York University	Midterm Exam / Winter 2008
Department of Computer Science and Engineering	CSE3421

- This is a closed book, **75 minutes** test. (1 hour and 15 minutes)
- No questions are allowed during the test. If in doubt, write down your doubts and assumptions and proceed with your answer.

LAST NAME	SOLUTIONS
FIRST NAME	SOLUTIONS
YORK ID#	SOLUTIONS
CS LOGIN	SOLUTIONS

Exercise 1 [30 points]

Let R = (A,B,C), and let r1 and r2 both be relations on schema R. Give an expression in SQL that is equivalent to each of the following queries.

- a. r1 \cap r2. You are NOT allowed to use the INTERSECT SQL keyword in formulating this query.
- b. r1 r2. you are NOT allowed to use EXCEPT SQL keyword when formulating this query.
- c. $\pi_{A,B}(r1) \bowtie \pi_{B,C}(r2)$

Answer:

[10 points] a: $r1 \cap r2$ select * from r1where (A, B, C) in (select * from r2)

[10 points] b: r1 - r2

select *** **from** *r*1

where (A, B, C) not in (select * from r2)

```
[ 10 points] c: \pi_{A,B}(r1) \bowtie \pi_{B,C}(r2)
select r1.A, r2.B, r2.C
```

from *r*1, *r*2 **where** *r*1, *B* = *r*2, *B*

Exercise 2 [30 points]

Define $R \otimes S$ (R XOR S) as the relation which contains tuples that belong to either R or S but to both R and S. Assume that both R and S have the same schema, (A, B) and that they are "XOR compatible", wherever applicable.

- a. Can you express $R \otimes S$ in terms of the <u>basic</u> relational operations? If yes, then show your expression. If no, explain why and what is missing.
- b. Can you express $R \otimes S$ in SQL? If yes, then show your SQL. If no, explain why/what is missing.

Answer:

[15 points] a: (relational algebra) Yes. The RA expression is: $R \otimes S = R \cup S - R \cap S$.

[15 points] b: (SQL) Yes. The SQL is:

(select * from R

where (R.A, R.B) not in (select * from S)) UNION (select * from S where (S.A, S.B) not in (select * from R))

Exercise 3 [40 points]

Consider the following Professors-Courses-Teachings schema:

Professors(<u>pid</u>, pname, office#) Courses(<u>cid</u>, cname, year) Teachings(<u>pid, cid</u>)

Query: "Find the names of the professors who teach every 2nd year course or teach every 3rd year course (or both)".

Write the above query in:

- a. Relational algebra
- b. SQL

Answer:

a. [20 points] relational algebra

$$W1 \leftarrow \pi_{cid} \left(\sigma_{year=2} \left(Courses \right) \right)$$

$$W2 \leftarrow Teachings / W1$$

$$W3 \leftarrow \pi_{name} \left(W2 \triangleright \triangleleft \Pr ofessors \right)$$

$$W4 \leftarrow \pi_{cid} \left(\sigma_{year=3} \left(Courses \right) \right)$$

$$W5 \leftarrow Teachings / W4$$

$$W6 \leftarrow \pi_{name} \left(W5 \triangleright \triangleleft \Pr ofessors \right)$$

$$final \ result \leftarrow W3 \cup W6$$

b. [20 points] SQL

Convert the above into sql ...

Exercise 4 [40 points]

Consider the following relations:

- PARENT(P, C) : a tuple (p, c) in PARENT means that p is parent of c (i.e., c is child of p).
- BROTHER(B, X): a tuple (b, x) in BROTHER means that b is brother of x (x may be male or female).
- SISTER(S, Y): a tuple (s, y) in SISTER means that s is sister of y (y may be male or female).

Use

- a. relational algebra and
- b. SQL

to produce a relation SECOND_COUSIN with all the tuples (s, z) such that s and z are second cousins, based on the information given from the above 3 tables. (note: two people are second cousins if their parents are 1^{st} cousins).

Answer:

a. [20 points] Relational algebra

$$P1 \leftarrow PARENT$$

$$P2 \leftarrow PARENT$$

$$GP \leftarrow \pi_{P1.P,P2.C} \left(P1 \Join P2 \right)$$

$$SC1 \leftarrow \pi_{GP.C,Brothers.X} \left(GP \Join Brothers \right)$$

$$SC2 \leftarrow \pi_{GP.C,Sisters.Y} \left(GP \Join Sisters \right)$$

$$final result \leftarrow SC1 \cup SC2$$

b. [20 points] SQL

Convert the above to SQL ...