Spetsakis Computer Vision

6. Good Old Average

Consider the following problem. &\havea large number of measurements for the
same quantity and weant to use them to find a better estimate of this quantity than
using one of the measurements alone. Assume that the measurements come from a robot
which fired its sonar 10 times and got 10 different distamcésr i =1..10. We want to
find the most accurate distance to the object in from of the.siusarabout eerybody
would suggest thevarage of all the measurements
i=10
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where the hat irX indicates that this quantity is an estimate. This is the best we can do
given the absence of grother information about the sens8o we @n state that

X =

X=X
where the bar iXx means @erage.

Although the merage is usualy the safest thing to use and quite often the best, it is
not alvays the case that there is a single definition géfage”. Considea dightly more
complicated example. #/havea robot with shaft encoders (little thingies on the wheels
of a robot that send “clicks” to the robot brain to tell invhi@r it has gone) that send a
click every distanceS =10cm. A certain function in the robot controller reees a ®ries
of numberd;, t, etc which are the time intervals between the clicks, and we thdind
a way to estimate theelocity v of the robot. There are twways to apply the ‘zerage”
idea we stated abe.
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in other words, werage the glocities or gerage the times between the clicks. Some peo-
ple will instinctively prefer the one wer the otherbut the ones that kmobetter (or just

do not care) will say “I dot’know”. One should do a rather sophisticated modeling of
the system to decide which (and if) one of thevals best. If we cannot construct a rich
enough model, then we can just rely on empirigaluation (lots of experiments) or just
plain instinct.
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6.1. Average and Expected Value

These tw are more or less the same thing, if you are a common mortal. Their prin-
cipal difference is that the “Expected Value” sounds more sophisticated. A secoadary b
certainly fundamental dérence is that thaverage is what we actually compute from a
set of measurements, whereas ékgected value is what we expect to get from a mea-
surement. If, for xample, we place the robot 30crway from the wall, the xpected
vaue of the sonar reading will be 30cm, although none of the measurements will be
exactly 30, most probably notven the arerage. But if we tak mary measurements the
avaage will cowverge to  for a properly calibrated sonar sensor (or to be honest, for a
sensor that shows some respect for elementary statistics).

Since the @erage usually corerges to the expected value and the expected value is
usually what we try to estimate, we cannot goywrong by using thevarage as an esti-
mate of the expected value, if wevharore data than we need.

OK, we knav how to take the arerage: we sum all up and divide by their number
How do we ®mpute the expected value? The booksP&egis

Hy =E{x} = J’ xp(x)dx (6.1)

where p(x) is the Probability Density Function (pdf) &f That's not that useful though if
we do not hee a mif or simply do not kne how to compute intgrals. Inpractice we
often need neither (phewww). It is usually enough towkfour rules for the x@ected
value

(1) Theexpected value of a constant is itself e{gE= c.

(2) Theexpected value of the expectedlwe of a measurement is the expectalder
of the measurement e.g{H x}} =E{x}

(3) Theexpected value of the sum of awmeasurements is the sum of theected
values (very much lig the average) e.g. Ex +y} = E{ x} + E{ x}.

(4) Theexpected value of the product of dwmeasurements is the product of the
expected aluesif the measurements are statistically independent (very much
unlike the average) e.g. Exy} = E{ x} E{ x}
The discrete version of Eqg. (6.1) for the expected value (which is for rangiem v
ables whose value isvedys an integer lik a mir of dice) is not very different

Hx = E{x} = iZiloi (6.2)

wherep; is the probability of outcomie

As it will become apparent in the xtesections it is useful to define not only the
expected value of our measurement but the expected valu® Of — X)? or ary other
function of x as well. In general we want to compigef (x)} for ary function f (x) that
might be useful to us.
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6.2. Standard Deviation and Variance

So far we answered the questionwthfar is the object”. The mé question we will
be asked is v good were the data. There are mavays to do this but we are seeking
one that is simple, mathematically tractable, generally applicable aresrmahkse. ke
definitions would fill the bill better than the estimate of the variance

i=N
(% —E{x})?
1

2 _ iz
N

which assumes that we kmdhe expectedalue E x}. If we do rot, and usually we do
not, then the estimate of the variance is
i=N

