
1

Accumulators
More on Arithmetic

and
Recursion

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-July-16-2008 2

listlen (L , N)

• L is a list of length N if ...
listlen ([] , 0).
listlen ([H | T] , N) :- listlen (T , N1) , N is N1 + 1.

– on searching for the goal, the list is reduced to empty
– on back substitution, once the goal is found, the counter

is incremented from 0
• following is an example sequence of goals (left

hand column) and back substitution (right hand
column)
– listlen([a, b, c] , N). N <== N1 + 1
– listlen([b, c] , N1). N1 <== N2 + 1
– listlen([c] , N2). N2 <== N3 + 1
– listlen([] , N3). N3 <== 0

2

CSE-3401-July-16-2008 3

listLen(L,N) – 2

• we can define list length using an accumulator
listln (L , N) :- lenacc (L , 0 , N).

– introduce the auxiliary counter – length of list L when added to
the accumulator (i.e. result computed so far) is N

lenacc ([] , A , A).
lenacc ([H | T] , A , N) :- A1 is A + 1,

lenacc (T , A1 , N).
• following is a sequence of goals

– listln ([a , b , c] , N).
– lenacc ([a , b , c] , 0 , N). N <== N1
– lenacc ([b , c] , 1 , N1). N1 <== N2
– lenacc ([c] , 2 , N2). N2 <== N3
– lenacc ([] , 3 , N3). N3 <== 3

CSE-3401-July-16-2008 4

accumulator – using vs. not
using

• the definition styles reflect two alternate
definitions for
– recursion – counts (accumulates) on back substitution

• goal becomes smaller problem
• do not use accumulator

– iteration – counts up, accumulates on the way to the
goal

• accumulate from nothing up to the goal
• goal “counter value” does not change

• some problems require an accumulator
– parts explosion problem
– summing a list of numbers

3

CSE-3401-July-16-2008 5

factorial using recursion

• following is a recursive definition of factorial
– factorial (N) = N * factorial (N – 1)
– factr (N , F) -- F is the factorial of N

factr (0 , 1).
factr (N , F) :- J is N – 1 , factr (J , F1),

F is N * F1.

• the problem (J , F1) is a smaller version of (N , F)
• does not work for factr (N ,120) and

factr (N , F).
– cannot do arithmetic J is N – 1 because N is undefined

CSE-3401-July-16-2008 6

factorial using iteration –
accumulators

• An iterative definition of factorial
– facti (N , F) :- facti (0 , 1 , N , F).

facti (N , F , N , F).
facti (I , Fi , N , F) :- J is I + 1 , Fj is J * Fi,

facti (J , Fj , N , F).

• the last two arguments are the goal and they remain the
same throughout.

• the first two arguments are the accumulator and they start
from a fixed point and accumulate the result

• works for queries factr (N ,120) and factr (N , F) because
values are always defined for the is operator

4

CSE-3401-July-16-2008 7

Fibonacci – ordinary
recursion

• following is a recursive definition of the Fibonacci series
• for reference here are the first few terms of the series

– index – 0 1 2 3 4 5 6 7 8 9 10 11 12
– value – 1 1 2 3 5 8 13 21 34 55 89 144 233

• Fibonacci (N) = Fibonacci (N – 1) + Fibonacci (N – 2)
fib (0 , 1).
fib (1 , 1).
fib (N , F) :- N1 is N – 1 , N2 is N – 2,

fib (N1 , F1) , fib (N2 , F2), F is F1 + F2.
• does not work for queries fib (N , 8) and fib (N , F)

– values for is operator are undefined

CSE-3401-July-16-2008 8

Fibonacci – tail recursion

• a tail recursive definition of the Fibonacci series
– tail recursion is equivalent to iteration
fibt (0 , 1).
fibt (1 , 1).
fibt (N , F) :- fibt (2 , 1 , 1 , N , F).
fibt (N , Last2 , Last1 , N , F) :- F is Last2 + Last1.
fibt (I , Last2 , Last1 , N , F) :- J is I + 1,

Fi is Last2 + Last1,
fibt (J , Last1 , Fi , N , F).

