Prepared by Prof. Hui Jiang

1/3/2008

CSE 3221
Operating System
Fundamentals

nstructor: Prof. Hui Jiang
mail: hj@cse.yorku.ca

=m

eb: http://www.cse.yorku.ca/course/3221

In-class
- Foc

— Use
Policies

Textbook! operating system concepts, 7" edition
3 lecture hours each week

2 assignments (2*5%=10%)

1 project (10%)

Mid-term | (35%)

Final Exam (45%) (Final exam period)

— Examples givenin C
— Brief case study on Unix series (Solaris, Linux)
Assignments and tests

——General Info

us on basic concepts, principles and algorithms

T language
: see course Web site

Biobibliography

* Requjred textbook
— “Operating System Concepts: 7" edition”

« Othen reference books (optional):

(far Unix programming, Unix API)

— “Programming with POSIX threads”
(Multithread programming in Unix, Pthread)

— “Advanced Programming in the Unix Environment”

*« OSis

— ho
« Comm

* To know
— what's going on behind the computer screen

— Unix, BSD, Solaris, Linux
— Microsoft DOS, Windows 95/98,NT,2000,XP,Vista

hy this course?

n essential part of any computer system

to design a complex software system
ercial OS’s:

of a computer and the computer hardware.

* Manage computer hardware:
— Use the computer hardware efficiently.

— Control resource allocation.
— Protect resource from unauthorized access.

— Make the computer hardware convenient to use.

« A program that acts as an intermediary betweenaus| er

Dept. of CS, York Univ.

Computer Structure

Programmer

Application Programs Operating.
System
Designer
Utilities I
Operating System I
Computer Hardware I

Prepared by Prof. Hui Jiang

1/3/2008

Hardware Review

« Instruction execution

« Interrupt

¢ Three basic I/O methods

« Storage hierarchy and caching

mouse

keyboard

printer monitor

So o

g m

disk
controller

‘ USB controller ‘

graphics
adapter

memory

Computer Hardware

cPU Main Memory

System . :

-’ —

[sweon .

| L

Dt
1O Module : 2
e
PC = Program counter
Bufiers R = suction register
MAR = Memory addess register

MBR = Memory buffer register
VOAR = Inputioutput address register
VOBR = Inputioutput buffer register

Computer C

Top-Level View

Instruction Execution

Memory | CPU Reghtens| Memory | CPU Regters
0[5 o [oolre [rc
snfsoa | [~ Jad 0003 A
S | w [z ((osom
40[00°03] 40
s41[0002] o
sep1 Sep2

Memory | CPU Reghters | Memory | CPU Reasters
B | re |00 [oarc
an[soatl [ooo3adfsvat] Jroosiad
wfzo sl w [302l2 9 1] R
40[00'03] 0T *3gp=s
0002 su[0002]
sep3 Seps

‘Memory CPU Registers
10470

=0
Hn

‘Memory
aoio40 [Eoorc |W0[1040 3)rc
301594 1] [07005]|Ac|301[S941] A0 00 5]AC]
R P PR W Y B PRCIFN 294 1]IR
00
00

[0 03] 40

o4 o1 [00 S}

sups seps
0 34 15
[omode | Address]

Interrupts

sequence of CPU.
« To notify CPU that an event has happened.

User Program Interrupt Handler

Interrupt ——»
occurshere 4l ——— «

Dept. of CS, York Univ.

Interrupts

Main
Memory

() Return from interrupt

Prepared by Prof. Hui Jiang

1/3/2008

Instruction Cycle with interrupts

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disablec

Check for

Fetch nest Exeente Interrupt;
START instruction instruction Wy ey
i handler

pt:
Enabled

l:l Instruction Cyele with Interrupts

Interrupt Handler

« Program or subroutine to service a particular inter rupt.

« Generally part of the operating system since modern
OS design is always interrupt-driven.

« Determines which type of interrupt has occurred:
« polling

« vectored interrupt system

« Interrupt Vectors: saved in low-end memory space

« Sequential interrupt processing: Disable interrupts
while an interrupt is being processed

Interrupt
User Program Handler X

Interrupt
Handler Y

f

(a) Sequential interrupt processing —

« Nested interrupt processing: define priority for in terrupts.
« A high-priority interrupt preempts a low-priority o ne.

Interrupt
User Program Handler X

Interrupt
andler Y

(b) Nested interrupt processing

« Progfammed I/O

« Interrupt-driven I/O

« Diregt memory access (DMA)

Dept. of CS, York Univ.