> (%~ %)
2_ i
N

The abee expression has the tendgrto dightly underestimate the variance becakse

the center of gravity of all the data poin¢sand as a result the sum of square distances
from all the data points is\vaéys no more than the sum of square distances from the true
expected value. W will not worry about this ne for mary reasons. One is that most
often the effect is small. Another is that for data with yndimensions ay action that
corrects this bias will bexpensve. Yet another is that in estimation we care mainly with
the relatve magnitude of variances, so thdeeto of this bias is smalleFinally, and by

far the most important and scientific reason is that nobody careslowbt want to be
geeks, do we?

o

o

The variance has all the nice properties we want. It is simple, and makes sense. If
the data vary a lot from the expected value, then the varianceges larthey cluster
tightly around the expected value the variance is small. It is definitely mathematically
tractable (whereas if we used absolute value instead of squaocalld wot be) and it
appears naturally in mguprobabilistic models.

Quite often it is more coenient to use the square root form of the variance which is
calledstandard deviation

o =Vo2

It is not very hard to pre that ary measuremenk; is with very high probability within
+30 from the expected value. If the probability model is Gaussian (a nice bed)) ¢his
probability is 99.5%.

If you think that the estimate of the variance definedvalbraakes sense, you are
ready to see the definition of the variance itself:

, [ 0
o? = Ef(x - E{x})’ (6.3)
O O
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6.3. Covariance

Consider two random ariablesx andy that are not independent, with meansand
uy and variances,” ando,?. It is obvious that

0 0
ny = Eo(x— u)(y - ,uy)D
0 0

cannot be simplified using the rule about products. It is a number that describes the
dependance of the randorariablesx andy and as such it has a nangevariance. It is

closely related to the morarhiliar correlation, which is nothing more than a normalized
covariance. Since for our purposes onlyadance is needed, we treat correlation as a
poor relatve.

Let's do a smple example of tw non-independent randomasiables,x and vy.
Assume thaty = x + w wherew is a random variable which is independentxoivith
meany,, and variance,,’. Then the mean of is

Hy = Uy * Hy
the variances,® is

2 O ZD
Oy = E[(y_,uy) 0=
O O

O ]
EC((X — uy) +(w- /-IW))ZD:
O ]

U ZD O ZD
E[(X - /Jx) O+ EHW - /-IW) O+ ZE{ (W - /JW)(X - ,Ux)}
U 0 0O [l

=gl2+0,2

and the ceaariance is

O O
ny = Ef(x— u)(y - ,Uy)D:
O O

E{(X - ,Ux)((x - /Jx) + (W_ ,Uw))} =

U ZD 2
EC(X — py) 0+ E{(W = pn)(X = 1)} = oy
] ]
It is obvious from the ab@® definition that we can write
Cy = 032

and this will be a usefull alternadi © the traditional notation.
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6.4. Expected Value and Variance of the Average

We epect our measurements tovhaome randomness in them. What happens to
this randomness when we talhe arerage? W& ae sure that it decreases, but byvho
much? This sounds kkthe next question to answer.

As a warm up xercise lets mmpute the expected value of thexage.
N

03, O
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E{x} = EDT O
U il
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and we knw that the expected value of the sum is the sum of the expected values, so

S Efx)
E{x} =1 N

and since the expected value vérg measurement is the same (unless we assume that
the first 5 measurements are for practice and after that the sonar gets tired)

S E(x)
aﬂ:“N = E{x} =

or in other words the expected value of therage is the same as the expected value of
which is eactly what we suspected all along (and if we did not suspect such a thing, we
should hae sispected it!)

Then, hav about the variance of theverage.

=N i=N B
, O , D]Elxi ENXDD
Oag” = EC(X = y) D=EEDT— N 20=
O o m ad
M ad
O O
< _ O
D]iglxi ’UXDD
EEI]TDD=
M ad
M ad
O O
N N (Xi_,ux)(x'_.ux)D
E ] 0
2 N*

we can apply the rule that says that the expectduevof the sum is the sum of the
expected values
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O O
EC(X — 1)(Xj = 1,00

N N
2 _ [l 0
Jan _Eljgl N2

and we hee o gply the rule about productswoThis double summation hasdwkinds
of terms: the ones where j and the ones where= |. For every term that has # |, we
use the assumption that the measurements are statistically independent so

U [
ngi - .Ux)(Xj - /JX)SZ E{(Xi - ,ux)} E{(Xj - /Jx)} = (,ux - ,ux)(/Jx - /Jx) =0.

