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listlen ( L , N )

• L is a list of length N if ...
listlen ( [] , 0 ).
listlen ( [ H | T ] , N ) :- listlen ( T , N1 ) , N is N1 + 1.

– on searching for the goal, the list is reduced to empty
– on back substitution, once the goal is found, the counter 

is incremented from 0
• following is an example sequence of goals (left 

hand column) and back substitution (right hand 
column)
– listlen( [ a, b, c ] , N ). N <== N1 + 1
– listlen( [ b, c ] , N1 ). N1 <== N2 + 1
– listlen( [ c ] , N2 ). N2 <== N3 + 1
– listlen( [] , N3 ). N3 <== 0
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listLen(L,N) – 2

• we can define list length using an accumulator
listln ( L , N ) :- lenacc ( L , 0 , N ).

– introduce the auxiliary counter – length of list L when added to 
the accumulator (i.e. result computed so far) is N

lenacc ( [] , A , A ).
lenacc ( [ H | T ] , A , N ) :- A1 is A + 1,

lenacc ( T , A1 , N ).
• following is a sequence of goals

– listln ( [ a , b , c ] , N ).
– lenacc ( [ a , b , c ] , 0 , N ). N <== N1
– lenacc ( [ b , c ] , 1 , N1 ). N1 <== N2
– lenacc ( [ c ] , 2 , N2 ). N2 <== N3
– lenacc ( [] , 3 , N3 ). N3 <== 3
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accumulator – using vs. not 
using

• the definition styles reflect two alternate 
definitions for
– recursion – counts (accumulates) on back substitution

• goal becomes smaller problem
• do not use accumulator

– iteration – counts up, accumulates on the way to the 
goal

• accumulate from nothing up to the goal
• goal “counter value” does not change

• some problems require an accumulator
– parts explosion problem
– summing a list of numbers
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factorial using recursion

• following is a recursive definition of factorial
– factorial ( N ) = N * factorial ( N – 1 )
– factr ( N , F) -- F is the factorial of N

factr ( 0 , 1 ).
factr ( N , F ) :- J is N – 1 , factr ( J , F1 ), 

F is N * F1.

• the problem (J , F1) is a smaller version of (N , F)
• does not work for factr ( N ,120 ) and 

factr ( N , F ).
– cannot do arithmetic J is N – 1 because N is undefined
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factorial using iteration –
accumulators

• An iterative definition of factorial
– facti ( N , F ) :- facti ( 0 , 1 , N , F ).

facti ( N , F , N , F ).
facti ( I , Fi , N , F ) :- J is I + 1 , Fj is J * Fi,

facti ( J , Fj , N , F ).

• the last two arguments are the goal and they remain the 
same throughout.

• the first two arguments are the accumulator and they start 
from a fixed point and accumulate the result

• works for queries factr ( N ,120 ) and factr ( N , F ) because 
values are always defined for the is operator
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Fibonacci – ordinary 
recursion

• following is a recursive definition of the Fibonacci series
• for reference here are the first few terms of the series

– index – 0 1 2 3 4 5   6  7   8   9 10   11   12
– value – 1 1 2 3 5 8 13 21 34 55 89 144 233

• Fibonacci ( N ) = Fibonacci ( N – 1 ) + Fibonacci ( N – 2 )
fib ( 0 , 1 ).
fib ( 1 , 1 ).
fib ( N , F ) :- N1 is N – 1 , N2 is N – 2, 

fib ( N1 , F1 ) , fib ( N2 , F2 ), F is F1 + F2.
• does not work for queries fib ( N , 8 ) and fib ( N , F )

– values for is operator are undefined
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Fibonacci – tail recursion

• a tail recursive definition of the Fibonacci series
– tail recursion is equivalent to iteration
fibt ( 0 , 1 ).
fibt ( 1 , 1 ).
fibt ( N , F ) :- fibt ( 2 , 1 , 1 , N , F ).
fibt ( N , Last2 , Last1 , N , F ) :- F is Last2 + Last1.
fibt ( I , Last2 , Last1 , N , F ) :- J is I + 1, 

Fi is Last2 + Last1, 
fibt ( J , Last1 , Fi , N , F ).