• works for queries fibt (N , 120) and fibt (N , F)
– values are always defined for is operator.

5

CSE-3401-July-16-2008 9

sum a list of numbers

• sumList(List, Total) asserts List is a list of
numbers and Total = + / List
– uses an accumulator
– sumListA asserts (+ / List) + Acc = Total

sumList(List, Total) :- sumListA(List, 0, Total).
sumListA([],Acc, Acc).
sumListA([First|Rest], Acc, Total) :-

NewAcc is Acc + First,
sumListA(Rest, NewAcc, Total).

CSE-3401-July-16-2008 10

parts explosion – the
problem 1

• parts explosion is the problem of accumulating all
the parts for a product from a definition of the
components of each part

• consider a bicycle; we could have
– the following basic components

basicPart(spokes). basicPart(rim). basicPart(tire).
basicPart(inner_tube). basicPart(handle_bar).
basicPart(front_ fork). basicPart(rear_fork).

– the following definitions for sub assemblies
assembly(bike, [wheel, wheel, frame]).
assembly(wheel, [spokes, rim, wheel_cushion]).
assembly(wheel_cushion, [inner_tube, tire]).
assembly(frame, [handle_bar, front_fork, rear_fork]).

6

CSE-3401-July-16-2008 11

parts explosion – the
problem 2

• we are interested in obtaining a parts list for a
bicycle
– [rear_ fork , front_ fork , handle_bar , tire

, inner_tube , rim , spokes , tire , inner_tube , rim
, spokes]

– we have two wheels so there are two tires, inner_tubes,
rims and spokes.

• using accumulators we can avoid wasteful re-
computation as in the case for the ordinary
recursion definition of the Fibonacci series

CSE-3401-July-16-2008 12

parts explosion –
accumulator 1

• partsof (X ,P) – P is the list of parts for item X
• partsacc (X , A , P) – parts_of (X) || A = P.

partsof (X , P) :- partsacc (X , [] , P).
basic part – parts list contains the part

partsacc (X , A , [X | A]) :- basicPart (X).
not a basic part – find the components of the part

partsacc (X , A , P) :- assembly (X , Subparts) ,
parsacclist – parts_of (Subparts) || A = P

partsacclist (Subparts , A , P).

|| is append

7

CSE-3401-July-16-2008 13

parts explosion –
accumulator 2

• partsacclist (ListOfParts , AccParts , P)
– parts_of (ListOfParts) || AccParts = P

> no parts no change in accumulator
partsacclist ([] , A , A).
partsacclist ([Head | Tail] , A , Total) :-

> get the parts for the first on the list
partsacc (Head , A , HeadParts)

> and catenate with the parts obtained from
the rest of the ListOfParts
, partsacclist (Tail , HeadParts , Total).

CSE-3401-July-16-2008 14

difference lists and holes

• the accumulator in the parts explosion
program is a stack
– items are stored in the reverse order in which

they are found

• how do we store accumulated items in the
same order in which they are formed?
– use a queue

• difference lists with holes are equivalent to
a queue

8

CSE-3401-July-16-2008 15

examples for holes

• consider the following list
[a , b , c , d | X]

– X is a variable indicating the tail of the list. It
is like a hole that can be filled in once a value
for X is obtained

• for example
Res = [a , b , c , d | X] , X = [e , f].

yields
Res = [a , b , c , d , e , f]

CSE-3401-July-16-2008 16

examples for holes – 2

• or could have the following with the hole
going down the list

Res = [a , b , c , d | X]
– more goal searching gives X = [e , f | Y]
– more goal searching gives Y = [h , i , j]
– back substitution Yields

Res = [a , b , c , d , e , f , h , i , j]

9

CSE-3401-July-16-2008 17

parts explosion – difference
list 1

• partsofd (X , P) – P is the list of parts for item X
• partsdiff (X , Hole , P) – parts_of (X) || Hole = P

– hole and P are reversed compared to Clocksin & Mellish
(v5) to better compare with accumulator version

partsofd (X , P) :- partsdiff (X , [] , P).
– base case we have a basic part, then the parts list

contains the part

partsdiff (X , Hole , [X | Hole]):- basicPart (X).