That's geat the majority of terms t@ vanished! And we are left with the terms for
whichi andj are equal

O ZD
EC(x — 1)°0
O

2 U
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and with the help of Eq. (6.3) we see that
2

2 _
Oag —

which quantifies what we expected. If for example we t#l0 measurements then the
variance of the werage is 100 times smaller and the standandatien is 10 times
smaller If the sonar had a nominal accyrat +10 then the aeraging will improve the
accurag to £1. And that is true only if the measurements are independenty latheot
(e.g. the noise is mostly dues to high ow lemperature, and the measurements were
taken one after the other in a short period of time, the temperature didveoamaan-
dom fluctuation and the measurements are not independent.

7. Weighted Average

Now assume that we mount twidentical sonar sensors on the robot and both are
looking into the same direction. The onlyfdience between them is that their internal
software uses\&raging to impree acuray in both but the oneerages 4 measure-
ments and the otheverages 9. It is oldous that we trust the second sonar more than the
first and that theweeraging should be weighted

4%1 + 9%,
4+9
While this happens to be the best estimateegthe lack of other information, it is

nonetheless the result of gut feeling. Ancelikarny other outcomes of the gut it might
not be ideal.

The problem with Eq. (7.1) is that we do novals hae raw cta to aerage lt
only a fav equations that wolve random measurements and each one alone is

g = (7.2)
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indeterminate. So we h@ o devise something that can be applied in general.

Since we are not the only ones that need this kind of general estimatioemati-
cians and statisticiansorked hard and wented a whole range of such things called esti-
mators. These are general techniques by which we design functions that compute the
guantity we want. These estimatorydaames lile “Bayesian”, “Maximum Lilelihood”
or “x?". Although all three hee teir respectie ecological niches, theare quite similar
in mary ways. W& could use awy of the three for our casaibwe will opt for the simplest
one, they?.

We want to estimate a parameter this caseX which is the same as thepected
value of x. We form the expression
5\ 2 5\ 2
X1 — X Xo = X
)(2:(12) +(22) (72)
o1 02

and we try to minimize it. In more general settings we would form the expression

3 (f(p) - x)?

i Oi
where p is the parameter we amt to estimate and(p) is a function that returns the
expected value ox given the parametep.

The more we look at Eq. (7.2) the more sense itanaKK we find arX that is as
close as possible to the data poirtsvith preference to points with smal| then Eg.
(7.2) achiges minimum.

We row try the standard ay to minimize it. Vé take the demvative with respect to
the unknown and set it to zero.

0 -, o= RP0_,0a=R) , (=R _

— 0
0x 0 oy2 o2 O 0,2 0,2
and some simple algebravgs us
X X
5 22
~_ O7 )
X= ﬁ (73)
_ —
0?2 0y

We rotice that we can get the Eq. (7.1) from (7.3) if we rep@éewith o%/4 and o2
with g?/9. It is dways nice to see a formula desil from our gut feeling coincide with
one dewed by ome kind of fang math.

We row turn our attention to the quality of the estimatend compute its variance
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and if we expand the square we can apply the rule of the expected value of a sum
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which finally leads to

5 1
T 1 (7.4)
02 0,2

The abee expression is nice and simple and makes a lot of imeuggnse. It tells us that
wheneer we arerage tw measurements wevadlys reduce the variance if we use the
proper weighting (we could do the calculations using improper weighting and see that we
might increase theaviance) because;’ is aWways less than either;? or 0,2. And if we
combine tvo measurements, one with standardidion of say 1 and the other of stan-

dard deviation of 10, the reladéi weights in the @eraging will be 1 and/100 respectiely

and as a result the variance will change by only 1 percent (and the standard deviation by
half percent), which is negligible as one would expect.

The abee told for one dimensional data only our samplesx; are vectors, then
things are slightly different, but only slightly: thariancess? are not scalars gmore,
they are matrices. And what comes to mind when the number of dimensions goes up is
the “dimensionality curse”, or the rapidly increasing difficulty of the problem as the
dimensionality increases. This is not the case here. The increased dimensionality
decreases performance but a0 some spectacular solutions to some estimation
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problems.

