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6. Good Old Average

Consider the following problem. We hav ea large number of measurements for the
same quantity and we want to use them to find a better estimate of this quantity than
using one of the measurements alone. Assume that the measurements come from a robot
which fired its sonar 10 times and got 10 different distancesxi for i = 1. .10. We want to
find the most accurate distance to the object in from of the sonar. Just about everybody
would suggest the average of all the measurements

x̂ =

i=10

i=1
Σ xi

10

where the hat in̂x indicates that this quantity is an estimate. This is the best we can do
given the absence of any other information about the sensor. So we can state that

x̂ = x

where the bar inx means average.

Although the average is usualy the safest thing to use and quite often the best, it is
not always the case that there is a single definition of “average”. Considera slightly more
complicated example. We hav ea robot with shaft encoders (little thingies on the wheels
of a robot that send “clicks” to the robot brain to tell it how far it has gone) that send a
click every distanceS = 10cm. A certain function in the robot controller receives a series
of numberst1, t2 etc which are the time intervals between the clicks, and we have to find
a way to estimate the velocity v̂ of the robot. There are two ways to apply the “average”
idea we stated above.

v̂ =

N

i=1
Σ S

ti

N

and

v̂ =
S

N

i=1
Σ ti

N

in other words, average the velocities or average the times between the clicks. Some peo-
ple will instinctively prefer the one over the other, but the ones that know better (or just
do not care) will say “I don’t know”. One should do a rather sophisticated modeling of
the system to decide which (and if) one of the above is best. If we cannot construct a rich
enough model, then we can just rely on empirical evaluation (lots of experiments) or just
plain instinct.
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6.1. Average and Expected Value

These two are more or less the same thing, if you are a common mortal. Their prin-
cipal difference is that the “Expected Value” sounds more sophisticated. A secondary but
certainly fundamental difference is that theaverage is what we actually compute from a
set of measurements, whereas theexpected value is what we expect to get from a mea-
surement. If, for example, we place the robot 30cm away from the wall, the expected
value of the sonar reading will be 30cm, although none of the measurements will be
exactly 30, most probably not even the average. But if we take many measurements the
av erage will converge to 30 for a properly calibrated sonar sensor (or to be honest, for a
sensor that shows some respect for elementary statistics).

Since the average usually converges to the expected value and the expected value is
usually what we try to estimate, we cannot go very wrong by using the average as an esti-
mate of the expected value, if we have more data than we need.

OK, we know how to take the average: we sum all up and divide by their number.

How do we compute the expected value? The books saypapoulis

(6.1)µ x = E{ x} =
∞

−∞
∫ xp(x)dx

wherep(x) is the Probability Density Function (pdf) ofx. That’s not that useful though if
we do not have a pdf or simply do not know how to compute integrals. Inpractice we
often need neither (phewww). It is usually enough to know four rules for the expected
value

(1) Theexpected value of a constant is itself e.g E{ c} = c.

(2) Theexpected value of the expected value of a measurement is the expected value
of the measurement e.g. E{E{ x}} = E{ x}

(3) Theexpected value of the sum of two measurements is the sum of the expected
values (very much like the average) e.g. E{ x + y} = E{ x} + E{ x} .

(4) The expected value of the product of two measurements is the product of the
expected values if the measurements are statistically independent (very much
unlike the average) e.g. E{ x y} = E{ x} E{ x}

The discrete version of Eq. (6.1) for the expected value (which is for random vari-
ables whose value is always an integer like a pair of dice) is not very different

(6.2)µ x = E{ x} =
i
Σ ipi

wherepi is the probability of outcomei.

As it will become apparent in the next sections it is useful to define not only the
expected value of our measurement but the expected value ofx2, (x − x)2 or any other
function of x as well. In general we want to computeE{ f (x)} for any function f (x) that
might be useful to us.
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6.2. Standard Deviation and Variance

So far we answered the question “how far is the object”. The next question we will
be asked is how good were the data. There are many ways to do this but we are seeking
one that is simple, mathematically tractable, generally applicable and makes sense. Few
definitions would fill the bill better than the estimate of the variance

σ̂ 2 =

i=N

i=1
Σ (xi − E{ x} )2

N

which assumes that we know the expected value E{ x} . If we do not, and usually we do
not, then the estimate of the variance is

σ̂ 2 =

i=N

i=1
Σ (xi − x)2

N
.

The above expression has the tendency to slightly underestimate the variance becausex is
the center of gravity of all the data pointsxi and as a result the sum of square distances
from all the data points is always no more than the sum of square distances from the true
expected value. We will not worry about this now for many reasons. One is that most
often the effect is small. Another is that for data with many dimensions any action that
corrects this bias will be expensive. Yet another is that in estimation we care mainly with
the relative magnitude of variances, so the effecto of this bias is smaller. Finally, and by
far the most important and scientific reason is that nobody cares. We do not want to be
geeks, do we?

