
Implementing Shared Registers in

Asynchronous Message-Passing Systems,

1995; Attiya, Bar-Noy, Dolev

Eric Ruppert, York University, www.cse.yorku.ca/∼ruppert

INDEX TERMS: distributed computing, shared memory, read-write register, message-passing,
fault-tolerance.

SYNONYMS: simulation, emulation.

1 PROBLEM DEFINITION

A distributed system is comprised of a collection of n processes which communicate with one
another. Two means of interprocess communication have been heavily studied. Message-passing
systems model computer networks where each process can send information over message channels
to other processes. In shared-memory systems, processes communicate less directly by accessing
information in shared data structures. Distributed algorithms are often easier to design for shared-
memory systems because of their similarity to single-process system architectures. However, many
real distributed systems are constructed as message-passing systems. Thus, a key problem in
distributed computing is the implementation of shared memory in message-passing systems. Such
implementations are also called simulations or emulations of shared memory.

The most fundamental type of shared data structure to implement is a (read-write) register,
which stores a value, taken from some domain D. It is initially assigned a value from D and can
be accessed by two kinds of operations, read and write(v), where v ∈ D. A register may be either
single-writer, meaning only one process is allowed to write it, or multi-writer, meaning any process
may write to it. Similarly, it may be either single-reader or multi-reader. Attiya and Welch [4] give
a survey of how to build multi-writer, multi-reader registers from single-writer, single-reader ones.

If reads and writes are performed one at a time, they have the following effects: a read returns
the value stored in the register to the invoking process, and a write(v) changes the value stored
in the register to v and returns an acknowledgement, indicating that the operation is complete.
When many processes apply operations concurrently, there are several ways to specify a register’s
behaviour [14]. A single-writer register is regular if each read returns either the argument of the
write that completed most recently before the read began or the argument of some write operation
that runs concurrently with the read. (If there is no write that completes before the read begins, the
read may return either the initial value of the register or the value of a concurrent write operation.)
A register is atomic (or linearizable) if each operation appears to take place instantaneously. More
precisely, for any concurrent execution, there is a total order of the operations such that each read
returns the value written by the last write that precedes it in the order (or the initial value of the
register, if there is no such write). Moreover, this total order must be consistent with the temporal
order of operations: if one operation finishes before another one begins, the former must precede
the latter in the total order. Atomicity is a stronger condition than regularity, but it is possible to
implement atomic registers from regular ones with some complexity overhead [12].

This article describes the problem of implementing registers in an asynchronous message-passing
system in which processes may experience crash failures. Each process can send a message, con-
taining a finite string, to any other process. To make the descriptions of algorithms more uniform,



it is often assumed that processes can send messages to themselves. All messages are eventually
delivered. In the algorithms described below, senders wait for an acknowledgement of each message
before sending the next message, so it is not necessary to assume that the message channels are
first-in-first-out. The system is totally asynchronous: there is no bound on the time required for a
message to be delivered to its recipient or for a process to perform a step of local computation. A
process that fails by crashing stops executing its code, but other processes cannot distinguish be-
tween a process that has crashed and one that is running very slowly. (Failures of message channels
[3] and more malicious kinds of process failures [15] have also been studied.)

A t-resilient register implementation provides programmes to be executed by processes to sim-
ulate read and write operations. These programmes can include any standard control structures
and accesses to a process’s local memory, as well as instructions to send a message to another
process and to read the process’s buffer, where incoming messages are stored. The implementation
should also specify how the processes’ local variables are initialized to reflect any initial value of the
implemented register. In the case of a single-writer register, only one process may execute the write
programme. A process may invoke the read and write programmes repeatedly, but it must wait
for one invocation to complete before starting the next one. In any such execution where at most
t processes crash, each of a process’s invocations of the read or write programme should eventually
terminate. Each read operation returns a result from the set D, and these results should satisfy
regularity or atomicity.

Relevant measures of algorithm complexity include the number of messages transmitted in
the system to perform an operation, the number of bits per message, and the amount of local
memory required at each process. One measure of time complexity is the time needed to perform
an operation, under the optimistic assumption that the time to deliver messages is bounded by
∆ and local computation is instantaneous (although algorithms must work correctly even without
these assumptions).