• works for queries fibt ( N , 120 ) and fibt ( N , F )
– values are always defined for is operator.
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sum a list of numbers

• sumList(List, Total) asserts List is a list of 
numbers and Total = + / List
– uses an accumulator
– sumListA asserts (+ / List ) + Acc = Total

sumList(List, Total) :- sumListA(List, 0, Total).
sumListA([],Acc, Acc).
sumListA([First|Rest], Acc, Total) :-

NewAcc is Acc + First,
sumListA(Rest, NewAcc, Total).
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parts explosion – the 
problem 1

• parts explosion is the problem of accumulating all 
the parts for a product from a definition of the 
components of each part

• consider a bicycle; we could have
– the following basic components

basicPart( spokes ). basicPart( rim ). basicPart( tire ).
basicPart( inner_tube ). basicPart( handle_bar ).
basicPart( front_ fork ). basicPart( rear_fork ).

– the following definitions for sub assemblies
assembly( bike, [ wheel, wheel, frame ] ).
assembly( wheel, [ spokes, rim, wheel_cushion ] ).
assembly( wheel_cushion, [ inner_tube, tire ] ).
assembly( frame, [ handle_bar, front_fork, rear_fork ] ).
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parts explosion – the 
problem 2

• we are interested in obtaining a parts list for a 
bicycle
– [ rear_ fork , front_ fork , handle_bar , tire

, inner_tube , rim , spokes , tire , inner_tube , rim
, spokes ]

– we have two wheels so there are two tires, inner_tubes, 
rims and spokes.

• using accumulators we can avoid wasteful re-
computation as in the case for the ordinary 
recursion definition of the Fibonacci series
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parts explosion –
accumulator 1

• partsof ( X ,P ) – P is the list of parts for item X
• partsacc ( X , A , P ) – parts_of ( X ) || A = P.

partsof ( X , P ) :- partsacc ( X , [] , P ).
basic part – parts list contains the part

partsacc ( X , A , [ X | A ] ) :- basicPart ( X ).
not a basic part – find the components of the part

partsacc ( X , A , P ) :- assembly ( X , Subparts ) ,
parsacclist – parts_of ( Subparts ) || A = P

partsacclist ( Subparts , A , P ).

|| is append
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parts explosion –
accumulator 2

• partsacclist ( ListOfParts , AccParts , P )
– parts_of ( ListOfParts ) || AccParts = P

> no parts no change in accumulator
partsacclist ( [] , A , A ).
partsacclist ( [ Head | Tail ] , A , Total ) :-

> get the parts for the first on the list
partsacc ( Head , A , HeadParts )

> and catenate with the parts obtained from 
the rest of the ListOfParts
, partsacclist ( Tail , HeadParts , Total ).
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difference lists and holes

• the accumulator in the parts explosion 
program is a stack
– items are stored in the reverse order in which 

they are found

• how do we store accumulated items in the 
same order in which they are formed?
– use a queue

• difference lists with holes are equivalent to 
a queue
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examples for holes

• consider the following list
[ a , b , c , d | X ]

– X is a variable indicating the tail of the list. It 
is like a hole that can be filled in once a value 
for X is obtained

• for example
Res = [ a , b , c , d | X ] , X = [ e , f ].

yields
Res = [ a , b , c , d , e , f ]
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examples for holes – 2

• or could have the following with the hole 
going down the list

Res = [ a , b , c , d | X ]
– more goal searching gives X = [ e , f | Y ]
– more goal searching gives Y = [ h , i , j ]
– back substitution Yields

Res = [ a , b , c , d , e , f , h , i , j ]
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parts explosion – difference 
list 1

• partsofd (X , P ) – P is the list of parts for item X
• partsdiff (X , Hole , P) – parts_of ( X ) || Hole = P

– hole and P are reversed compared to Clocksin & Mellish
(v5) to better compare with accumulator version

partsofd ( X , P ) :- partsdiff ( X , [] , P ).
– base case we have a basic part, then the parts list 

contains the part

partsdiff ( X , Hole , [ X | Hole ] ):- basicPart (X).
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parts explosion – difference 
list 2

