Prepared by Prof. Hui Jiang

CSE 3221
Operating System
Fundamentals

nstructor: Prof. Hui Jiang

mail: hj@cse.yorku.ca

eb: http://www.cse.yorku.ca/course/3221

=m

1/3/2008

——General Info

Textbook! operating system concepts, 7" edition

3 lecture hours each week

2 assignments (2*5%=10%)

1 project (10%)

Mid-term | (35%)

Final Exam (45%) (Final exam period)

In-class
— Focus on basic concepts, principles and algorithms
— Examples givenin C
— Brief case study on Unix series (Solaris, Linux)

Assignments and tests
— Use € language

Policies: see course Web site

Biobibliography

* Requjred textbook
— “Operating System Concepts: 7" edition”

« Othern reference books (optional):
— “Advanced Programming in the Unix Environment”
(far Unix programming, Unix API)
— “Programming with POSIX threads”
(Multithread programming in Unix, Pthread)

Dept. of CS, York Univ.

Prepared by Prof. Hui Jiang 1/3/2008

hy this course?

« OS is an essential part of any computer system

* To know
— what's going on behind the computer screen
— how to design a complex software system

¢« Commercial OS'’s:
— Unix, BSD, Solaris, Linux
— Microsoft DOS, Windows 95/98,NT,2000,XP,Vista

« A program that acts as an intermediary betweenaus| er
of a computer and the computer hardware.

* Manage computer hardware:
— Use the computer hardware efficiently.
— Make the computer hardware convenient to use.
— Control resource allocation.
— Protect resource from unauthorized access.

Computer Structure

Programmer

Application Programs Operating.
System
Designer
Utilities I
Operating System I
Computer Hardware I

Dept. of CS, York Univ.

Prepared by Prof. Hui Jiang

Hardware Review

Instruction execution

Interrupt

Three basic /0 method

Storage hierarchy and caching

S

1/3/2008

mouse

==

keyboard printer monitor

b m

disk
controller

‘ USB controller ‘

graphics
adapter

memory

Computer Hardware

CPU
1/0 Module
Buffers

System
Bus

R =

MBR
VOAR =
VOBR =

= Program counter

= Memory adiess register
= Memory buffer register

Main Memory

Trstueon
)
Tnstruction

Data
Data
Data
Data

Instruction register

Input/output address register
Inputioutput buffer register

Top-Level View

Dept. of CS, York Univ.

Prepared by Prof. Hui Jiang

Instruction Execution

Memory CPURegisters | Memory | CPU Registers

oo o [oale |0 rc

et | [Jac|50 0003] ac|

wfrea] w (R (e

su[T0'03) 40

0002 ot

sep1 sep2

Memory CPURegisters | Memory CPU Regiters

o[s 4] re [0 Eoalre

050 a 1 [To03Ac| 215041 Ao 0035AC

e e & [302[275 2] R

s[30'03) SO0 25

[0 002 s [00 0]

sup3 sepa.

Memory CPURegisters | Memory | CPU Registers

wf[oan [Foalrc |wov4n [Foalc

foaT] 0003 Ac 301 {000 3] ac|

vy atr| kv (e

[T 003 S40[TT T3

0002 s [000s)

sups seps
0 34 15
[omode | Address]

Interrupts

sequence of CPU.
« To notify CPU that an event has happened.

User Program Interrupt Handler
1
Interrupt ——».
occurshere 4] ——————— «

Interrupts

conmr P

| fll m—

»]

b . —
Processor | ‘

() Return from interrupt

Dept. of CS, York Univ.

1/3/2008

Prepared by Prof. Hui Jiang

Instruction Cycle with interrupts

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disablec

Check for

Fetch nest Exeente Interrupt;
START instruction instruction Wy ey
i handler

pt:
Enabled

l:l Instruction Cyele with Interrupts

Interrupt Handler

« Program or subroutine to service a particular inter rupt.

« Generally part of the operating system since modern
OS design is always interrupt-driven.

« Determines which type of interrupt has occurred:
« polling

« vectored interrupt system

« Interrupt Vectors: saved in low-end memory space

« Sequential interrupt processing: Disable interrupts
while an interrupt is being processed

Interrupt
User Program Handler X

Interrupt
Handler Y

f

(a) Sequential interrupt processing —

Dept. of CS, York Univ.

1/3/2008

Prepared by Prof. Hui Jiang 1/3/2008

« Nested interrupt processing: define priority for in terrupts.
« A high-priority interrupt preempts a low-priority o ne.

