
Assignment 2

Due date March 19, 2007 at 11pm. It must be submitted using submit command.

Note:
• submit 4213 a2 <filename>.
• Read the manpages ("man submit") for more details on the submit command.
• It is not be possible to submit the files after the deadline.
• You must submit a report containing answers to all the questions.
• For programming question you must put your source codes into the report and submit

the source files via submit command.

Questions

1. Problem P4 of Chapter 2 (5 marks)
2. Problem P5 of Chapter 2 (5 marks)
3. Problem P3 of Chapter 3 (5 marks)
4. Problem P7 of Chapter 3 (5 marks)
5. Problem P8 of Chapter 3 (10 marks)
6. Problem P16 of Chapter 3 (10 marks)
7. Programming: Building a Multi-Threaded Web Server (70 marks)

Programming: Building a Multi-
Threaded Web Server
In this assignment we will develop a Web server in two steps. In the end, you will have
built a multi-threaded Web server that is capable of processing multiple simultaneous
service requests in parallel. You should be able to demonstrate that your Web server is
capable of delivering your home page to a Web browser.

We are going to implement version 1.0 of HTTP, as defined in RFC 1945, where separate
HTTP requests are sent for each component of the Web page. The server will be able to
handle multiple simultaneous service requests in parallel. This means that the Web server
is multi-threaded. In the main thread, the server listens to a fixed port. When it receives a
TCP connection request, it sets up a TCP connection through another port and services
the request in a separate thread. To simplify this programming task, we will develop the
code in two stages. In the first stage, you will write a multi-threaded server that simply
displays the contents of the HTTP request message that it receives. After this program is
running properly, you will add the code required to generate an appropriate response.

As you are developing the code, you can test your server from a Web browser. But
remember that you are not serving through the standard port 80, so you need to specify
the port number within the URL that you give to your browser. For example, if your

machine's name is host.someschool.edu, your server is listening to port 6789, and you
want to retrieve the file index.html, then you would specify the following URL within
the browser:

http://host.someschool.edu:6789/index.html

If you omit ":6789", the browser will assume port 80 which most likely will not have a
server listening on it.

When the server encounters an error, it sends a response message with the appropriate
HTML source so that the error information is displayed in the browser window.

Web Server in Java: Part A (30 marks)

In the following steps, we will go through the code for the first implementation of our
Web Server. Wherever you see "?", you will need to supply a missing detail.

Our first implementation of the Web server will be multi-threaded, where the processing
of each incoming request will take place inside a separate thread of execution. This
allows the server to service multiple clients in parallel, or to perform multiple file
transfers to a single client in parallel. When we create a new thread of execution, we need
to pass to the Thread's constructor an instance of some class that implements the
Runnable interface. This is the reason that we define a separate class called
HttpRequest. The structure of the Web server is shown below:

import java.io.* ;
import java.net.* ;
import java.util.* ;

public final class WebServer
{
 public static void main(String argv[]) throws Exception
 {
 . . .
 }
}

final class HttpRequest implements Runnable
{
 . . .
}

Normally, Web servers process service requests that they receive through well-known
port number 80. You can choose any port higher than 1024, but remember to use the
same port number when making requests to your Web server from your browser.

public static void main(String argv[]) throws Exception
{
 // Set the port number.
 int port = 6789;

 . . .
}

Next, we open a socket and wait for a TCP connection request. Because we will be
servicing request messages indefinitely, we place the listen operation inside of an infinite
loop. This means we will have to terminate the Web server by pressing ^C on the
keyboard.

// Establish the listen socket.
 ?

// Process HTTP service requests in an infinite loop.
while (true) {
 // Listen for a TCP connection request.
 ?

 . . .
}

When a connection request is received, we create an HttpRequest object, passing to its
constructor a reference to the Socket object that represents our established connection
with the client.

// Construct an object to process the HTTP request message.
HttpRequest request = new HttpRequest(?);

// Create a new thread to process the request.
Thread thread = new Thread(request);

// Start the thread.
thread.start();

In order to have the HttpRequest object handle the incoming HTTP service request in a
separate thread, we first create a new Thread object, passing to its constructor a reference
to the HttpRequest object, and then call the thread's start() method.

After the new thread has been created and started, execution in the main thread returns to
the top of the message processing loop. The main thread will then block, waiting for
another TCP connection request, while the new thread continues running. When another
TCP connection request is received, the main thread goes through the same process of
thread creation regardless of whether the previous thread has finished execution or is still
running.

This completes the code in main(). For the remainder of the lab, it remains to develop
the HttpRequest class.

