
CSE-3401A

Functional and Logic Programming

Summer 2008

Report 2 Specification

Due: Wednesday, July 16, in class

July 3, 2008

Be sure to read www page on On Academic Honesty reachable from the
home page for the course.

The files functionals.lsp, and functionals-base.lsp in the course direc-
tory on Prism contain the functionals and base support functions you need
for this report. Unless explicitly told to your functions should not use explicit
recursion. Unless explicitly told to do so do not use the functionals sigma,

iter, for, while. For the Prolog exercise do not use material that occurs
after and including Accumulators. In particular do not use cut (!) or not
(\+). Unless indicated otherwise, all predicates should only give one solu-
tion. Do not have more than 6 tests for each function and predicate you
write. To minimize your work avoid redundant tests; be sure that each test
tests for something different. For example, inserting into a list away from
the ends needs only one test, as, in general it makes no difference if, in a list
of length 10, you insert at position 3,4,5,6,7, as all those are equivalent for
the insertion algorithm.

1



To hand in

• The first page of the report you hand in is a standard cover page that
you get from the course web pages.

• The body part of the report is a hardcopy of your answers in exercise
order. For each exercise that does not require programming submit a
typewritten document.

• For each exercise for which you develop Lisp functions you submit a
printout of your documented functions. You may use comments in the
file and hand draw diagrams on your listings. Use one file per exercise
named exercise-n.lsp, where n corresponds to the exercise number.
Please use the command enscript to print the *.lsp files.
enscript exercise-N.lsp

• For each program for which you develop Prolog predicates hand in a
printout of your documented predicates. You may use comments in the
file and hand draw diagrams on your listings. Use one file per exercise
named exercise-n.pro, where n corresponds to the exercise number.
Please use the command enscript to print *.pro files.

• Before the deadline, submit a directory called report2 that should con-
tain one *.lsp file for each exercise for which you wrote Lisp functions,
and one *.pro file for each exercise for which you wrote Prolog predi-
cates. Use the following Prism command.
submit 3401 r2 report2

While you can develop your programs on your personal computer, be sure
your files will load and execute correctly on Prism.

Question 1.

(2 points).

For this exercise all support functions are to embedded as anonymous lambda
functions within a single definition. I found maplist to be useful for this
exercise.

2



1. Write the functional pair-combinations-from(list) that returns a
list of all combinations of two items from the list such that:
Result = {(list[i], list[j]) | i ≤ j ≤ length(list)}.

For example, consider the following.

List = (a b c d)
Result = ((a a)(a b)(a c)(a d)(b b)(b c)(b d)(c c)(c d)(d d))

2. Write the functional triple-combinations-from(list) that returns a list
of all combinations of three items from the list, such that:
Result = {(list[i], list[j], list[k]) | i ≤ j ≤ k ≤ length(list)}.

For example, consider the following.

List = (a b c)
Result = ((a a a)(a a b)(a a c)(a b b)(a b c)(a c c)(b b b)(b b c)(b c
c)(c c c))

Question 2.

(1 Point).

The function range in the file functionals.lsp fails in Clisp on Prism when
attempting to evaluate (range 1 100,000) commas are written to make it
easier to see the hundred thousand) because recursion goes too deep. Write
a recursive function big-range(first last) that uses range to produce sub-
sequences and successfully evaluates (length (big-range 1 10,000,000))
I doubt you want to see the list! Consider how to test your function to
verify that your subsequences, when combined do not miss and/or duplicate
integers.

3



Question 3.

(1 Point).

Write a version, curry-v2 of the macro curry (see functionals.lsp) to use
lambda functions in place of the let expressions.

Question 4.

(2 Points).

Write a Lisp macro mycase that translates the following macro call. Assume
the input will be error free. The input lists can be any length.

(mycase (C1 C2 ... Cn) (P1 P2 ... Pn))

translates to the following:
(mycond (C1 P1) (C2 P2) ... (Cn Pn))

• Variation 1: mycase-v1 is to use recursion

• Variation 2: maycase-v2 is to not to use recursion

Question 5.

(2 Points).

For this exercise the structure of the list contains sufficient information so
there is no need for explicit counting. Do not use any built-in predicates that
determine list length or list parity.

1. Define the Prolog predicate middle(List, Mid) that asserts that Mid
is the middle item of an odd length list List. Middle is false if List
is of even length. The predicate append is useful.

2. Define the Prolog predicate middles(List, Middles) that asserts that
Middles is the list of middle elements, as defined above, for each List
at the top level of List. List could contain any items at the top
level. Your definition should give the correct list for Middles as the

4



first answer but will probably give multiple answers if you use ; in the
query. Explain why you have multiple answers. Think about what you
need to have available to prevent multiple answers from occurring.

Question 6.

(2 Points).

1. Define the Prolog predicate arith prog(TheList) that asserts whether
TheList is an arithmetic progression or not. You can assume TheList
will only contain integers. An arithmetic progression is a sequence of
the form r, r + s, r + 2 ∗ s, , r + n ∗ s, for some integer r and some
positive integer s. For example (2, 5, 8, 11) is an arithmetic progression
with r = 2, s = 3 and n = 3. #theList ≤ 2 implies that theList is
an arithmetic progression. This exercise does not require counting or
length predicates.

2. Define the Prolog predicate minMaxMean(TheList, ArithmeticMean)
that asserts that ArithmeticMean is the arithmetic mean of the
smallest and largest numbers in TheList. Assume that the list con-
tains only numbers. An empty list has the atom nil as the arithmetic
mean, to indicate that none exists. Your solution should only make
one pass over the list.

Question 7.

(2 Points).

1. Write a Prolog predicate substitute(OldValue, NewValue, List,
Result) that asserts Result is the result of substituting every occur-
rence of OldValue (at all levels) with NewValue in the list List.

2. Write a Prolog predicate swap (ItemOne, ItemTwo, TheList, TheRe-
sult) that asserts that TheResult is TheList with ItemOne and
ItemTwo swapped if they are adjacent, in that order in TheList.
Swapping takes place at all levels of TheList.

5


