CSE 3221.3
Operating System Fundamentals

No.8
Memory Management (1)
Prof. Hui Jiang

Dept of Computer Science and Engineering
York University

Memory Management

A program usually resides on a disc as a binary exe cutable file.
The program can be moved between disk and memory.
In multiprogramming, we keep several programs in me mory.

Program must be brought into memory and placed with ina
process for it to be executed.

Memory management algorithms:
— Contiguous Memory Allocation.
— Paging.
— Segmentation.
— Segmentation with paging
Memory management needs hardware support — MMU.

Background
Physical memory consists of a large array of words or bytes, each
with its own address.
In a typical instruction-execution cycle:
— CPU fetches an instruction from memory according to PC.
— The instruction is decoded.

— CPU may fetch operands from memory according to the address
in the instruction. (optional)

— CPU execute in registers
— CPU saves results into a memory address (optional)

CPU generates address from instruction counter, pro gram
address,etc.

CPU sends the address to a memory management unit (MMU), which
is hardware to actually locate the memory at certai n location.

— Memory mapping.
— Memory protection.

Logical vs. Physical

address space (1)
« Physical address : the address loaded into the memory-
address register to actually address the memory.

« Logical (virtual) address : an address generated by the
CPU and the address referred by user program; address
used in binary codes.

physical address MMU

; el hysicakaddress
logical address ogical address |"****a s P

LEPN User
space e,

Program

CPU
03

logical address | g 4398

| program Symbolic address:

Program /;m\)
Generatlon b e.g., count,i,jetc
&

T

compiler or compile
time

Ad d ress assembler
N
- ==) Re-locatable address:
e.g. 14 bytes from beginning
of module
- (" load load
//’sys‘em\ (\mwu‘e) time Logical address:

e.g. 4014, 1058, etc.

| forary

p =
/ooy
(P
=
>

brary/
7 aynamic

g time {run

} execution Physical address
ime)

Memory-Management Unit (MMU)

* MMU: maps logical address to physical address.

« The user program deals with logical addresses; it never sees the
real physical addresses.

« Asimple MMU scheme, the value in the relocationre gister is added
to every address generated by a user process at the time it is sent
to memory.

relocation
register

physical
address

logical
address

memory

346 14346

MMU

Address Binding

« Address binding: binding the logical memory address esin
instructions and data to physical memory addresses.

In source programs: symbolic addresses (e.g., count, i, j, etc.)

A compiler will bind each symbolic address to a rel ocatable
address (e.g. 14 bytes from the beginning of the mo dule)

The linkage editor or loader will bind each relocat ~ able address
to a logical address (e.g., 4014)

In run-time, MMU will bind each logical address to a physical
address (e.g., 074014)

The final physical address is used to locate memory

« Allow a user program to be loaded in any part of th e physical
memory =>» address binding in run-time

= completely separate physical address from logicala ~ ddress

mapping dynamically.

— Easier for compiler.

— And more.

— Consider two old methods ...

Logical vs. Physical
address space (2)

« Separating logical address from physical address:
— Requires hardware support — MMI does address

* Why separating logical address from physical addres

s?

Address Binding: compile-time

« In compiling, physical address is generated for eve ry
instruction.

.

The compiler has to know where the process willres ide
in memory.

.

The code can not change location in memory unlessi t
is re-compiled.

.

No separation of logical and physical address space S.

.

Example: .COM format in MS-DOS.

.

.

.

.

.

Address Binding: load-time

The compiler generate re-locatable code.

When OS loading code to memory, physical address is
generated for every instruction in the program.

The process can be loaded into different memory
locations.

But once loaded, it can not move during execution.

Loading a program is slow.

Program A

g;

regular linking & loading

Program B

. Kernel

$ mainA

- subA

H mainA

x ibm o
libm.a. H libm

inB. mainB
: subB H maing
subB.c subB.o T :

. " subB

H ibm H -

: ibm

Compiling Linking Loading Memory

Dynamical Loading

.

Routine is not loaded until it is called.

Better memory-space utilization; unused routine is
never loaded.

Useful when large amounts of code are needed to
handle infrequently occurring cases.

No special support from the operating system is
required; Implemented through program design.
Each program maintains an address table to indicate
which module is in memory and which is not.

.

.

.

.

An example: Dynamic loading

Program A Kernel

mainB Duplicated

subB

libm

Relocatable
Linking Loader

Compiling Memory

Linking postponed until execution time.

each library-routine reference.

the routine.

access the same memory space

Dynamical linking is useful for shared libraries.

Dynamical Linking

In dynamic linking, a stub, is included in the executable image for

Stub: used to locate the appropriate memory-resident li brary
routine or load the library of it is not in memory.
Stub replaces itself with the address of the routin e, and executes
Operating system needed to check if the routine is in other
processes’ memory address, and allow multiple proces sesto

An example: Dynamic linking

Program A

!

mainAo
tubs) |

w

maing.
(stubs)

Program B

Relocatable
Linking Loader

Compiling

reference

Memory

Memory Management Approaches

« Contiguous Memory Allocation

« Paging

« Segmentation

« Segmentation with paging

« Every process is allocated to a single contiguous s

Contiguous Memory Allocation

ection of memory

processz | —

os os os os
process 1 process 1 process 1 process 1
process 4 process 4

)| processs

process 3 process 3 process 3

process 3

Memory Management Unit (MMU)

Two registers:
— Limit register: the range of logical address
— Relocation register: starting position of physical

In context switch, the dispatcher load both registe
values.

memory
rs with correct

Every memory access is checked by MMU hardware as:

limit relocation
register register
logical physical
address yes address
cRu. < Y

trap; addressing error

memory

Memory Allocation

OS must keep the information on which parts of memo ry are
available and which are occupied.

— allocated partitions
— free partitions (holes)
Hole: a block of free memory.
— holes of various size are scattered throughout memor y

When a process arrives, it is allocated memory from a hole
large enough to accommodate it.

Use linked lists:

Free Memory
LU

Contiguous Memory Allocation:
Expanding memory

* How to allocate more memory to an existing
process?

— Move-and-Copy may be needed.

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes
that have various size.

First-fit: ~ Allocate the first hole that is big enough.

Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest leftover hole.

Worst-fit: ~ Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

1. First-fit and best-fit better than worst-fitint ~ erms of
speed and storage utilization.

2. Firstit is faster than best-fit.

Contiguous Memory Allocation:
External Fragmentation

External fragmentation — total memory space existst o satisfy a

request, but it is not contiguous.

Contiguous memory allocation suffers serious extern al
fragmentation; Free memory is quickly broken into | ittle pieces.

— 50-percent rule for first fit (1/3 is wasted)
Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory to gether in
one large block.

— Compaction is possible only if relocation is dynamic, and is
done at execution time.

— Compaction is very costly

Reduce external fragmentation by better memory mana gement
methods:

— Paging

— Seimentation

