
Family name ______SOLUTION_______
Given name(s) _______________________

Student number ______________________

York University
Faculty Science & Engineering / Faculty of Arts
Department of Computer Science & Engineering

Class Test 1

AK/AS/SC – CSE 3401 3.0

Functional & Logic Programming
2008 June 11

Instructions

1. The test time is approximately 75 minutes.

2. This is a closed book examination. No examination aids
are permitted.

3. All questions are to be attempted.

4. All questions are of equal value.

5. Using annotated diagrams, examples, complete sentences
and paragraphs will increase the effectiveness of your
answer.

6. All programming is to include comments. When using
functions like apply, mapcar, append, etc. clearly indicate
what is the effect you want using diagrams and/or symbolic
notation.

7. If a question is ambiguous or unclear then please write
your assumptions and proceed to answer the question.

Ques Max Mark

 1 8 _____

 2 8 _____

 3 8 _____

 4 8 _____

 5 8 _____

 Total 40 _____

 Letter grade _____

2008 June 11 3401 Test 1 Page 2 of 10

Question 1 (1 x 8 = 8 points)

Assume the following forms have been typed into the interpreter and
evaluated in the given order.

(defun a (y) (list ‘list y))

(setq a ‘b)

(setq b ‘9)

(setq c ‘d)

(setq d ‘11)

(set c ‘8)

(setq f ‘((111) 222 333))

(defun b (x) (maplist #‘list x))

(setq e ((lambda (x y) (+ x y)) b b))

What will the following forms evaluate to? State error if the form does
not evaluate correctly

1. (a a) ____________(LIST B)___________

2. (funcall ‘a (list c b d)) _________(LIST (D 9 8))________

3. (apply ‘a ‘(a b c)) ____________error______________

4. (eval e) _____________18________________

5. (eval (eval (eval ‘‘‘a))) _______________B_______________

6. (eval (a a)) _____________(9)_______________

7. (b f) ((((111) 222 333)) ((222 333)) ((333)))

8. (mapcar ‘b ‘((1 2 3) (2 3) (3)))

 ((((1 2 3)) ((2 3)) ((3))) (((2 3)) ((3))) (((3))))

2008 June 11 3401 Test 1 Page 3 of 10

Question 2 (5 + 3 = 8 points)

A Define a recursive Lisp function longestRun that takes a list of
atoms and returns the length of the longest run of consecutive
occurrences of the same atom in the list. For example,

(longestRun '(b a b a b b b a)) 3
(longestRun '(a b a a c b)) 2
(longestRun '(c)) 1
(longestRun '()) 0

You may use ONLY the Lisp functions defun, cond, car, cdr, cons,
append, null, <, >, equal, max, +. You may use combinations of car and
cdr such as caddr. You may define a helper function.

(defun longestRun (aList) ;; You provide the rest

ANSWER

; longest run takes one argument, a list, and returns the length of
; the longest run of consecutive occurrences of the same atom in the
; list
; precondition: list is a valid list

(defun longestRun (list)

(cond ((null list) 0)
(t (longestHelp (car list) (cdr list) 1 0))

)
)

; longesthelp takes 4 arguments, the current element being looked at,
; the list, the current count for element elem and the maximum count so
; far
; helper function, all the work is done here

(defun longestHelp (elem list c1 c2)

(cond
 ; empty list return either current max or max so far

 ((null list)(max c1 c2))
 ; next element is same as elem

 ((equal elem (car list))
(longestHelp elem (cdr list) (+ 1 c1) c2))

 ; next element is diff than elem
 (t (longestHelp (car list) (cdr list) 1 (max c1 c2)))
)

)

2008 June 11 3401 Test 1 Page 4 of 10

B Explain how you can create a static variable in LISP.

ANSWER

In Lisp static variables are associated with a function as a
lambda-closure. To create a static variable, you need to create closure
of a function by supplying the function `function’ with a lambda
expression as argument – if the free symbols of that lambda expression
are bound to the values of an enclosing function’s parameters,
`function’ will return a “snapshot” of the function denoted by the
lambda expression, and we’ll get a static variable associated with this
free symbol.

e.g.

(defun egen (*seed*)
(function

(lambda() (setq *seed* (+ *seed* 2)))
)

)

Here, *seed* will become a static variable after we create a closure of
egen (see Lecture 4, slides 16-21 for more).

2008 June 11 3401 Test 1 Page 5 of 10

Question 3 (3 + 5 = 8 points)

A What is functional programming? What are the prime attributes of
functional programs?

ANSWER

Functional programming consists of writing functions that have
functions as input and frequently as output. That is writing functions
that themselves create new functions. Use of generalized functions that
abstract control flow patterns -- e.g. mapcar and reduce.

Functional programs have no explicit loops (recursion), have no
sequencing at a low level, have no local variables. Frequently input is
a single list of parameters.