– not a base part, so we find the components of 
the part
partsdiff ( X , Hole , P ) :-

assembly ( X , Subparts )
– parsdifflistd – parts_of ( Subparts ) || Hole = P

, partsdifflist ( Subparts , Hole , P ).
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parts explosion – difference 
lists 3

• parsdifflist (ListOfParts , Hole , P )
– parts_of ( ListOfParts ) || Hole = P

partsdifflist ( [] , Hole , Hole ).
partsdifflist ( [ Head | Tail ] , Hole , Total ) :-

• get the parts for the first on the list
partsdiff ( Head , Hole1 , Total )

• and catenate with the parts obtained from the 
rest of the ListOfParts

, partsdifflist ( Tail , Hole , Hole1 ).

• Hole1 is the “total” of Tail
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compare accumulator with 
hole

partsof ( X , P ) :- partsacc ( X , [] , P ). Accumulator
partsofd ( X , P ) :- partsdiff ( X , [] , P ). Difference/Hole

partsacc ( X , A , [ X | A ] ) :- basicPart ( X ).
partsdiff ( X , Hole , [ X | Hole ] ) :- basicPart ( X ).

partsacc ( X , A , P ) :- assembly ( X , Subparts )
, partsacclist ( Subparts , A , P ).

partsdiff ( X , Hole , P ) :- assembly ( X , Subparts )
, partsdifflist ( Subparts , Hole , P ).
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compare accumulator with 
hole – 2

partsacclist ( [] , A , A ).
partsdifflist ( [] , Hole , Hole ).

partsacclist ( [ Head | Tail ] , A , Total )
:- partsacc ( Head , A , HeadParts )

, partsacclist ( Tail , HeadParts , Total ).

partsdifflist ( [ Head | Tail ] , Hole , Total )
:- partsdiff ( Head , Hole1 , Total )
, partsdifflist ( Tail , Hole , Hole1 ).

Cut & Not

Shakil M. Khan
adapted from Gunnar Gotshalks
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cut – !

• cut, the ! operator, is used to
– not waste time on useless choices

1. know that if current rule fails then trying further rules for 
the current predicate is useless

– if you got this far then, this is the only rule to try
2. stop after one solution – do not look for alternate solutions
3. if you continue with this predicate, you will not find a 
solution

– use of ! , fail
• cut commits to all choices made when entering parent goal 

– the predicate at the head of the rule
» cannot be re-satisfied on backtracking

a :- b, c, !, d, e.
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confirming choice of rule

• rule 2 for intersection has confirmation use of cut
– intersection (A , B , C ) – A ∩ B = C

intersection ( [] , B , [] ).
intersection ( [ Ah | At ] , B , [ Ah | Ct ] )

:- member ( Ah , B ) , ! , intersection ( At , B , Ct ).
– rule 2 is applicable when head (A ) in B

intersection ( [ Ah | At ] , B , C )
:- intersection ( At , B , C ).

– rule 3 is applicable when head (A ) not-in B
• once we have established that Ah is a member of B, then if 

we backtrack over the member predicate, there is no need 
to consider rule 3
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stopping – found first 
solution

• consider the predicate sum_to ( N ,T ), where T
is the sum of the integers 1 .. N

sum_to ( 1 , 1 ).
sum_to ( N , T ) :- N1 is N – 1 ,

sum_to ( N1 , T1 ) ,
T is T1 + N.

• the above program works as long as N is an 
integer >= 1
– but there is only one solution, there is no point in trying 

rule 2 if rule 1 is ever satisfied
– if ; return is used Prolog loops until memory is 

exhausted searching for a non existent second solution
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stopping – found first 
solution – 2

• so introduce cut into the first case
sum_to ( 1 , 1 ) :- ! .
sum_to ( N , T ) :- N1 is N – 1 ,

sum_to ( N1 , T1 ) ,
T is T1 + N.