Programmed I/0O

Next instruction
() Programmed 1/0

Prepared by Prof. Hui Jiang

1/3/2008

Interrupt-driven I/0

TsueRead CPU— 1O
command to Do something
0 module 1™~ Pelse

Write word
into memory

Next instruction
() Interrupt-driven /0

Next instruction

(¢) Direct memory access

Storage Structure: storage hierarchy

‘ registers \j

electronic disk j
4 F |
1
‘ magnetic disk
{ |
‘ optical disk U

T

magnetic tapes L

storage hierarchy

Level 1 2 3 4

Name registers cache main memory disk storage

Typical size <1KB > 16 MB > 1GB > 100 GB

Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk

technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0:25-0.5 0.5-25 80 -250 5,000.000

Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 20 - 150

Managed by compiler hardware operating system | operating system

Backed by cache main memory disk CD or tape
Volatile vs. Persistent

« Caching
* Improve

« Caching
temporal

hit

cache

128 Kb

| Memory |

is an important principle in computer syste m.
access speed with minimum cost.

copy information to a faster storage syste
y basis.

mona

Example:
CPU

One cache access 20 nanoseconds
If hit rate is 99%, then
miss (2) 128M cache: 20 nano (too expe|
(3) 128M memory + 128K cache:
0.99*20+0.01*120 = 21 nano

128 Mb

One memory access 100 nanosecords

(1) 128M memory without cache: 100 nano

nsive)

Dept. of CS, York Univ.

* Why hig
— Mem
— Local
« Normally|
* Cache D
— Case

algori
— Write

— Replacement algorithm: Least-Recently-Used (LRU

~ _Caching
hit rate?

ry access is highly correlated
ty of reference

implemented by hardware.
esign:

size

thm
policy: write memory when updated or replaced

Block Transfer

Word Transfer

Main Memory

Prepared by Prof. Hui Jiang

1/3/2008

OS Overview
Users
System programs Command
User Applications Interpreter
1 t t System Calls
File
Operating | Process [Memory [System | i/o-System
Systems Manage | Manage Secondary Manage
Storage
Management
I L
Computer 110 H
Hardware | CPU Memory Storage Devices |1

« A proc

« A process needs certain resources, including CPU ti

— Progess creation and deletion.

— pro

— Provision of mechanisms for:
* process synchronization
« Inter-process communication
« handling dead-lock among processes

rocess Management

Ss is a program in execution.

me,
, files, and I/O devices, to accomplishitst ask.

cess suspension and resumption.

M

Memory

address.| It is a repository of quickly accessible

the CPU

Main memory is a volatile storage device. It loses
the case [of system failure.

For a program to be executed, it must be mapped to
addresses

We keep|several programs in memory to improve CPU u
The opergting system is responsible for the followi

connecti
— Kee

— Manpge memory space of all processes.
— Allogate and de-allocate memory space as needed.

h its own
data shared py

s a large array of words or bytes, each wit

land 1/O devices.

its contents in

absolute
and loaded into memory.

tilization
ng activities in
ons with memory management:
track of memory usage.

Seco

« Since main memory (primary storage) is volatile and too small
to accommodate all data and programs permanently, t he
computer system must provide
main memory.

« Most madern computer systems use disks as the princ ipal pn-

line sto

« The opefrating system is responsible for the followi

in conn

— Free| space management
— Storage allocation
— Disk|scheduling

nt

dary-Storage Managem
secondary storage to back up

rage medium, for both programs and data.

ng activities
gction with disk management:

File system: a uniform logical view of information storage
AFile:

— logical storage unit

— acollection of related information defined by its creator.

Commonly, files represent programs (both source and
forms) and data.

Files are organized into directories to ease their use.
The opefrating system is responsible for the followi

connect
— File|
— File|

— Directory creation and deletion.
— Support of primitives for manipulating files and di

— May
— File

File Management

object

ng activities in
ons with file management:

Name-space management
creation and deletion.

rectories.

pping files onto secondary storage.
backup on stable (nonvolatile) storage media.

Dept. of CS, York Univ.

* The I/

— A memory-management component that includes
buffering, caching, and spooling.

— Ageneral device-driver interface.