We declare two variables for the HttpRequest class: CRLF and socket. According to the
HTTP specification, we need to terminate each line of the server's response message with
a carriage return (CR) and a line feed (LF), so we have defined CRLF as a convenience.

The variable socket will be used to store a reference to the connection socket, which is
passed to the constructor of this class. The structure of the HttpRequest class is shown
below:

final class HttpRequest implements Runnable
{
 final static String CRLF = "\r\n";
 Socket socket;

 // Constructor
 public HttpRequest(Socket socket) throws Exception
 {
 this.socket = socket;
 }

 // Implement the run() method of the Runnable interface.
 public void run()
 {
 . . .
 }

 private void processRequest() throws Exception
 {
 . . .
 }
}

In order to pass an instance of the HttpRequest class to the Thread's constructor,
HttpRequest must implement the Runnable interface, which simply means that we must
define a public method called run() that returns void. Most of the processing will take
place within processRequest(), which is called from within run().

Up until this point, we have been throwing exceptions, rather than catching them.
However, we can not throw exceptions from run(), because we must strictly adhere to
the declaration of run() in the Runnable interface, which does not throw any exceptions.
We will place all the processing code in processRequest(), and from there, throw
exceptions to run(). Within run(), we explicitly catch and handle exceptions with a
try/catch block.

// Implement the run() method of the Runnable interface.
public void run()
{
 try {
 processRequest();
 } catch (Exception e) {
 System.out.println(e);
 }
}

Now, let's develop the code within processRequest(). We first obtain references to the
socket's input and output streams. Then we wrap InputStreamReader and
BufferedReader filters around the input stream. However, we won't wrap any filters

around the output stream, because we will be writing bytes directly into the output
stream.

private void processRequest() throws Exception
{
 // Get a reference to the socket's input and output streams.
 InputStream is = ?;
 DataOutputStream os = ?;

 // Set up input stream filters.
 ?
 BufferedReader br = ?;

 . . .
}

Now we are prepared to get the client's request message, which we do by reading from
the socket's input stream. The readLine() method of the BufferedReader class will
extract characters from the input stream until it reaches an end-of-line character, or in our
case, the end-of-line character sequence CRLF.

The first item available in the input stream will be the HTTP request line. (See Section
2.2 of the textbook for a description of this and the following fields.)

// Get the request line of the HTTP request message.
String requestLine = ?;

// Display the request line.
System.out.println();
System.out.println(requestLine);

After obtaining the request line of the message header, we obtain the header lines. Since
we don't know ahead of time how many header lines the client will send, we must get
these lines within a looping operation.

// Get and display the header lines.
String headerLine = null;
while ((headerLine = br.readLine()).length() != 0) {
 System.out.println(headerLine);
}

We don't need the header lines, other than to print them to the screen, so we use a
temporary String variable, headerLine, to hold a reference to their values. The loop
terminates when the expression

(headerLine = br.readLine()).length()

evaluates to zero, which will occur when headerLine has zero length. This will happen
when the empty line terminating the header lines is read. (See the HTTP Request
Message diagram in Section 2.2 of the textbook)

In the next step of this lab, we will add code to analyze the client's request message and
send a response. But before we do this, let's try compiling our program and testing it with
a browser. Add the following lines of code to close the streams and socket connection.

// Close streams and socket.
os.close();
br.close();
socket.close();

After your program successfully compiles, run it with an available port number, and try
contacting it from a browser. To do this, you should enter into the browser's address text
box the IP address of your running server. For example, if your machine name is
host.someschool.edu, and you ran the server with port number 6789, then you would
specify the following URL:

http://host.someschool.edu:6789/

The server should display the contents of the HTTP request message. Check that it
matches the message format shown in the HTTP Request Message diagram in Section 2.2
of the textbook.

Web Server in Java: Part B (30 marks)

Instead of simply terminating the thread after displaying the browser's HTTP request
message, we will analyze the request and send an appropriate response. We are going to
ignore the information in the header lines, and use only the file name contained in the
request line. In fact, we are going to assume that the request line always specifies the
GET method, and ignore the fact that the client may be sending some other type of
request, such as HEAD or POST.

We extract the file name from the request line with the aid of the StringTokenizer
class. First, we create a StringTokenizer object that contains the string of characters
from the request line. Second, we skip over the method specification, which we have
assumed to be "GET". Third, we extract the file name.

// Extract the filename from the request line.
StringTokenizer tokens = new StringTokenizer(requestLine);
tokens.nextToken(); // skip over the method, which should be "GET"
String fileName = tokens.nextToken();

// Prepend a "." so that file request is within the current directory.
fileName = "." + fileName;

Because the browser precedes the filename with a slash, we prefix a dot so that the
resulting pathname starts within the current directory.