CSE-3401-July-16-2008 18

parts explosion – difference
list 2

– not a base part, so we find the components of
the part
partsdiff (X , Hole , P) :-

assembly (X , Subparts)
– parsdifflistd – parts_of (Subparts) || Hole = P

, partsdifflist (Subparts , Hole , P).

10

CSE-3401-July-16-2008 19

parts explosion – difference
lists 3

• parsdifflist (ListOfParts , Hole , P)
– parts_of (ListOfParts) || Hole = P

partsdifflist ([] , Hole , Hole).
partsdifflist ([Head | Tail] , Hole , Total) :-

• get the parts for the first on the list
partsdiff (Head , Hole1 , Total)

• and catenate with the parts obtained from the
rest of the ListOfParts

, partsdifflist (Tail , Hole , Hole1).

• Hole1 is the “total” of Tail

CSE-3401-July-16-2008 20

compare accumulator with
hole

partsof (X , P) :- partsacc (X , [] , P). Accumulator
partsofd (X , P) :- partsdiff (X , [] , P). Difference/Hole

partsacc (X , A , [X | A]) :- basicPart (X).
partsdiff (X , Hole , [X | Hole]) :- basicPart (X).

partsacc (X , A , P) :- assembly (X , Subparts)
, partsacclist (Subparts , A , P).

partsdiff (X , Hole , P) :- assembly (X , Subparts)
, partsdifflist (Subparts , Hole , P).

11

CSE-3401-July-16-2008 21

compare accumulator with
hole – 2

partsacclist ([] , A , A).
partsdifflist ([] , Hole , Hole).

partsacclist ([Head | Tail] , A , Total)
:- partsacc (Head , A , HeadParts)

, partsacclist (Tail , HeadParts , Total).

partsdifflist ([Head | Tail] , Hole , Total)
:- partsdiff (Head , Hole1 , Total)
, partsdifflist (Tail , Hole , Hole1).

Cut & Not

Shakil M. Khan
adapted from Gunnar Gotshalks

12

CSE-3401-July-16-2008 23

cut – !

• cut, the ! operator, is used to
– not waste time on useless choices

1. know that if current rule fails then trying further rules for
the current predicate is useless

– if you got this far then, this is the only rule to try
2. stop after one solution – do not look for alternate solutions
3. if you continue with this predicate, you will not find a
solution

– use of ! , fail
• cut commits to all choices made when entering parent goal

– the predicate at the head of the rule
» cannot be re-satisfied on backtracking

a :- b, c, !, d, e.

CSE-3401-July-16-2008 24

confirming choice of rule

• rule 2 for intersection has confirmation use of cut
– intersection (A , B , C) – A ∩ B = C

intersection ([] , B , []).
intersection ([Ah | At] , B , [Ah | Ct])

:- member (Ah , B) , ! , intersection (At , B , Ct).
– rule 2 is applicable when head (A) in B

intersection ([Ah | At] , B , C)
:- intersection (At , B , C).

– rule 3 is applicable when head (A) not-in B
• once we have established that Ah is a member of B, then if

we backtrack over the member predicate, there is no need
to consider rule 3

13

CSE-3401-July-16-2008 25

stopping – found first
solution

• consider the predicate sum_to (N ,T), where T
is the sum of the integers 1 .. N

sum_to (1 , 1).
sum_to (N , T) :- N1 is N – 1 ,

sum_to (N1 , T1) ,
T is T1 + N.

• the above program works as long as N is an
integer >= 1
– but there is only one solution, there is no point in trying

rule 2 if rule 1 is ever satisfied
– if ; return is used Prolog loops until memory is

exhausted searching for a non existent second solution

CSE-3401-July-16-2008 26

stopping – found first
solution – 2

• so introduce cut into the first case
sum_to (1 , 1) :- ! .
sum_to (N , T) :- N1 is N – 1 ,

sum_to (N1 , T1) ,
T is T1 + N.