The variance has all the nice properties we want. It is simple, and makes sense. If
the data vary a lot from the expected value, then the variance is large. If they cluster
tightly around the expected value the variance is small. It is definitely mathematically
tractable (whereas if we used absolute value instead of square it would not be) and it
appears naturally in many probabilistic models.

Quite often it is more convenient to use the square root form of the variance which is
calledstandard deviation

σ = √ σ 2.

It is not very hard to prove that any measurementxi is with very high probability within
±3σ from the expected value. If the probability model is Gaussian (a nice bell curve) this
probability is 99.5%.

If you think that the estimate of the variance defined above makes sense, you are
ready to see the definition of the variance itself:

(6.3)σ 2 = E



(x − E{ x} )2




.
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6.3. Covariance

Consider two random variablesx andy that are not independent, with meansµ x and
µ y and variancesσ x

2 andσ y
2. It is obvious that

C xy = E



(x − µ x)(y − µ y)





cannot be simplified using the rule about products. It is a number that describes the
dependance of the random variablesx and y and as such it has a name:covariance. It is
closely related to the more familiar correlation, which is nothing more than a normalized
covariance. Since for our purposes only covariance is needed, we treat correlation as a
poor relative.

Let’s do a simple example of two non-independent random variables,x and y.
Assume thaty = x + w where w is a random variable which is independent ofx with
meanµw and varianceσ w

2. Then the mean ofy is

µ y = µ x + µw

the varianceσ y
2 is

σ y
2 = E




(y − µ y)

2




=

E



((x − µ x) + (w − µw))2





=

E



(x − µ x)

2




+ E



(w − µw)2





+ 2E{(w − µw)(x − µ x)}

= σ x
2 + σ w

2

and the covariance is

C xy = E



(x − µ x)(y − µ y)





=

E{(x − µ x)((x − µ x) + (w − µw))} =

E



(x − µ x)

2




+ E{(w − µw)(x − µ x)} = σ x
2

It is obvious from the above definition that we can write

C xx = σ x
2

and this will be a usefull alternative to the traditionalσ notation.
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6.4. Expected Value and Variance of the Average

We expect our measurements to have some randomness in them. What happens to
this randomness when we take the average? We are sure that it decreases, but by how
much? This sounds like the next question to answer.

As a warm up exercise let’s compute the expected value of the average.

E{ x} = E







i=N

i=1
Σ xi

N







and we know that the expected value of the sum is the sum of the expected values, so

E{ x} =

i=N

i=1
Σ E{ xi}

N
and since the expected value of every measurement is the same (unless we assume that
the first 5 measurements are for practice and after that the sonar gets tired)

E{ x} =

i=N

i=1
Σ E{ x}

N
= E{ x} = µ x

or in other words the expected value of the average is the same as the expected value ofx,
which is exactly what we suspected all along (and if we did not suspect such a thing, we
should have suspected it!)

Then, how about the variance of the average.

σ avg
2 = E




(x − µ x)2





= E















i=N

i=1
Σ xi

N
−

i=N

i=1
Σ µ x

N







2







=

E















i=N

i=1
Σ xi − µ x

N







2







=

E




N

i=1
Σ

N

j=1
Σ

(xi − µ x)(x j − µ x)

N2





we can apply the rule that says that the expected value of the sum is the sum of the
expected values
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σ avg
2 =

N

i=1
Σ

N

j=1
Σ

E



(xi − µ x)(x j − µ x)





N2

and we have to apply the rule about products now. This double summation has two kinds
of terms: the ones wherei ≠ j and the ones wherei = j. For every term that hasi ≠ j, we
use the assumption that the measurements are statistically independent so

E



(xi − µ x)(x j − µ x)





= E{(xi − µ x)}E{(x j − µ x)} = (µ x − µ x)(µ x − µ x) = 0.

That’s great the majority of terms have vanished! And we are left with the terms for
which i and j are equal

σ avg
2 =

N

i=1
Σ

E



(xi − µ x)

2




N2

and with the help of Eq. (6.3) we see that

σ avg
2 =

σ 2

N

which quantifies what we expected. If for example we take 100 measurements then the
variance of the average is 100 times smaller and the standard deviation is 10 times
smaller. If the sonar had a nominal accuracy of ±10 then the averaging will improve the
accuracy to ±1. And that is true only if the measurements are independent. If they are not
(e.g. the noise is mostly dues to high or low temperature, and the measurements were
taken one after the other in a short period of time, the temperature did not have any ran-
dom fluctuation and the measurements are not independent.