— Dri

I/0 System Management

D system consists of:

ivers for specific hardware devices.

| Kernel |

i o

: 5 I/0 interface
| Device drivers |

1
1

1

:

1

| Kernel I/0O subsystems | !
1

1

1

1

1

Hardware devices and controllers

Prepared by Prof. Hui Jiang 1/3/2008

Content in this course

Managing GPU usage
— Process and thread concepts
— Multi-process programming and multithread programmi ng
— CPU sgheduling
— Process Synchronization

— Deadlock
« Managing memory usage
— distinguish between authorized and ~ Memory management and virtual memory
nauthorized usage. « Managing secondary storage
— specify the controls to be imposed. ~ File system and its implementafion

— Mass-storage structure
Managing /0 devices:
— I/O systems
« Case studylon Unix series (scattered in all individ ual topics)

— provide a means of enforcement.

Tentative schedule Several must-know
(subject to change) OS concepts

Totally 12 weeks:
« System Boot
« Background (1 week)

Process and Thread (2 weeks)

CPU scheduling (1 week)

Process Synchronization (2 weeks)

Deadlogk (1 week)

Memory Management (2 weeks)

Virtual Memory (1 week)

File-system and mass-storage structure (1 week)
1/0 systems (1 week)

« Multiprogramming

« Hardware Protection
— OS Kernel

« System Calls

« Firmware: bootstrap program in ROM

« Automatic job sequencing — free memory
— Diagnose, test, initialize system automatically transfers
contro| from one job to
another. free memory
« Boot hlock in disc + OS Kernel: process

— inifial control in OS
— control transfers to job

: : — when job completes command -
« Entire|OS loading control transfers back to interpreter ;?emr;z?er
monitor - —
ernel
« Butthe CPU is often idle it
(a) (b)

Memory Layout for a Simple Batch System

Dept. of CS, York Univ. 6

Prepared by Prof. Hui Jiang

1/3/2008

« Several jobs are kept in main memory at
the same|time, and the CPU is
multiplexed among them.
How to implement multiprogramming is
the centef of modern OS
OS Features Needed for
Multiprogramming
— Some scheduling mechanism — the
system must choose among several jobs
ready to run
— Mempry management — the system must
allocate the memory to several jobs.
— Allocation of devices to solve conflicts.

— 1/O rdutine supplied by the system.

—_ :

process D

free memory

process C

interpreter

process B

kernel

Memory Layout for

Multiprogramming System

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
Program C Wait | Run Wait Run Wait

n Run | Run | Run . Run | Run | Run .
Combined A|lB|C Wait A|lB|C Wait

Time

(¢) Multiprogramming with three programs

Mul Mamwl e
JOB1 JOB2 JOB3
Type of job Heavy compute Heavy IO Heavy IO
Duration 5 min 15 min 10 min
Memory required 50M 100 M M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes
:
Unipr Multipr
Processor use 20% 40%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

Time-Sharing Systems (multitask

—Interactive Computing

Multitasking also allows time sharing among jobs:
Job switch is so frequent that the user can interac
with each program while it is running.

Allow many users share a single computer

To achieve a reasonable response time, a job is
swapped into and out of the disk from memory.

The CPU is multiplexed among several jobs that are
kept inlmemory and on disk (CPU is allocated to a
job only if the job is in memory).

ing)

Hardware Prote

ction

« Dualimode Protection Strategy
— AS Kernel

* Memory protection

« CPU|protection

« 1/O protection

Dept. of CS, York Univ.

Provide Hardware support to differentiate between a
modes of|CPU execution.
1. Usermode — execution done on behalf of user processes.

2. Kerngel mode (also monitor mode or system mode) — exeq
done|on behalf of operating system.

A mode bjitin CPU to indicate current mode
Machine |nstructions:
— Normal instructions: can be run in either mode
— Privileged instructions: can be run only in kernel mode
Carefully define which instruction should be privil eged:
— Change from user to kernel mode
— Turn pff interrupts
— Set value of timer
— etc.

tleast twp

ution

Prepared by Prof. Hui Jiang

1/3/2008

Dual-Mode Operation (Cont.)

« OS always in kernel mode; user program in user mode
« At bootftime, CPU starts at kernel mode

« OS always switches to user mode before passing cont rol tq user

progran
Interrupt/fault

set user mode

« When an interrupt or fault occurs hardware switches to mohitor
mode.