• now only one solution is found. Search 
terminates without infinite loop.
– also example of choice of rule. Once rule 1 has 

been picked no point in trying rule 2
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cut-fail in action

• consider the following
avg_taxpayer(X) :- foreigner(X), !, fail.
avg_taxpayer(X) :- …

• fail always fails
• definition makes use of cut fail to 

terminate when the person is a foreigner 
(even if that person has all other qualities 
of an average taxpayer, denoted by …
above)
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not

• when a rule has the following form
head :- A , B , C , D.

• you can think of
– A as being a guard to trying B, C, D
– A, B as being a guard to trying C, D
– A, B, C as being a guard to trying D

• for example the use of member ( Ah , B )
in the rule 2 for intersection
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not – 2

• the predicate not ( P ) is used as a guard to 
select cases as in the following
– Q ( [ H | T ] , ... ) :- not ( H = [ _ | _ ] ) , P ( H , ... ) .

> only try P if H does not have a head and tail
– Q ( [ H | T ] , ... ) :- not ( H = [ ] ) , P ( H , ... ) .

> only try P if H is not the empty list
– Q ( [ H | T ] , X , ... ) :- not ( H = X ) , P ( H , ... ) .

> only try P if H is not equal to X
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not – definition

• not is not built into some Prologs (it is in SWI 
Prolog) as its interpretation depends upon what 
you want it to mean

• yes means the query can be satisfied by the 
database

• no means the query cannot be satisfied by the 
database
– it does not mean the query is false, just unsatisfiable

Prolog searches are based on 
closed universe

truth is relative to the database
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not – definition

• the following is the definition of not as defined in 
utitlities.pro and in Clocksin & Mellish

not ( P ) :- call ( P ) , ! , fail.
not ( _ ) .

• rule 1 tries call ( P )
– call queries the database with the predicate P
– analogous to eval in Lisp

• if the call succeeds, then the ! , fail combination says fail 
and do not try the second rule
– so if P gives yes, then not ( P ) gives no

• if the call fails, then rule 2 is tried and always succeeds
– so if P gives no, then not ( P ) gives yes
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not definition –
consequence

• the following shows that not as defined 
has side effects
– a double negative is not equivalent to a 

positive!
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cut &  not equivalence

• cut and not can be used interchangeably 
with a change in rule structure
– note the use of B as a guard

A :- B , C. A :- B , ! , C.
A :- not ( B ) , D. A :- D.

• if B succeeds then success or failure of A
depends upon C

• if B fails, then success or failure of A
depends upon D
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cut is dangerous

• using cut we are taking advantage of the way Prolog 
searches the database

• consider the predicate number_of_parents ( X , N )
– X has N parents defined as follows

number_of_parents ( adam , 0 ) :- ! .
number_of_parents ( eve , 0 ) :- !.
number_of_parents ( X , 2 ).

• definition works correctly if we query such as the following 
when using ; return – the cut prevents finding extra 
solutions for adam and eve

number_of_parents ( adam , N ). ==> 0
number_of_parents ( eve , N ). ==> 0
number_of_parents ( wilhelma , N ). ==> 2
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cut is dangerous – 2

• but fails on the following queries
number_of_parents ( adam , 2 ). ==> yes
number_of_parents ( eve , 2 ). ==> yes

• change the definition to
number_of_parents ( adam , N ) :- ! , N = 0.
number_of_parents ( eve , N ) :- ! , N = 0.
number_of_parents ( X , 2 ).

• or change the definition to
number_of_parents( adam , 0 ) :- ! .
number_of_parents( eve , 0 ) :- !.
number_of_parents(X,2) :- X \= adam , X \= eve.

• still fail on queries such as the following, expecting backtracking 
to enumerate all the possibilities

number_of_parents ( Who , N ).
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cut is dangerous – moral

• if you introduce cuts to obtain correct behavior 
when the goals are of one form, there is no 
guarantee that anything sensible will happen if 
goals of another form start appearing

• it follows that it is only possible to use cut 
reliably if you have a clear policy about how your 
rules are going to be used. If you change this 
policy, all the uses of cut must be reviewed


