Prepared by Prof. Hui Jiang 1/15/2008
(COSC3221)

How OS manages CPU usage?

CSE3221.3

Operating System Fundamentals + How CPU is used?

— Users run programs in CPU

« In amultiprogramming system, a CPU always has several jobs
No.2 running together.

* How to define a CPU job?
— The important concept:

Process

Prof. Hui Jiang PROCESS

Dept of Computer Science and Engineering
York University

Process Process vs. Program Code
« Process is arunning program, a program in execution.
« Process is a basic unit of CPU activities, a process is a unit of
work in a multiprogramming system. Program code T
« Many different processes in a multiprogramming system:
— User processes executing user code ;\;I'w AX, 0x10 Code
« Word processor, Web browser, email editor, etc. Mov BX, CX
— System processes executing operating system codes Push CX Stack &
« CPU scheduling Mov CX,DX IREED
* Memory-management e
POP CX
« 1/O operation [
« Multiple processes concurrently run in a CPU.
Process
Memory

Process Process in Memory (I)
* A Process includes: Ve T
— Text Section: memory segment including program o ! ==
codes. st @:‘
— Data Section: memory segment containing global W :
and static variables. Canon
— Stack and Heap: memory segment to save temporary p”f"s{ p‘:m
data, such as local variable, function parameters, ca)
return address, ... ol
— Program Counter (PC): the address of the ”'g:*{h‘ Daa
instruction to be executed next. =5

— All CPU’s Registers

eGSR e s

Dept. of CS, York Univ. 1

Prepared by Prof. Hui Jiang 1/15/2008
(COSC3221)

——— ———
Process in Memory (II) Data Structure to represent a Process:
Process Control Block (PCB)
max
stack process state « Process state
1 process number » Program counter
program counter * CPU registers
* CPU scheduling information
t registers « Memory-management
heap information
"~ memory limits « Accounting information
list of open files |/O status information
text
0 e o o
Process Control Block

Process States Scheduling Queues (I)

admitted

interrupt exit

terminated

Scheduling Queues:
— List of processes competing for the same resource.

Queues is generally implemented as linked lists.

scheduler dispatch

1/0 or event completion 1/0 or event wait

Each itemin the linked list is PCB of a process, we extend each
PCB to include a pointer to point to next PCB in the queue.

New: the process is just being created

Examples of scheduling queues:

« Running: instructions are being executed by CPU — Ready Queue: all processes waiting for CPU
« Waiting: waiting for some event, I/O completion or a signal — Device Queues: all processes waiting for a particular device;
« Ready: waiting to be assigned to CPU to run Each device has its own device queue.

« Terminated: it finished execution

Scheduling Queues (II) Queuing Diagram

queue header PCB, PCB,

ready | head pl
queus [il registers registers ready queue cPU

mag [head __L_,/

o - . < I/0 queue H /O request |<—

unito L tail =

t";;g e - PCB PCB PCB, fime slice
unit 1 tail = 2 - ° expired

/ . 1 11—

disk | head .

! child fork a

unit 0 tail A
‘I executes child

PCB.

erminal |__head +——] 1— . -
unito [ail interrupt wait for an
oceurs interrupt

Dept. of CS, York Univ. 2

Prepared by Prof. Hui Jiang 1/15/2008
(COSC3221)

——— ———
Process Scheduling: Schedulers CPU Switch from process to process:
how to use PCB

« The scheduler’s role
« Scheduler categories:
— Long-term Scheduler (Job scheduler):

process P, operating system process P;

interrupt or system call

. X . lexecuting J‘L
« choose ajob from job pool to load into memory to start. ¥
o
« Control the degree of multiprogramming — number of - -
process in memory. . idle
« Select a good mix of I/O-bound processes and CPU-bound
processes.
— Short-term scheduler (CPU scheduler) idle intertupt or system call executing
« Select a process from ready queue to run once CPU is free.
« Executed very frequently (once every 100 millisecond).
* Must be fast for efficiency. . e
— Medium-term scheduler: SWAPPING .
« Swap out /swap in.

reload state from PCB,|
lexecuting

——
Context Switch Context Switch: example
« Context Switch: switching the CPU from one process to another. Addes Main Memory Program Counter
. .
— Saving the state of old process to its PCB. Dispatcher
— CPU scheduling: select a new process.
— Loading the saved state in its PCB for the new process. ProcessA

The context of a process is represented by its PCB.

Context-switch time is pure overhead of the system, typically
from 1-1000 microseconds, mainly depending on: e

— Memory speed.

— Number of registers.

— Existence of special instruction.

— The more complex OS, the more to save.