8. Weighted Average in Multiple Dimensions

With the notable>eeption of drainpipe inspection robots all robote In multidi-
mensional worlds. Their position or state iseetor and not a numbekn autonomous
robotic platform would need at least three numbers to describe its pogitipand ori-
entationd. A flying robot would need 6 such numbers: three for the position and three for
the orientation. But hang a whole set of humbers to describe the state of the robot
means that we ka a whole set of numbers to estimate. It also means that Goddess
Chance has a whole set of numbers to infect with randomness. And this means multidi-
mensional statistics, which in turn means vectors and matrices.

The first thing in order is to calm the population. Matrices are not that much harder
and in most cases we can gebg with 2 x 2 matrices which are simple to visualize. Our
measurements will be amp x;, the average will bex, the estimate will b&. The only dif-
ference is that e they are vectors. The variance will be a little different though because
it is a matrix and we will use the symlgdl

A measuremern; has two components n@ (say the north facing sonar and the west
facing sonar)

Up, O
Xi = Dp' O
0% O
and the werage of such a vector is the vectoerages
Up O
X=0_0
A0

and the expected value is similarly a vector

and so is the estimate

so the only partycrusher is the variance which is usually called “@hanée-Cwariance
Matrix”. Before we start thinking nasty things about this matrix, lets see the definition. It
really makes sense.
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N ,0 0 00
Ef(p— up)O Ef(p— up)(d - 1q)00
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0 0 0 O
EC(p— up)(d— 1g)O Eda-uy)'0 O
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0
0 ;08
C =Ex - md(x=u) 0= 7
0 0 g

The two diagonal element€,, and Cq are old friends. Theare the one dimensional
variances of the elements of thectorx which we expected. The thing that we might not
expect are the tw (actually one since tlyeare equal) off-diagonal elemen®,,. These
are theCovariances! Which at least explains the name of the matrix.

When we hae o or more random variables, then it is important teehaot anly
their variances but their eariances as well. Consider the case wheis the vector of
measurements from twsonars and that the error is mostly due to air drafts that affect the
speed of sound. In general drafts mdhke distances appear larger as measured by the
sonar If the draft during a particular measurement is weaker thenrage then bothp
andq will be less than theirgected value and boflp - up,) and (q - 1) will be neg-
ative and so their product will be posm. If the draft is greater than usual then both
(p— up) and (- uq) Will be positve and agin their product will be posite. Snce this
thing is posive, no matter what the draft is, the expected value will be pasithnd
that's why we sy they are positvely correlated. If, on the other hand, in afeliént sce-
nario, wheneer (p—u,) was positie (- u,) was ngaive and the opposite, the
expected value ofp — ,)(q — 1) would be ngaive and we would say that theare ney-
atively correlated.

So what is the use of this apart from being a license for scientific lies. There is quite
a bt of use. Consider our sonars taking measurements in that draftf {aé get an
independent measurement of one of the distances and we find it T@¥thean we can
not only correct this measurement but also the measurement of the otheMhnar
particularly useful in complicated multidimensional problems.

While we can do manthings in tw dimensions that look l& magic, the
deriations are too much trouble. So we skip a great deal of them and just mention the
results.

In multiple dimensions the weightedesage is
-1
- - 40 - 4, 0
X:S:11"'CzlD 11X1+C21X2D

a formula not very different from Eq. (7.3). And the variance is

-1
- 40
Cy= &t +Cy
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acain a formula not very different than Eq. (7.4). And last but not least we need to guess
the formula fory?. Following again our gut feeling, which is of mem quality

X2 =0 = RC (% = R)T + (%2 = NC (% = R)'

Let's look at a simple example. A robot knows that its position irxtaedy direction is

5 and 7 with a variance of 1 and 10 respedi. It can also fire its sonars and get its dis-
tance from the walls and find that kandy position is 3 and 5 withariance of 10 and 1
respectrely. We an compute the estimate of its position using thes@alfmrmulas. The
variance-ceariance matrix for the position of the robot is

- of
L=
EP 105
and the variance-gariance matrix for the sonar measurement is
(10 o0
C, = Oy 1C
O O

These are nice diagonal matrices and we caantithem easilyWe compute the ariance
covariance matrix first because the exact same expression appearsverdige a

Gl oD D1 oEﬂU
Cavg:S:ll"'CZl =

-1
11 00 _ha o0
DO 114 DO 0.9].D

The best estimate is then

Ebgl o 0t 0D$D 1 ot
0957 1ayg 0 L

EO.QL 0 O0s+30 haU

20 047+ 70 BBBo

><)
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