7. Weighted Average

Now assume that we mount two identical sonar sensors on the robot and both are
looking into the same direction. The only difference between them is that their internal
software uses averaging to improve accuracy in both but the one averages 4 measure-
ments and the other averages 9. It is obvious that we trust the second sonar more than the
first and that the averaging should be weighted

(7.1)x̂ =
4x1 + 9x2

4 + 9
.

While this happens to be the best estimate given the lack of other information, it is
nonetheless the result of gut feeling. And like many other outcomes of the gut it might
not be ideal.

The problem with Eq. (7.1) is that we do not always have raw data to average but
only a few equations that involve random measurements and each one alone is
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indeterminate. So we have to devise something that can be applied in general.

Since we are not the only ones that need this kind of general estimator, mathemati-
cians and statisticians worked hard and invented a whole range of such things called esti-
mators. These are general techniques by which we design functions that compute the
quantity we want. These estimators have names like “Bayesian”, “Maximum Likelihood”
or “χ 2”. Although all three have their respective ecological niches, they are quite similar
in many ways. We could use any of the three for our case but we will opt for the simplest
one, theχ 2.

We want to estimate a parameter, in this casex̂ which is the same as the expected
value of x. We form the expression

(7.2)χ 2 =
(x1 − x̂)2

σ1
2

+
(x2 − x̂)2

σ2
2

and we try to minimize it. In more general settings we would form the expression

i
Σ ( f (p) − xi)

2

σ i

where p is the parameter we want to estimate andf (p) is a function that returns the
expected value ofx given the parameterp.

The more we look at Eq. (7.2) the more sense it makes. If we find anx̂ that is as
close as possible to the data pointsxi with preference to points with smallσ i then Eq.
(7.2) achieves minimum.

We now try the standard way to minimize it. We take the derivative with respect to
the unknown and set it to zero.

∂
∂ x̂



(x1 − x̂)2

σ1
2

+
(x2 − x̂)2

σ2
2




= 2
(x1 − x̂)

σ1
2

+ 2
(x2 − x̂)

σ2
2

= 0

and some simple algebra gives us

(7.3)x̂ =

x1

σ1
2

+
x2

σ2
2

1

σ1
2

+
1

σ2
2

We notice that we can get the Eq. (7.1) from (7.3) if we replaceσ1
2 with σ 2/4 and σ2

2

with σ 2/9. It is always nice to see a formula derived from our gut feeling coincide with
one derived by some kind of fancy math.

We now turn our attention to the quality of the estimate ˆx and compute its variance
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σ x̂
2 = E




( x̂ − µ x)

2




=

E












x1

σ1
2

+
x2

σ2
2

1

σ1
2

+
1

σ2
2

− µ x

1

σ1
2

+
1

σ2
2

1

σ1
2

+
1

σ2
2






2





=

E












x1 − µ x

σ1
2

+
x2 − µ x

σ2
2

1

σ1
2

+
1

σ2
2






2





and if we expand the square we can apply the rule of the expected value of a sum

E







x1 − µ x

σ1
2




2






1

σ1
2

+
1

σ2
2




2 + 2

E







x1 − µ x

σ1
2







x2 − µ x

σ2
2










1

σ1
2

+
1

σ2
2




2 +

E







x2 − µ x

σ2
2




2






1

σ1
2

+
1

σ2
2




2 =

σ1
2

σ1
4




1

σ1
2

+
1

σ2
2




2 + 0 +

σ2
2

σ2
4




1

σ1
2

+
1

σ2
2




2

which finally leads to

(7.4)
σ x̂

2 =
1

1

σ1
2

+
1

σ2
2

.

The above expression is nice and simple and makes a lot of intuitive sense. It tells us that
whenever we average two measurements we always reduce the variance if we use the
proper weighting (we could do the calculations using improper weighting and see that we
might increase the variance) becauseσ x̂

2 is always less than eitherσ1
2 or σ2

2. And if we
combine two measurements, one with standard deviation of say 1 and the other of stan-
dard deviation of 10, the relative weights in the averaging will be 1 and1/100 respectively
and as a result the variance will change by only 1 percent (and the standard deviation by
half percent), which is negligible as one would expect.

The above hold for one dimensional data only. If our samplesxi are vectors, then
things are slightly different, but only slightly: the variancesσ 2 are not scalars anymore,
they are matrices. And what comes to mind when the number of dimensions goes up is
the “dimensionality curse”, or the rapidly increasing difficulty of the problem as the
dimensionality increases. This is not the case here. The increased dimensionality
decreases performance but allows some spectacular solutions to some estimation
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problems.