2 KEY RESULTS

Implementing a Regular Register

One of the core ideas for implementing shared registers in message-passing systems is a construction
that implements a regular single-writer multi-reader register. It was introduced by Attiya, Bar-
Noy and Dolev [3] and made more explicit by Attiya [2]. A write(v) sends the value v to all
processes and waits until a majority of the processes (

⌊

n

2

⌋

+ 1, including the writer itself) return
an acknowledgement. A reader sends a request to all processes for their latest values. When it has
received responses from a majority of processes, it picks the most recently written value among
them. If a write completes before a read begins, at least one process that answers the reader has
received the write’s value prior to sending its response to the reader. This is because any two sets
that each contain a majority of the processes must overlap. The time required by operations when
delivery times are bounded is 2∆.

This algorithm requires the reader to determine which of the values it receives is most recent.
It does this using timestamps attached to the values. If the writer uses increasing integers as
timestamps, the messages grow without bound as the algorithm runs. Using the bounded timestamp
scheme of Israeli and Li [13] instead yields the following theorem.

Theorem 1 (Attiya [2]). There is an
⌈

n−2

2

⌉

-resilient implementation of a regular single-writer,
multi-reader register in a message-passing system of n processes. The implementation uses Θ(n)
messages per operation, with Θ(n3) bits per message. The writer uses Θ(n4) bits of local memory
and each reader uses Θ(n3) bits.

Theorem 1 is optimal in terms of fault-tolerance. If
⌈

n

2

⌉

processes can crash, the network can be
partitioned into two halves of size

⌊

n

2

⌋

, with messages between the two halves delayed indefinitely.



A write must terminate before any evidence of the write is propagated to the half not containing the
writer, and then a read performed by a process in that half cannot return an up-to-date value. For
t ≥

⌈

n

2

⌉

, registers can be implemented in a message-passing system only if some degree of synchrony
is present in the system. The exact amount of synchrony required was studied by Delporte-Gallet
et al. [6].

Theorem 1 is within a constant factor of the optimal number of messages per operation. Ev-
idence of each write must be transmitted to at least

⌈

n

2

⌉

− 1 processes, requiring Ω(n) messages;
otherwise this evidence could be obliterated by crashes. A write must terminate even if only

⌊

n

2

⌋

+1
processes (including the writer) have received information about the value written, since the rest of
the processes could have crashed. Thus, a read must receive information from at least

⌈

n

2

⌉

processes
(including itself) to ensure that it is aware of the most recent write operation.

A t-resilient implementation, for t <
⌈

n

2

⌉

, that uses Θ(t) messages per operation is obtained by
the following adaptation. A set of 2t + 1 processes is preselected to be data storage servers. Writes
send information to the servers, and wait for t + 1 acknowledgements. Reads wait for responses
from t + 1 of the servers and choose the one with the latest timestamp.

Implementing an Atomic Register

Attiya, Bar-Noy and Dolev [3] gave a construction of an atomic register in which readers forward
the value they return to all processes and wait for an acknowledgement from a majority. This is
done to ensure that a read does not return an older value than another read that precedes it. Using
unbounded integer timestamps, this algorithm uses Θ(n) messages per operation. The time needed
per operation when delivery times are bounded is 2∆ for writes and 4∆ for reads. However, their
technique of bounding the timestamps increases the number of messages per operation to Θ(n2) (and
the time per operation to 12∆). A better implementation of atomic registers with bounded message
size is given by Attiya [2]. It uses the regular registers of Theorem 1 to implement atomic registers
using the “handshaking” construction of Haldar and Vidyasankar [12], yielding the following result.

Theorem 2 (Attiya [2]). There is an
⌈

n−2

2

⌉

-resilient implementation of an atomic single-writer,
multi-reader register in a message-passing system of n processes. The implementation uses Θ(n)
messages per operation, with Θ(n3) bits per message. The writer uses Θ(n5) bits of local memory
and each reader uses Θ(n4) bits.

Since atomic registers are regular, this algorithm is optimal in terms of fault-tolerance and
within a constant factor of optimal in terms of the number of messages. The time used when
delivery times are bounded is at most 14∆ for writes and 18∆ for reads.

3 APPLICATIONS

Any distributed algorithm that uses shared registers can be adapted to run in a message-passing sys-
tem using the implementations described above. This approach yielded new or improved message-
passing solutions for a number of problems, including randomized consensus [1], multi-writer regis-
ters [4], and snapshot objects [[[cross-ref to article on snapshots]]]. The reverse simulation is
also possible, using a straightforward implementation of message channels by single-writer, single-
reader registers. Thus, the two asynchronous models are equivalent, in terms of the set of problems
that they can solve, assuming only a minority of processes crash. However there is some complexity
overhead in using the simulations.