Context switch has become such a performance bottleneck in a
large multi-programming system:

— New structure to reduce the overhead: THREAD. ‘

Process C

Trace of Processes Trace of Processes

5000 8000 12000 > oo
5001 3001 12001 3 que
5002 8002 12002 s oo
5003 8003 12003 Time st
5004 12004
5008 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010 --- 1/O request
5011 12011
(a) Trace of Process A | (b) Trace of Process B | (¢) Trace of Process C gi’ %g()mu
3% 1k001

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

second and fourth columuns show adde

{

tnstruction being excruted

Dept. of CS, York Univ. 3

Prepared by Prof. Hui Jiang 1/15/2008

(COSC3221)

Process State

Process A | [| [

Process B

Process C | I I]

Dispatcher [| | | [| [|

‘I\\\‘\\\Il\\\\‘\\I\‘\\\\‘I\\\‘\HIlHH‘HI\‘HH‘I\
25

[[R

Operations on Processes
(UNIX as an example)

* Process creation.

* Process termination.
 Inter-process communication (IPC).
« Unix programming:

— Multiple-process programming.
— Cooperating process tasks.

Process Creation(1)

« Aprocess can create some new processes via a create-
process system call:

— Parent process / children process.
« All process in Unix form a tree structure.

‘pagedaemon swapper l init

UNIX Example: fork()

« In UNIX, each process is identified by its process number (pid).
« In UNIX, fork() is used to create a new process.
« Creating a new process with fork():

— New child process is created by fork().

— Parent process’ address space is copied to new process’
space (initially identical address space).

— Both child and parent processes continue execution from the

instruction after fork().

Return code of fork() is different: in child process, return code

is zero, in parent process, return code is nonzero (it is the

process number of the new child process)

— If desirable, another system call execlp() can be used by one of
these two processes to load a new program to replace its
original memory space.

[
Process Creation(2)

« Resource Allocation of child process
— The child process get its resource from OS directly.
— Constrain to its parent’s resources.

+ Parent status
— The parent continues to execute concurrently with its children.
— The parent waits until its children terminate.

« Initialization of child process address space
— Child process is a duplicate of its parent process.

— Child process has a program loaded into it.

* How to pass parameters (initialization data) from parent to child?

Typical Usage of fork()

#include <stdio.h>
void main(int argc, char *argv[])

int pid ;

/*fork another process */
pid =fork() ;

if (pid <0) { /*error occurred */
fprintf(stderr, “ Fork Failed!\n") ;
exit(-1) ;

} elseif (pid ==0) { /* child process*/
execlp(“/bin/ls”,"Is” NULL) ;

} else{ /* parent process */
I* parent will wait for the child to complete */
wait(NULL) ;
printf (“Child Complete\n”) ;
exit(0) ;

}
}

Dept. of CS, York Univ. 4

Prepared by Prof. Hui Jiang 1/15/2008

(COSC3221)

e —
Process Termination

« Normal termination:
— Finishes executing its final instruction or call exit() system call.
« Abnormal termination: make system call abort().

— The parent process can cause one of its child processes to
terminate.

« The child uses too much resources.
« The task assigned to the child is no longer needed.
« If the parent exits, all its children must be terminated in some
systems.
« Process termination:
— The process returns data (output) to its parent process.

« In UNIX, the terminated child process number is return by
wait() in parent process.

— Allits resources are de-allocated by OS

[
Cooperating Processes

« Concurrent processes executing in the operating system
— Independent: runs alone
— Cooperating: it can affect or be affected by other processes

* Why cooperating processes?
— Information sharing
— Computation speedup
— Modularity
— Convenience

* Need inter-process communication (IPC) mechanism for
cooperating processes:

— Shared-memory
— Message-passing

Inter-process Communication (IPC):
Message Passing

+ IPC with message passing provides a mechanism to allow
processes to communicate and to synchronize their actions
without sharing the same address space.

« IPC based on message-passing system:
— Processes communication without sharing space.
— Communication is done through the passing of messages.
— At least two operations:
« send(message)
 receive(message)
— Message size: fixed vs. variable
— Logical communication link:
« Direct vs. indirect communication
* Symmetric vs. asymmetric communication
« Automatic or explicit buffering

Dept. of CS, York Univ.

Multiple-Process Programming in Unix

« Unix system calls for process control:
— getid(): get process ID (pid) of calling process.
— fork(): create a new process.
— exec(): load a new program to run.
« execl(char *pathname, char *argo, ...);
« execv(char *pathname, char* argv[]);
« execle(), execve(), execlp(), execvp()
wait(), waitid(): wait child process to terminate.
— exit(), abort(): a process terminates.

IPC Approaches
process A process A |
P i
shared e
process B . process B et g
2 1
kernel M 4— kernel
(a) (b)

e —
Direct Communication

Each process must explicitly name the recipient or sender of the
communication.