Interrupt
User Program Handler X

Interrupt
andler Y

(b) Nested interrupt processing

« Progfammed I/O

« Interrupt-driven 1/O

« Diregt memory access (DMA)

Programmed I/0O

Next instruction
() Programmed 1/0

Dept. of CS, York Univ. 6

Prepared by Prof. Hui Jiang 1/3/2008

Interrupt-driven I/0

TsueRead CPU— 1O
command to Do something
0 module 1™~ Pelse

Next instruction
() Interrupt-driven /0

DMA

Tssue Read PU — DMA
Dblock command Do something
Vo module ||~ Pelse

Next instruction

(¢) Direct memory access

Storage Structure: storage hierarchy

‘ registers \j

electronic disk j
4F |
1
‘ magnetic disk
{ |
‘ optical disk U
— T

magnetic tapes L

Dept. of CS, York Univ. 7

Prepared by Prof. Hui Jiang

storage hierarchy

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size <1KB >16 MB > 1GB > 100 GB
Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0:25-0.5 0.5-25 80-250 5,000.000
Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 20 - 150
Managed by compiler hardware operating system | operating system
Backed by cache main memory disk CD or tape

Volatile vs. Persistent

« Caching
* Improve

« Caching
temporal

hit

y basis.
Example:

CPU

128 Kb

| Memory |

is an important principle in computer syste
access speed with minimum cost.
copy information to a faster storage syste

One memory access 100 nanosecords
One cache access 20 nanoseconds
If hit rate is 99%, then
{ (1) 128M memory without cache: 100 nano

cache miss (2) 128M cache: 20 nano (too expensive)
(3) 128M memory + 128K cache:
0.99*20+0.01*120 = 21 nano

m.

mona

128 Mb

* Why hig
— Mem
— Local
« Normally|
* Cache D
— Case

algori
— Write

— Repla

hit rate?

ty of reference
implemented by hardware.
esign:

size

thm

Block Transfer

Word Transfer

~ caching

ry access is highly correlated

cement algorithm: Least-Recently-Used (LRU

policy: write memory when updated or replaced

Main Memory

Dept. of CS, York Univ.

1/3/2008

Prepared by Prof. Hui Jiang

OS Overview
Users
System programs Command
User Applications Interpreter
Lo v I 5yt Calls
File
Operating | Process [Memory [System | i/o-System
Systems Manage | Manage Secondary Manage
Storage
Management
I L
Computer 110 H
Hardware | CPU Memory Storage Devices |1

rocess Management

« A process is a program in execution.

« A process needs certain resources, including CPU ti me,
, files, and I/O devices, to accomplishitst ask.

— Progess creation and deletion.
— process suspension and resumption.
— Provision of mechanisms for:
* process synchronization
« Inter-process communication
« handling dead-lock among processes

M r _ Mamarvy-Mansasa -

nr=-Mcimnory Mditagcirncii
« Memory is a large array of words or bytes, each wit h its own
address.| It is a repository of quickly accessible data shared py
the CPU jand I/O devices.
Main memory is a volatile storage device. Itloses its contents
the case [of system failure.
For a program to be executed, it must be mappedto absolute
addresses and loaded into memory.
We keep|several programs in memory to improve CPU u tilization

The opergting system is responsible for the followi ng activities in
connections with memory management:

— Keep track of memory usage.
— Manpge memory space of all processes.
— Allogate and de-allocate memory space as needed.

n

Dept. of CS, York Univ.

1/3/2008

Prepared by Prof. Hui Jiang

Seco

« Since main memory (primary storage) is volatile and too sma|

to accommodate all data and programs permanently, t ~ he
computer system must provide secondary storage to back
main memory.

in conn

— Free| space management
— Storage allocation
— Disk|scheduling

nt

dary-Storage Managem

gction with disk management:

« Most madern computer systems use disks as the princ ipal pn-
line storage medium, for both programs and data.

« The opefating system is responsible for the followi ng activities

1/3/2008

File system: a uniform logical view of information storage

AFile:
— log
— act

Co

Files are organized into directories to ease their use.

File Management

ical storage unit

ollection of related information defined by its creator.
mmonly, files represent programs (both source and object
forms) and data.

The opefrating system is responsible for the followi ng activities in

connections with file management:
— File{Name-space management
— File|creation and deletion.
— Directory creation and deletion.

— Support of primitives for manipulating files and di rectories.

— Mapping files onto secondary storage.

— File'backup on stable (nonvolatile) storage media.

« The I/

— A memory-management component that includes

bu

— Adgeneral device-driver interface.
— Drivers for specific hardware devices.

I/0 System Management

D system consists of:

fering, caching, and spooling.

L

| Kernel I/0O subsystems |

| Kernel | osKernel

Fmmmmmm e —

| Device drivers

Hardware devices and controllers

Dept. of CS, York Univ.

| 1/0 interface

10

Prepared by Prof. Hui Jiang

istinguish between authorized and
nauthorized usage.

pecify the controls to be imposed.
rovide a means of enforcement.