8. Weighted Average in Multiple Dimensions

With the notable exception of drainpipe inspection robots all robots live in multidi-
mensional worlds. Their position or state is a vector and not a number. An autonomous
robotic platform would need at least three numbers to describe its position:x, y and ori-
entationθ . A flying robot would need 6 such numbers: three for the position and three for
the orientation. But having a whole set of numbers to describe the state of the robot
means that we have a whole set of numbers to estimate. It also means that Goddess
Chance has a whole set of numbers to infect with randomness. And this means multidi-
mensional statistics, which in turn means vectors and matrices.

The first thing in order is to calm the population. Matrices are not that much harder
and in most cases we can get away with 2× 2 matrices which are simple to visualize. Our
measurements will be again xi, the average will bex, the estimate will bêx. The only dif-
ference is that now they are vectors. The variance will be a little different though because
it is a matrix and we will use the symbolC.

A measurementxi has two components now (say the north facing sonar and the west
facing sonar)

xi =




pi

qi





and the average of such a vector is the vector averages

x =




p

q





and the expected value is similarly a vector

µ x = E{ x} =




E{ p}

E{ q}





=




µ p

µq





and so is the estimate

x̂ =




p̂

q̂





so the only partycrusher is the variance which is usually called “The Variance-Covariance
Matrix”. Before we start thinking nasty things about this matrix, lets see the definition. It
really makes sense.
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C = E



(x − µ x)(x − µ x)

T




=








E



(p − µ p)

2




E



(p − µ p)(q − µq)





E



(p − µ p)(q − µq)





E



(q − µq)2












=





C pp

C pq

C pq

Cqq




.

The two diagonal elementsC pp and Cqq are old friends. They are the one dimensional
variances of the elements of the vectorx which we expected. The thing that we might not
expect are the two (actually one since they are equal) off-diagonal elementsC pq. These
are theCovariances! Which at least explains the name of the matrix.

When we have two or more random variables, then it is important to have not anly
their variances but their covariances as well. Consider the case whenx is the vector of
measurements from two sonars and that the error is mostly due to air drafts that affect the
speed of sound. In general drafts make the distances appear larger as measured by the
sonar. If the draft during a particular measurement is weaker than average then bothp
andq will be less than their expected value and both(p − µ p) and (q − µq) will be neg-
ative and so their product will be positive. If the draft is greater than usual then both
(p − µ p) and (q − µq) will be positive and again their product will be positive. Since this
thing is positive, no matter what the draft is, the expected value will be positive. And
that’s why we say they are positively correlated. If, on the other hand, in a different sce-
nario, whenever (p − µ p) was positive (q − µq) was negative and the opposite, the
expected value of(p − µ p)(q − µq) would be negative and we would say that they are neg-
atively correlated.

So what is the use of this apart from being a license for scientific lies. There is quite
a bit of use. Consider our sonars taking measurements in that drafty lab. If we get an
independent measurement of one of the distances and we find it 10% larger then we can
not only correct this measurement but also the measurement of the other sonar. This is
particularly useful in complicated multidimensional problems.

While we can do many things in two dimensions that look like magic, the
derivations are too much trouble. So we skip a great deal of them and just mention the
results.

In multiple dimensions the weighted average is

x = 

C1

−1 + C2
−1



−1


C1

−1x1 + C2
−1x2




a formula not very different from Eq. (7.3). And the variance is

Cx = 

C1

−1 + C2
−1



−1

.
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again a formula not very different than Eq. (7.4). And last but not least we need to guess
the formula forχ 2. Following again our gut feeling, which is of proven quality

χ 2 = (x1 − x̂)C1
−1(x1 − x̂)T + (x2 − x̂)C2

−1(x2 − x̂)T

Let’s look at a simple example. A robot knows that its position in thex andy direction is
5 and 7 with a variance of 1 and 10 respectively. It can also fire its sonars and get its dis-
tance from the walls and find that itsx andy position is 3 and 5 with variance of 10 and 1
respectively. We can compute the estimate of its position using the above formulas. The
variance-covariance matrix for the position of the robot is

C1 =




1

0

0

10





and the variance-covariance matrix for the sonar measurement is

C2 =




10

0

0

1




.

These are nice diagonal matrices and we can invert them easily. We compute the variance
covariance matrix first because the exact same expression appears in the average.

Cavg = 

C1

−1 + C2
−1



−1

=








1

0

0

.1





+




.1

0

0

1









−1

=





1. 1

0

0

1. 1





−1

=




0. 91

0

0

0. 91





The best estimate is then

x̂ =




0. 91

0

0

0. 91













1

0

0

.1









5

7





+




.1

0

0

1









3

5









=




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