— send(P,message)

— Receive(Q,message)
Alink is established between each pair of processes
Alink is associated with exactly two processes

Asymmetric direct communication: no need for recipient to name
the sender

— send(P,message)

— receive(&id,message): id return the sender identity
Disadvantage of direct communication:

— Limited modularity due to explicit process naming

Prepared by Prof. Hui Jiang 1/15/2008
(COSC3221)

Indirect Communication Synchronization in message-passing

Message passing may be either blocking or non-blocking.
Blocking is considered synchronous
Non-blocking is considered asynchronous

send() and receive() primitives may be either blocking or non-
blocking.

The messages are sent to and received from mailbox.

Mailbox is alogical unit where message can be placed or removed by
processes. (each mailbox has a unique id)

— send(A,message): A is mailbox ID

— receive(A,message)
Alink is established in two processes which share mailbox.
A link may be associated with more than two processes.

— Blocking send

— Non-blocking send

— Blocking receive

— Non-blocking receive

A number of different link may exist between each pair of processes.
OS provides some operations on mailbox
— Create a new mailbox

When both the send and receive are blocking, we have a

. . rendezvous between the sender and the receiver.
— Send and receive message through the mailbox

— Delete a mailbox

IPC in UNIX

Buffering in message-passing
Signals

*

« The buffering provided by the logical link:

— Zero capacity: the sender must block until the recipient
receives the message (no buffering).

— Bounded capacity: the buffer has finite length. The
sender doesn’t block unless the buffer is full.

— Unbounded capacity: the sender never blocks.

Pipes

Message queues

*

Shared memory

Sockets

others

. . . . A A
Signal function in Unix Unix Signals
. . . . Name _ ____ Description ¢+) JANSIC POBIX.1/SVR4 43+BSD| Default action
« Signal is a technique to notify a process that some events have SIGABRT abnormalterminalion (bort) [+ @ |+ ¢ |wemitew/core
SzoaLRy |timeout (alesm) D Liis e
occurred. Sioes {hardwae fak i T B e
. . . SIGCHLD |change in status of child R Job . + lignore
« The process has three choices to deal with the signal: sscom | conimis loppe prodet { | o e ontimeignee.
~ Ignore the signal i [0 2 e
) stom illgal hardvware instrucion E erminate v/ core
— Let the default action occur. SIGINEO |status request from keyboard | « ignore
X i i . SIGINT | terminal interrupt character b s . terminate
— Provide afunction that is called when the signals occurs. e o e U [A s
.)))) SIGRTLL |tenminaton . erminate
« signal() function: change the action function for a signal SIGPIFE | write to pipe with no readers .. terminate
SIGPOLL |pollable event (po11) | terminate

- - profiling time alorm (set it iner) |
#include <signal.h> poer i e

terminal quitcharacter
invalid nlmory reference

void (*signal(int signo, void (*func) (int)) ; stop

|
| stop process
invalid system call ‘ terminate w/core
termination erminate
« kil function: send a signal to another process e A | s
- ‘background read from control tty | |stop process.
#include <sys/types.h> 7100 | background wite tocontel tty stop process
urgent condition |ignore
_ ; o et ‘ onii
#include <signal.h> BB o - Bl
. N SxumiCH lerminal window size | gache
int kill (int pid, int signo) ; SIGCPU | CPU limit exceedtd (set terminate w/core
sxcxrsz e sie it excooded s {erminate w/core

Dept. of CS, York Univ. 6

Prepared by Prof. Hui Jiang
(COSC3221)

Example: signal in UNIX

#include <signal.h> « Event SIGINT: type the
interrupt key (Ctrl+C)

static void sig_int(int) ; « The default action is to

int main() { terminate the process.
o * Now we change the default
if(signal(SIGVINT,5|g_lnt)::SIG_ERR) action into printing a
err_sys(“signal error”) ; message to screen.
sleep(100) ;

void sig_int(int signo)

printf(" Interrupt\n”) ;

Unix pipe: example

user process

kernel

— -

parent child

fd[o] fd[1] | | fd[O] fd[1]

-X

[
Message Queues in Unix

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/msg.h>

int msgget(key_t key, int flag) ;
int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag) ;

int msgrev(int msqid, void *ptr, size_t nbytes, int flag) ;

Dept. of CS, York Univ.

1/15/2008

Unix Pipe
« Half-duplex; only between parent and child.
« Creating a pipe:
— Call pipe();
— Then call fork();
— Close some ends to be a half-duplex pipe.