If a shared-memory algorithm is implemented in a message-passing system using the algorithms
described here, processes must continue to operate even when the algorithm terminates, to help
other processes execute their reads and writes. This cannot be avoided: if each process must stop



taking steps when its algorithm terminates, there are some problems solvable with shared registers
that are not solvable in the message-passing model [5].

Using a majority of processes to “validate” each read and write operation is an example of a
quorum system, originally introduced for replicated data by Gifford [10]. In general, a quorum
system is a collection of sets of processes, called quorums, such that every two quorums intersect.
Quorum systems can also be designed to implement shared registers in other models of message-
passing systems, including dynamic networks and systems with malicious failures. For examples,
see [7, 9, 11, 15].

4 OPEN PROBLEMS

Although the algorithms described here are optimal in terms of fault-tolerance and message com-
plexity, it is not known if the number of bits used in messages and local memory is optimal. The
exact time needed to do reads and writes when messages are delivered within time ∆ is also a topic
of ongoing research. (See, for example, [8].) As mentioned above, the simulation of shared regis-
ters can be used to implement shared-memory algorithms in message-passing systems. However,
because the simulation introduces considerable overhead, it is possible that some of those problems
could be solved more efficiently by algorithms designed specifically for message-passing systems.

5 EXPERIMENTAL RESULTS

None.

6 DATA SETS

None.

7 URL to CODE

None.

8 CROSS REFERENCES

Distributed Snapshots.
[[[Entry editors: please feel free to add others. I think there is one on linearizability

and one on Lamport’s registers paper.]]]

9 RECOMMENDED READING

[1] J. Aspnes, Randomized protocols for asynchronous consensus, Distributed Computing, 16
(2003), pp. 165–175.

[2] H. Attiya, Efficient and robust sharing of memory in message-passing systems, Journal of
Algorithms, 34 (2000), pp. 109–127.

[3] H. Attiya, A. Bar-Noy, and D. Dolev, Sharing memory robustly in message-passing
systems, J. Assoc. Comput. Mach., 42 (1995), pp. 124–142.

[4] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics, Wiley-Interscience, second ed., 2004.



[5] B. Chor and L. Moscovici, Solvability in asynchronous environments, in Proc. 30th Sym-
posium on Foundations of Computer Science, 1989, pp. 422–427.

[6] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos,

P. Kouznetsov, and S. Toueg, The weakest failure detectors to solve certain fun-
damental problems in distributed computing, in Proc. 23rd ACM Symposium on Principles
of Distributed Computing, 2004, pp. 338–346.

[7] S. Dolev, S. Gilbert, N. A. Lynch, A. A. Shvartsman, and J. L. Welch, GeoQuo-
rums: Implementing atomic memory in mobile ad hoc networks, Distributed Computing, 18
(2005), pp. 125–155.

[8] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty, How fast can a distributed
atomic read be?, in Proc. 23rd ACM Symposium on Principles of Distributed Computing,
2004, pp. 236–245.

[9] B. Englert and A. A. Shvartsman, Graceful quorum reconfiguration in a robust emulation
of shared memory, in Proc. 20th IEEE International Conference on Distributed Computing
Systems, 2000, pp. 454–463.

[10] D. K. Gifford, Weighted voting for replicated data, in Proc. 7th ACM Symposium on
Operating Systems Principles, 1979, pp. 150–162.

[11] S. Gilbert, N. Lynch, and A. Shvartsman, Rambo II: rapidly reconfigurable atomic
memory for dynamic networks, in Proc. International Conference on Dependable Systems
and Networks, 2003, pp. 259–268.

[12] S. Haldar and K. Vidyasankar, Constructing 1-writer multireader multivalued atomic
variables from regular variables, J. Assoc. Comput. Mach., 42 (1995), pp. 186–203.

[13] A. Israeli and M. Li, Bounded time-stamps, Distributed Computing, 6 (1993), pp. 205–209.

[14] L. Lamport, On interprocess communication, Part II: Algorithms, Distributed Computing,
1 (1986), pp. 86–101.

[15] D. Malkhi and M. Reiter, Byzantine quorum systems, Distributed Computing, 11 (1998),
pp. 203–213.