2008 June 11 3401 Test 1 Page 6 of 10

B Define a functional program, with no explicit recursion, that
produces the following output for a given integer max. Do not use
lambda-functions.

(fun-list 0) NIL
(fun-list 1) (1)
(fun-list 2) ((1 2) 2)
(fun-list 3) (((1 2) 3) (2 3) 3)
(fun-list 5) (((((1 2) 3) 4) 5) (((2 3) 4) 5) ((3 4) 5) (4 5) 5)

Hints: Consider the top level sub-lists of the output; note that they
are nothing but the reduction (reduce) of some range using list.

(defun fun-list (max) ;; You supply the rest

ANSWER

(defun fun-list (max)

(maplist (bu 'reduce 'list)(range 1 max)))

OR

(defun fun-list (max)

(mapcar (bu 'reduce 'list) (genlist (range 1 max) 'cdr max))
)

2008 June 11 3401 Test 1 Page 7 of 10

Question 4 (3 + 3 + 2 = 8 points)

A What are macros? State the advantages of using macros?

ANSWER

Macros are Lisp functions that when invoked with appropriate parameters
create as output Lisp program text. Macros are used to create custom
and more understandable syntax. Macros are often used in place of
functions to remove function call execution time overhead. Many
apparent functions in Lisp are actually macros.

Advantages: 1) makes program more readable

2) insulates program from low level implementation
 decisions

2008 June 11 3401 Test 1 Page 8 of 10

B Write a macro definition
(select all elements from aList but the aPosition)
that produces a program, which when evaluated, returns aList after
removing the element in position aPosition. Here, aPosition is one of
the following.

aPosition: first, second, third

For all other values of aPosition return nil.

Example

(select all elements from ‘(1 2 3) but the first) (2 3)
(select all elements from ‘(1 2 3) but the third) (1 2)

Complete the macro definition, without using backquote.

(defmacro select ;; complete the parameters and body

ANSWER

(defmacro select (all elements from list but the pos)
 (cond ((equal pos 'first)(list 'cdr list))
 ((equal pos 'second)

 (list 'cons (list 'car list) (list 'cddr list)))
 ((equal pos 'third)

 (list 'cons (list 'car list)
 (list 'cons (list 'second list)

 (list 'cdddr list))))
 (t 'nil)
)
)

2008 June 11 3401 Test 1 Page 9 of 10

C Complete a macro definition select, as in Part B but this time use
backquote.

(defmacro select ;; complete the parameters and body

ANSWER

(defmacro select (all elements from list but the pos)
 (cond ((equal pos 'first)`(cdr ,list))
 ((equal pos 'second)`(cons (car ,list) (cddr ,list)))
 ((equal pos 'third)`(cons (car ,list)

 (cons (second ,list) (cdddr ,list))))
 (t 'nil)
)
)

2008 June 11 3401 Test 1 Page 10 of 10

Question 5 (8 points)

Trace and annotate (i.e. make notes to explain what you are doing) the
evaluation of the following lambda expression.

{λ A,B . B[A+1] + B[A]}[{λ D . {λ C . C * D}[1 + D]} [2]

, {λ C . {λ D . D * C}} [3]]

ANSWER

Have two arguments
1 – { λ D . { λ C . C * D}[1 + D]} [2] – that is passed to A
2 – { λ C . { λ D . D * C}} [3] – that is passed to B
1.1 Evaluate expression (1) – substitute 2 for D (argument is already
evaluated)
{ λ C . C * 2}[1 + 2]
1.1.1 Evaluate the argument [1 + 2] ==> 3
1.1.2 Substitute C = 3 ==> 3 *2 ==> 6
2.1 Evaluate expression (2) – substitute 3 for C (argument is already
evaluated).
{ λ D . D * 3}
No further evaluation is possible

At the outer level we now have
{ λ A,B . B[A+1] + B[A]}[6 , { λ D . D * 3}]

Substitute the arguments for A and B
{ λ D . D * 3}[6+1] + { λ D . D * 3}[6]
Evaluate the left-hand and right-hand expression, then do addition
Argument first 6+1 ==> 7
Substitute D = 7 ==> 7*3 + 6*3 ==> 21+18 ==> 39.

For remarking you need to write a note stating clearly and exactly where you believe your
grade should be increased or decreased. Note that the grade is a qualitative one. You
need to explain why you believe the quality of your answer should, for example, if you
think the grade should go up, be good (B) and not competent (C+), or, if you think the
grade should go down, very good (B+) and not excellent (A).

The entire test will be reevaluated. Your grade may go up, it may stay the same, or it
may go down. I will look over the entire test and see if the grades good, excellent,
minimal, etc are applicable to the work as a whole independent of the points assigned to
the parts.

