
York University COSC6117 February 5, 2008

Exercise #6

Due: February 26, 2008

6. Consider the synchronous message-passing model with a complete network graph. Up to f

of the n processes may have Byzantine failures. We saw a consensus algorithm in class that
satisfies
agreement: all correct processes produce same output, and
weak validity: if all correct processes have input v, they all output v.
This algorithm works regardless of the set of possible input values, as long as n > 4f .

A stronger validity condition is
strong validity: the output of every correct process is the input of some correct process.
Note that strong validity is equivalent to weak validity if the set of possible inputs is {0, 1},
but the conditions are not equivalent in general.

(a) Show that the algorithm from class does not satisfy strong validity if the set of possible
inputs is {0, 1, 2}, even when n > 4f .

(b) Show that it is impossible to design an algorithm that satisfies termination, agreement
and strong validity if m = 5, n = 13 and f = 3.

(c) Consider the problem of designing a consensus algorithm that satisfies agreement and
strong validity. The domain of possible input values is {0, 1, 2, . . . , m− 1}.

Show that the following algorithm satisfies agreement and strong validity when n is
sufficiently large, relative to f and m. State clearly how big you are assuming n to be.
(Of course, the weaker your assumption, the better.) Without loss of generality, you
can assume that Byzantine processes always send a value when they are supposed to,
but they may not send the right value. (If a process does not send a value to you when
it is supposed to, you can just pretend it sent you 0).

Code for process i:

pref ← input value
for phase← 1..f + 1

round 1:
send pref to all processes (including self)
suppose you receive kj copies of vj in this round, where k1 ≥ k2 ≥ · · · ≥ km.
round 2:
if phase = i then send v1 to all processes (including self)
suppose the value received in this round is vc

if k1 − k2 > 2f then pref ← v1

elsif kc > f then pref ← vc

end for
output pref

1


