CSE-3401A
Functional and Logic Programming
Summer 2008
Report 1 Specification
Due: Wednesday, June 4, in class

Shakil M. Khan
May 20, 2008

Be sure to read www page on “On Reports” from the home page for the
course. Be sure the first page of the report you hand in is a standard cover
page (see On Reports). Do not use functions described in chapters after the
chapter mentioned in each exercise unless you are explicitly told to. For
conditionals, you must use the function cond.

Question 1.

based on Chapter 15

A. Represent the following s-expressions in terms of cons cells and pointers
(binary trees):

L ((A).(((X).(nil.Y)).(2)))
2. (A (B) C)((D) E)) F)

B. Write the representations in Figure 1 and 2 in (1) fully dotted notation
and (2) as Lisp would print them.

w0
O -
v

() -lfp——

= allb——

M f——

T -atlfp——

1___
A

hil

nil - nil
Figure 1:

Question 2.

based on Chapter 2

Evaluating (caadadr ’(a ’(b (c)))) returns the value b. So does evaluating
(caadr (cadr ’(a ’(b (c)))). If we evaluate the second part of this expres-
sion, i.e., (cadr ’(a ’(b (c)))), we get ’(b (c)). But evaluating (caadr ’(b
(c))) returns c. Explain this.

Question 3.

based on Chapter 3

Consider the following functions, where *varl* is a free symbol:

1. (defun funl (a b) (+ a b (fun2 a b)))
2. (defun fun2 (b *varl*) (+ b (fun3 *varl*)))

= ——
A’/

hil

nil
Figure 2:

3. (defun fun3 (c) (4 ¢ *varl®))

Now consider the following code:

cl. (setq *varl* 2)
c2. (funl 3 4)

What value does ¢2 returns when we are using a Lisp implementation with (1)
static scoping, and (2) dynamic scoping. Explain by drawing the associated
environments (see Lecture 2, slides on environments).

Question 4.

based on Chapter 6, 7, and 8

1. Write a function accepting an atom and an association list that returns
the s-expression associated with the atom. Assume the atom appears in the
association list.

2. Assume a wff (well-formed formula) is either:
e a constant: t or nil;
e a variable (denoted by any valid symbol) that is an atom;
e (null x1), (and x1 x2), or (or x1 x2), where x1 and x2 are wifs.

Write a function accepting a wff and an association list for the variables
in the wif (each variable is either associated with t or nil) and determines
whether the wff is true or not.

Question 5.

based on Chapter 8 and functionals-base.lsp and func-
tional.lsp available on the course page

A two-dimensional matrix can be represented as a list of rows of the matrix
where each row is a list of its column elements. For example, the following
matrix with two rows and three columns

123
456

would be represented as ((1 2 3) (45 6)). The sum of the rows of the above
yields the list (6 15). The sum of the columns of the matrix in part 2 yields
the list (57 9).

Write functionals to do the following operations on two-dimensional ma-
trices. They are examples of reduction from two to one dimension. Compare
with the reduce operator that reduces from 1 dimension — a vector — to 0
dimensions — a scalar. In general, one can reduce a p-dimensional matrix
along any of its p dimensions giving a p-1 dimensional matrix.

1. (row-sum matrix) — The result is the sum of each row of the matrix.
The input is a PxQ matrix, while the output is a vector of length P (a
Px1 matrix) — reduction along the second dimension. Use the reduce
operator, do not rely on the +-reduction in Lisp.

2. (column-sum matrix) — The result is the sum of each column of the
matrix. The input is a Px(Q matrix, while the output is a vector of
length Q (a 1xQ matrix) — reduction along the first dimension. Use the
reduce operator, do not rely on the +-reduction in Lisp.

3. (matrix-sum ml m2) — Input is two PxQ matrices. The result is a
single Px(Q) matrix, where each element is the sum of the corresponding
elements in the input matrices.

Question 6.

based on Chapter 8 and functionals-base.lsp and func-
tional.lsp available on the course page

1. Define a functional map2nd-level that applies f(x) to every item in
a list of lists.

map-level2(f, ((123) (45) (6) ())
— ((f(1) £(2) £(3)) (£(4) £(5)) (£(6)) ())

2. The expression (mapcar f (mapcar g list)) requires two traversals
of the list. Define the functionals map2op-v1(f g list) and map2op-
v2(f-g-list) that implement the expression with only one traversal of
the list.

3. Define the functional diagonals(sum) that generates all pairs of nat-
ural numbers whose sum is at most sum. The pairs should be generated
in the order shown by the example.

Example: diagonals(3)

— ((00)(01)(10)(02) (11)(20) (03)(12)(21)(30)).

Notice that the result has all pairs that sum to 0, then all pairs that
sum to 1, then 2, etc. You want to generate lists (use genlist) for each
possible sum 0..n inclusive.