• now only one solution is found. Search
terminates without infinite loop.
– also example of choice of rule. Once rule 1 has

been picked no point in trying rule 2

14

CSE-3401-July-16-2008 27

cut-fail in action

• consider the following
avg_taxpayer(X) :- foreigner(X), !, fail.
avg_taxpayer(X) :- …

• fail always fails
• definition makes use of cut fail to

terminate when the person is a foreigner
(even if that person has all other qualities
of an average taxpayer, denoted by …
above)

CSE-3401-July-16-2008 28

not

• when a rule has the following form
head :- A , B , C , D.

• you can think of
– A as being a guard to trying B, C, D
– A, B as being a guard to trying C, D
– A, B, C as being a guard to trying D

• for example the use of member (Ah , B)
in the rule 2 for intersection

15

CSE-3401-July-16-2008 29

not – 2

• the predicate not (P) is used as a guard to
select cases as in the following
– Q ([H | T] , ...) :- not (H = [_ | _]) , P (H , ...) .

> only try P if H does not have a head and tail
– Q ([H | T] , ...) :- not (H = []) , P (H , ...) .

> only try P if H is not the empty list
– Q ([H | T] , X , ...) :- not (H = X) , P (H , ...) .

> only try P if H is not equal to X

CSE-3401-July-16-2008 30

not – definition

• not is not built into some Prologs (it is in SWI
Prolog) as its interpretation depends upon what
you want it to mean

• yes means the query can be satisfied by the
database

• no means the query cannot be satisfied by the
database
– it does not mean the query is false, just unsatisfiable

Prolog searches are based on
closed universe

truth is relative to the database

16

CSE-3401-July-16-2008 31

not – definition

• the following is the definition of not as defined in
utitlities.pro and in Clocksin & Mellish

not (P) :- call (P) , ! , fail.
not (_) .

• rule 1 tries call (P)
– call queries the database with the predicate P
– analogous to eval in Lisp

• if the call succeeds, then the ! , fail combination says fail
and do not try the second rule
– so if P gives yes, then not (P) gives no

• if the call fails, then rule 2 is tried and always succeeds
– so if P gives no, then not (P) gives yes

CSE-3401-July-16-2008 32

not definition –
consequence

• the following shows that not as defined
has side effects
– a double negative is not equivalent to a

positive!

17

CSE-3401-July-16-2008 33

cut & not equivalence

• cut and not can be used interchangeably
with a change in rule structure
– note the use of B as a guard

A :- B , C. A :- B , ! , C.
A :- not (B) , D. A :- D.

• if B succeeds then success or failure of A
depends upon C

• if B fails, then success or failure of A
depends upon D

CSE-3401-July-16-2008 34

cut is dangerous

• using cut we are taking advantage of the way Prolog
searches the database

• consider the predicate number_of_parents (X , N)
– X has N parents defined as follows

number_of_parents (adam , 0) :- ! .
number_of_parents (eve , 0) :- !.
number_of_parents (X , 2).

• definition works correctly if we query such as the following
when using ; return – the cut prevents finding extra
solutions for adam and eve

number_of_parents (adam , N). ==> 0
number_of_parents (eve , N). ==> 0
number_of_parents (wilhelma , N). ==> 2

18

CSE-3401-July-16-2008 35

cut is dangerous – 2

• but fails on the following queries
number_of_parents (adam , 2). ==> yes
number_of_parents (eve , 2). ==> yes

• change the definition to
number_of_parents (adam , N) :- ! , N = 0.
number_of_parents (eve , N) :- ! , N = 0.
number_of_parents (X , 2).

• or change the definition to
number_of_parents(adam , 0) :- ! .
number_of_parents(eve , 0) :- !.
number_of_parents(X,2) :- X \= adam , X \= eve.

• still fail on queries such as the following, expecting backtracking
to enumerate all the possibilities

number_of_parents (Who , N).

CSE-3401-July-16-2008 36

cut is dangerous – moral

• if you introduce cuts to obtain correct behavior
when the goals are of one form, there is no
guarantee that anything sensible will happen if
goals of another form start appearing

• it follows that it is only possible to use cut
reliably if you have a clear policy about how your
rules are going to be used. If you change this
policy, all the uses of cut must be reviewed