C

Managing g
— Proces|
— Multi-py
— CPUs
— Proces|
— Deadlo)

Managing nf
— Memor)

Managing s
— File syg
— Mass-g

Managing I/
— 1/O syst

Case study

tent in thi

PU usage
5 and thread concepts
locess programming and multithread programmi ng
heduling
5 Synchronization
ck
emory usage
management and virtual memory
pcondary storage
tem and its implementation
torage structure
O devices:
ems
jon Unix series (scattered in all individ ual topics)

Totally 12 weeks:

« Background (1 week)

Process and Thread (2 weeks)
CPU scheduling (1 week)

Process Synchronization (2 weeks)
Deadlogk (1 week)

Memory Management (2 weeks)

Virtual

File-system and mass-storage structure (1 week)
1/0 systems (1 week)

Tentative schedule
(subject to change)

emory (1 week)

Dept. of CS, York Univ.

1/3/2008

11

Prepared by Prof. Hui Jiang

Several must-know
OS concepts

« System Boot
« Multiprogramming

« Hardwgare Protection
— OS Kernel

« System Calls

1/3/2008

— System Boot

« Firmware: bootstrap program in ROM
— Diagnose, test, initialize system

« Boot hlock in disc

« Entire|OS loading

« Automatic job sequencing — free memory
automatically transfers

control from one job to
another. free memory

« OS Kernel:
— inifial control in OS
— control transfers to job

process

— when job completes command oo
interpreter a
contrtol transfers back to interpreter
monitor
kernel kernel

« Butthe CPU is often idle

(@) (b)

Memory Layout for a Simple Batch System

Dept. of CS, York Univ.

12

Prepared by Prof. Hui Jiang 1/3/2008

M W
Several jobs are kept in main memory at

the same|time, and the CPU is Rlecessl
multiplexed among them.

free memory

How to implement multiprogramming is
the centef of modern OS

« OS Features Needed for [FreBEESE
Multiprogramming
— Some scheduling mechanism — the eIty
system must choose among several jobs
ready to run process B

— Mempry management — the system must
allocate the memory to several jobs.

— Allocation of devices to solve conflicts. kernel
— 1/O rdutine supplied by the system.

Memory Layout for
Multiprogramming System

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
Program C Wait | Run Wait Run Wait
n Run | Run | Run . Run | Run | Run .
Combined A|lB|C Wait A|lB|C Wait
Time
(¢) Multiprogramming with three programs

Mul Fipl:og:amming,exam;ﬂl e
JOB1 JOB2 JOB3
Type of job Heavy compute Heavy IO Heavy IO
Duration 5 min 15 min 10 min
Memory required 50M 100 M M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes
:
Unipr i Multipr
Processor use 20% 40%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

Dept. of CS, York Univ. 13

Prepared by Prof. Hui Jiang

Time-

Job s

Allow

e The C

job on

Multitasking also allows time sharing among jobs:

with each program while it is running.

To achieve a reasonable response time, a job is
swapped into and out of the disk from memory.

kept inimemory and on disk (CPU is allocated to a

—Interactive Computing

itch is so frequent that the user can interac

many users share a single computer

PU is multiplexed among several jobs that are

ly if the job is in memory).

Sharing Systems (multitasking)

1/3/2008

* Dual

— OS Kernel

* Memory protection

« CPU|protection

« 1/O protection

Hardware Protection

limode Protection Strategy

Provide

2. Ker
don

A mode

— Nor

— Set
- etc.

Dept. of CS,

Machine |nstructions:

— Privileged instructions: can be run only in kernel mode
Carefully define which instruction should be privil eged:

— Change from user to kernel mode

— Turn pff interrupts

Dual-Mode Operation

nel mode (also monitor mode or system mode) — exe¢
e|on behalf of operating system.

kit in CPU to indicate current mode

mal instructions: can be run in either mode

value of timer

hardware support to differentiate betweena tleast two
modes of| CPU execution.

1. Usermode — execution done on behalf of user processes.

rution

York Univ.

14

Prepared by Prof. Hui Jiang

Dual-Mode Operation (Cont.)

1/3/2008

« OS always in kernel mode; user program in user mode
« At boot time, CPU starts at kernel mode
« OS always switches to user mode before passing cont rol tq user
progran
Interrupt/fault
set user mode
« When an interrupt or fault occurs hardware switches to mohitor
mode.
OS Kernel
OS Kernel .
Key functions:
Process management
Program Data Memory management
& Codes structure etc.
Kernel space -
pa l_l . ~.,...'-
HY I
User space {} L _.("'a system calls)
P?gs :Znnj;s Command User Program
9 Interpreter (shell)
Program Data Program Data |
& Codes| | structure & Codes| | structure
\ \

« Each runn
« Add two
— base
— Limi

Memory Protection

ing program has its own memory space

registers that determine the range of legal addresses:

register — holds the smallest legal physical memory adi
register — contains the size of the range

0

256000

300040

420940

880000

1024000

monitor

dress.

baso + limit

job 1

job2

300040

base register

job3

120900

limit register

ap to operating system

joba

« Loading Ehese registers are privileged instructions

monitor—addressing error memory

Dept. of CS, York Univ.