Now that we have the file name, we can open the file as the first step in sending it to the
client. If the file does not exist, the FileInputStream() constructor will throw the

FileNotFoundException. Instead of throwing this possible exception and terminating
the thread, we will use a try/catch construction to set the boolean variable fileExists to
false. Later in the code, we will use this flag to construct an error response message,
rather than try to send a nonexistent file.

// Open the requested file.
FileInputStream fis = null;
boolean fileExists = true;
try {
 fis = new FileInputStream(fileName);
} catch (FileNotFoundException e) {
 fileExists = false;
}

There are three parts to the response message: the status line, the response headers, and
the entity body. The status line and response headers are terminated by the character
sequence CRLF. We are going to respond with a status line, which we store in the
variable statusLine, and a single response header, which we store in the variable
contentTypeLine. In the case of a request for a nonexistent file, we return 404 Not
Found in the status line of the response message, and include an error message in the
form of an HTML document in the entity body.

// Construct the response message.
String statusLine = null;
String contentTypeLine = null;
String entityBody = null;
if (fileExists) {
 statusLine = ?;
 contentTypeLine = "Content-type: " +
 contentType(fileName) + CRLF;
} else {
 statusLine = ?;
 contentTypeLine = ?;
 entityBody = "<HTML>" +
 "<HEAD><TITLE>Not Found</TITLE></HEAD>" +
 "<BODY>Not Found</BODY></HTML>";
}

When the file exists, we need to determine the file's MIME type and send the appropriate
MIME-type specifier. We make this determination in a separate private method called
contentType(), which returns a string that we can include in the content type line that
we are constructing.

Now we can send the status line and our single header line to the browser by writing into
the socket's output stream.

// Send the status line.
os.writeBytes(statusLine);

// Send the content type line.
os.writeBytes(?);

// Send a blank line to indicate the end of the header lines.
os.writeBytes(CRLF);

Now that the status line and header line with delimiting CRLF have been placed into the
output stream on their way to the browser, it is time to do the same with the entity body.
If the requested file exists, we call a separate method to send the file. If the requested file
does not exist, we send the HTML-encoded error message that we have prepared.

// Send the entity body.
if (fileExists) {
 sendBytes(fis, os);
 fis.close();
} else {
 os.writeBytes(?);
}

After sending the entity body, the work in this thread has finished, so we close the
streams and socket before terminating.

We still need to code the two methods that we have referenced in the above code,
namely, the method that determines the MIME type, contentType(), and the method
that writes the requested file onto the socket's output stream. Let's first take a look at the
code for sending the file to the client.

private static void sendBytes(FileInputStream fis, OutputStream os)
throws Exception
{
 // Construct a 1K buffer to hold bytes on their way to the socket.
 byte[] buffer = new byte[1024];
 int bytes = 0;

 // Copy requested file into the socket's output stream.
 while((bytes = fis.read(buffer)) != -1) {
 os.write(buffer, 0, bytes);
 }
}

Both read() and write() throw exceptions. Instead of catching these exceptions and
handling them in our code, we throw them to be handled by the calling method.

The variable, buffer, is our intermediate storage space for bytes on their way from the
file to the output stream. When we read the bytes from the FileInputStream, we check
to see if read() returns minus one, indicating that the end of the file has been reached. If
the end of the file has not been reached, read() returns the number of bytes that have
been placed into buffer. We use the write() method of the OutputStream class to
place these bytes into the output stream, passing to it the name of the byte array, buffer,
the starting point in the array, 0, and the number of bytes in the array to write, bytes.

The final piece of code needed to complete the Web server is a method that will examine
the extension of a file name and return a string that represents it's MIME type. If the file
extension is unknown, we return the type application/octet-stream.

private static String contentType(String fileName)
{
 if(fileName.endsWith(".htm") || fileName.endsWith(".html")) {
 return "text/html";
 }
 if(?) {
 ?;
 }
 if(?) {
 ?;
 }
 return "application/octet-stream";
}

There is a lot missing from this method. For instance, nothing is returned for GIF or
JPEG files. You may want to add the missing file types yourself, so that the components
of your home page are sent with the content type correctly specified in the content type
header line. For GIFs the MIME type is image/gif and for JPEGs it is image/jpeg.

This completes the code for the second phase of development of your Web server. Try
running the server from the directory where your home page is located, and try viewing
your home page files with a browser. Remember to include a port specifier in the URL of
your home page, so that your browser doesn't try to connect to the default port 80. When
you connect to the running web server with the browser, examine the GET message
requests that the web server receives from the browser.

Test Results (10 marks)