#i ncl ude <uni std. h>

int pipe(int filedes[2]) ;

Unix Pipe: example

int main() {

int n, fd[2] ;
int pid;
char |ine[200] ;

if(pipe(fd) <0) err_sys(“pipe error”) ;

if ((pid=fork()) <0) err_sys(“fork error”) ;
elseif (pid>0) {
close(fd[0]) ;
wite(fd[1], “hello word\n", 12) ;
} else {
close(fd[1]) ;
n = read(fd[0], line, 200) ;
write(STDOUT_FILENO, line, n) ;

}
exit(0) ;

msgget() in UNIX

int msgget(key_t key, int flag) ;
« key = an integer to identify the message queue. Should
be unique in a system
» msgflg < 0: access to an existing queue
IPC_CREAT bit set : create a queue
«return value
«-1lonerror

* non-negative integer on success: message id

Prepared by Prof. Hui Jiang 1/15/2008
(COSC3221)

[E— [E—
msgsnd() in UNIX msgrcv() in UNIX
int msgsnd (int msgid, const void *msgp, int msgsz, int msgflg) ; int msgrev(int msgid, const void *mshp, int msgsz, long msgtype, int
* msgid = msg id returned by msgget() msgflg) ;

. id>)
smsgp = ptr to a structure msgid = msg id returned by msgget()

° = ptr to a msg structure (same as above
struct msgStruct{ msgp =2 ptr to g ()

long mType ; //type of the message *msgsz Fsize of buffer in msg

char mText[MAX_LEN]; //actual data *msgflg 3 always 0in our cases
¥ *msgtype < 0: get first message in the queue

«msgsz Dsize of data in msg >0 : get first message of type msgtype

«msgflg S always 0 in our cases <0 : beyond our consideration

ereturn value
ereturn value

. -1 on failure
-1 on failure

« No. of bytes in the message on success
«0on success

Example: create an msg queue wieoe Example: sending a

#define KEY 32894 message

#include <sys/types.h> #define MAX_LEN 100

#include <sys/ipc.h> typedef struct {

#include <sys/msg.h> long mType ;

char mText[MAX_LEN] ;

#define KEY 32894 /* your CS log in number */

} Message ;
. . int main() {
int main() { int msgid ;
int msgid ; Message msg ;
i = . strepy(msg.mText, "Hello world!") ;
msgid = msgget(KEY,0) ; msg.mType =1;
if(msgid < 0) { msgid = msgget(KEY,0) ;
msgid = msgget(KEY, IPC_CREAT|0666) ; if(msgid < 0) {
if(msgid <0) printf("Error in creating message queue’n");
printf("Error in creating message queue!\n"); feturn-1;
} }
} if(msgsnd(msgid, &msgMAX_LEN,0) <0)
printf("Error in sending message\n”) ;

else
printf("sent message successfullyin®) ;

e — e —
Example: receiving Shared Memory in Unix
#define KEY 32894 a m essage

#define MAX_LEN 100

#include <sys/shm.h>

typedef struct {
long mType ;
char mText[MAX_LEN] ;

} Message ; int shmget(key_t key, size_t size, int shmflg);
int main() {
int msgid ;
Message msg ; A
msgid = msggetKEY.0) : void *shmat(int shmid, const void *shmaddr, int shmflg);
if(msgid < 0){
printf("Error in creating message queue\n"); . .
reurn-1; int shmdt(const void *shmaddr);

if(msgrev (msgid, &msg,MAX_LEN,0,0) <0)
printf("Error in receiving message\n”) ;

o s) int shmctl(int shmid, int cmd, struct shmid_ds *buf);
printf("Received message: %s\n",msg.mText) ;
if(msgctl(msgid,IPC_RMID,NULL)<0) // Remove the message queue from system

printf(* Error in removing message queue!in”) ;
el

se
printf(* Removed message queue successfully\n) ;

Dept. of CS, York Univ. 8

Prepared by Prof. Hui Jiang
(COSC3221)

Overall OS Control Structures

Tables are constructed for each entity the operating system
manages.

— Process table: PCBs and process images.

— Memory table: Allocation of main memory to processes;
Protection attributes for access to shared memory regions.

— File table: all opened files; location on hardware; Current
Status.

— l/Otable: all I/O devices being used; status of I/O operations.

Execution of Operating System

« Non-process Kernel
— Execute kernel outside of any process

— Operating system code is executed as a separate entity that
operates in privileged mode

« Execution Within User Processes
— Operating system software within context of a user process

— Process executes in privileged mode when executing
operating system code

* Process-Based Operating System

— Implement operating system as a collection of system
processes

— Useful in multi-processor or multi-computer environment

Dept. of CS, York Univ.

Operating System Control

1/15/2008

Process

Structures
B o

Memory

Devices

1
1/0 Tables

Files

Processes

File Tables

Primary Process Table

Process 1

Process 2

Process
Process 3 \mage

Mode switch
VS.

Process switch
(context switch)

Process Switching Functions

(b) OS functions execute within user processes

BE-AE. R

Process Switching Functions |

(c) OSfunctions execute as separate processes.

l:l Relationship Between Operating

System and User Processes