« OS, running in kernel mode, can access all memory unrestrictedly

15

Prepared by Prof. Hui Jiang

CPU Protection

« Timer — interrupts computer after specified period to
ensure operating system maintains control.

— Timef is decremented every clock tick.
— When timer reaches the value 0, an interrupt occurs .
* OS must|set timer before turning over control to th € user.
« Load-timer is a privileged instruction.
« Timer commonly used to implement time sharing.
« Timer is also used to compute the current time.

I/0 protection

« To preyent users from performing illegal I/O, defin | e all
I/O instructions to be privileged instructions.

« User programs can not do any /O operations directl | y.
« User program must require OS to do 1/O on its behal
— OSjruns in monitor mode
— OS/first checks if the I/O is valid

— If valid, OS does the requested operation.
Otherwise, do nothing

— Then OS return to user program with status info.
* How ajuser program asks OS to do /O
— Through SYSTEM CALL (software interrupt)

—

_ System Calls

« System calls provide the interface between a runnin g user program
and the operating system.

« Process Control:

— Create, terminate, abort a process.

— Load| execute a program.

— Get/Set process attribute.

— Wait for time (sleep), wait event, signal event.

— Allocate and free memory.

— Debugging facilities: trace, dump, time profiling.
« File Management:

— create, delete, read, write, reposition, open, clos e, etc.
< Device Management: request, release, open, close, e tc.
« Informatign Maintain: time, date, etc.

« Communication:

Dept. of CS, York Univ.

1/3/2008

16

Prepared by Prof. Hui Jiang 1/3/2008

System Call Implementation

Typically,a number is associated with each system call:

— System-call interface maintains a table indexed acc ording to
these numbers.

Roughly, lsystem calls make a software interrupt (TR~ AP).

The systgm call interface invokes intended systemc all in O
kernel and returns status of the system call and an y return values

Three genheral methods are used to pass parametersb ~ etween a
running program and the operating system.

— Pass|parameters in registers.

— Store the parameters in a table in memory, and the table
address is passed as a parameter in a register.
(This|approach taken by Linux and Solaris.)

— Push (store) the parameters onto the stack by the program, and

pop off the stack by operating-syst

main()
_strut_PARA sp; register
X: parameters
for call
set_para_(&sp) ; Use parameters code fol
= = load address X - from table X system)
system call 13 - call 13
_system_call_(13,&sp); 5
} user program

‘ operating system

System Call — OS Relationship

user application\

e

open ()
user

mode
4{ system call interface }7
kernel

mode

open ()

Implementation

i ! of open ()

system call

Dept. of CS, York Univ. 17

Prepared by Prof. Hui Jiang

Use of A System Call to Perform]

® 5
trap to _» perform /O
os 1

®

¥
case n os
kernel

return
to user

user
program

system call n

I/0

1/3/2008

Some I/0 system calls

. open(),
#i ncl ude
#i ncl ude

#i ncl ude
ssize_t

#i ncl ude
ssize_t

#i ncl ude

#i ncl ude
of f _t |

read(), write(), close(), Iseek():
<sys/stat.h>
<fcntl.h>

int open(const char *path, int oflag) ;

<uni std. h>
read(int fd, void *buf, size_t count);

<uni std. h>

wite(int fd, const void *buf, size_t count);

<uni std. h>

int close(int fd)

<uni std. h>

seek(int fildes, off t offset, int whence)

* System

CIC+

system ¢
* Why us€g

— API'S
they

__ _System Call vs. API

language instructions:
— Some languages support direct system calls,

* Mostly accessed by programs via a higher-level
Application Program Interface (API) rather than dir ¢

— Improve portability

alls are generally available as assembly-

+/Perl.

all use.
APIs rather than system calls?

are easier to use than actual system calls si
hide lots of details

Jo

nce

Dept. of CS, York Univ.

18

Prepared by Prof. Hui Jiang

Sta

dard C Library Examp

e Cprg
calls

gram invoking printf () library call, which
write() system call

#include <stdio.h>
int main ()
(

— printf (*Greetings");
return 0;
}
user
mode

d
standard C library
kernel

mode
vae 0 >
// .

wite ()

system call /
(ot _

Dept. of CS, York Univ.

e

1/3/2008

19

