolve ambiguity (e.g., in the
multiple “John Lee” example above). If both screen and
audio output are available, the dialogue could be altered
to present the list of possibilities visually, along with the
disambiguating fields, and simply ask the user to select the
desired option. Research in multimodal interfaces is still
in its infancy, with much of the work focusing on how to
combine input to resolve ambiguity or conflict among input
modes. Prototype multimodal systems that integrate speech
and gesture have been demonstrated for resource deploy-
ment tasks using maps [78]. This work is aimed at defining
a unification grammar for combining and reasoning about
inputs from multiple modalities. Understanding how to use
multiple modalities effectively, both for input and output,
will be key to providing coherent and robust interactive
services on next-generation access devices.

V. CONCLUSION

With the rapid explosion of the web, and the associated
communications services that are being offered to solve
problems related to virtually every aspect of daily life,
it is essential that such services be made available to as
broad a population as possible. The only currently available
ubiquitous access device to the network is the telephone,
and the only ubiquitous user access technology mode is
spoken voice commands and natural language dialogues
with machines. In this paper, we have shown how all speech
technologies have progressed to the point where they are
now viable for a broad range of communications services,
including compression of speech for use over wired and
wireless networks, speech synthesis, recognition, and un-
derstanding for dialogue access to information, people, and
messaging, and speaker verification for secure access to
information and services. We discussed some of the unique
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properties of wireless, POTS, and IP networks that make
voice communication and control problematic. Finally, we
discussed the types of voice services available in the past
and today, and those that we foresee becoming available
over the next several years.
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