0S Kernel

OS Kernel .
Key functions:
Process management
Program Data Memory management
& Codes structure etc.
Kernel spacg -
pa I I R ."_.'.r.
User space {} : i (via system calls)
CR—
System
Prg;rams Command User Program
Interpreter (shell)
Program Data Program Data
& Codes | | structure & Codes| | structure
[

Memory Protection
« Each running program has its own memory space
« Add two fegisters that determine the range of legal addresses:
— base register — holds the smallest legal physical memory address.
— Limit register — contains the size of the range

0

monitor

256000 base + lmit
job1
300040 300040
o2 base register
420940 120900
e imit register
rap to operating system
880000 monitor—addressing error memory

job 4

1024000

« Loading Ehese registers are privileged instructions

« OS, running in kernel mode, can access all memory unrestrictedly

e Timer —
ensure 0|

— Time

— When timer reaches the value 0, an interrupt occurs
OS must|
Load-tim
Timer co
Timer is

nterrupts computer after specified period to
perating system maintains control.

er is a privileged instruction.
mmonly used to implement time sharing.
also used to compute the current time.

CPU Protection

is decremented every clock tick.

set timer before turning over control to th € user.

I/0 protection

« To preyent users from performing illegal I/O, defin | e all
I/O instructions to be privileged instructions.

« User programs can not do any /O operations directl | y.
« User program must require OS to do 1/O on its behal
— OSjruns in monitor mode
— OS/first checks if the I/O is valid

— If valid, OS does the requested operation.
Otherwise, do nothing

— Then OS return to user program with status info.
* How ajuser program asks OS to do /O
— Through SYSTEM CALL (software interrupt)

—

Dept. of CS, York Univ.

System ¢
and the of

Process (
— Creat
— Load

_ System Calls

lls provide the interface between a runnin g user pr
perating system.

ontrol:
e, terminate, abort a process.
execute a program.

— Get/Set process attribute.

— Wait
— Alloc:

or time (sleep), wait event, signal event.
te and free memory.

— Debugging facilities: trace, dump, time profiling.
File Management:

— creat
Device M

e, delete, read, write, reposition, open, clos e, etc.
anagement: request, release, open, close, e tc.

Informatian Maintain: time, date, etc.

Communi

ation:

gram

Prepared by Prof. Hui Jiang 1/3/2008

System Call Implementation
Parameters Passing
« Typically, a number is associated with each system call:
— System-call interface maintains a table indexed acc ording to main()
these numbers.
« Roughly, |system calls make a software interrupt (TR~ AP). _strut_PARA sp; register
« The system call interface invokes intended systemc allin O X: parameters
kernel and returns status of the system call and an y return values for call
« Three general methods are used to pass parameters b etween a _set_para_(&sp) ; e —| US:O Pame‘;’s °s°‘:fe'°
running program and the operating system. system call 13 m table c);\HS
. . _system_call_(13,&sp);
— Pass|parameters in registers.
— Store the parameters in a table in memory, and the table
address is passed as a parameter in a register.
(This|approach taken by Linux and Solaris.) } el
— Push (store) the parameters onto the stack by the program, and ‘ operafing system
pop offthe-stack-by-operating-syst |

System Call - OS Relationship Use of A System Call to Perform I/0

v
=
user application kernel

open () ® 5 ®
user trap to - perform O
| L]
4{ system call interface }7 .

kernel ‘

mode

®

return
to user

open ()

Implementation

i ! of open ()

user
program

system call

system call n

Some 1/0 system calls __System Call vs. API

« open(), read(), write(), close(), Iseek():

#include <sys/stat.h> « System calls are generally available as assembly-
#include <fentl.h> language instructions:
int open(const char *path, int oflag) ; — Some languages support direct system calls,
C/C++/Perl.

#i ncl ude <uni std. h>

ssize t read(int fd, void *buf, size t count): * Mostly accessed by programs via a higher-level

Application Program Interface (API) rather than dir ~ ect
#i nclude <unistd. h> system call use.

ssize_t wite(int fd, const void *buf, size_t count); * Why usg APlIs rather than system calls?
— Improve portability

#i ”f' ulde <u.”i tSt ?'dh? — API's are easier to use than actual system calls si | nce
int close(in)i they hide lots of details

#i nclude <unistd. h>
off t |lseek(int fildes, off t offset, int whence);

Dept. of CS, York Univ. 9

Prepared by Prof. Hui Jiang

Sta

dard C Library Examp

e Cprg
calls

gram invoking printf () library call, which
write() system call

#include <stdio.h>
int main ()
(

— printf (*Greetings");
return 0;
}
user
mode

d
standard C library
kernel

mode
vae 0 >
// .

wite ()

system call /
(ot _

Dept. of CS, York Univ.

e

1/3/2008

10

