Accumulators

More on Arithmetic
and
Recursion

Shakil M. Khan
adapted from Gunnar Gotshalks

listlen (L, N)

e Lis a list of length N if ...
listlen ([], 0).
listlen ([H|T],N):-listlen (T, N1), Nis N1+ 1.
- on searching for the goal, the list is reduced to empty
- on back substitution, once the goal is found, the counter
is incremented from O
o following is an example sequence of goals (left
hand column) and back substitution (right hand
column)

- listlen([a, b,c], N). N<==N1+1
- listlen([b, ¢], N1). N1 <==N2+1
- listlen([c], N2). N2 <== N3+ 1
- listlen([], N3). N3 <==0

CSE-3401-July-16-2008 2

listLen(L,N) - 2

e we can define list length using an accumulator
listin (L, N) :-lenacc (L, 0, N).
- introduce the auxiliary counter - length of list L when added to
the accumulator (i.e. result computed so far) is N
lenacc ([1,A,A).
lenacc([H|T],A,N):-AlisA+1,
lenacc (T, A1, N).
e following is a sequence of goals
- listin([a,b,c],N).

- lenacc([a,b,c],0,N). N <== N1

- lenacc([b,c],1,N1). N1 <== N2

- lenacc([c],2,N2). N2 <== N3

- lenacc ([1, 3, N3). N3 <==
CSE-3401-July-16-2008 3

accumulator - using vs. not
using

e the definition styles reflect two alternate
definitions for
- recursion — counts (accumulates) on back substitution
e goal becomes smaller problem
e do not use accumulator
- iteralntion - counts up, accumulates on the way to the
goa
e accumulate from nothing up to the goal
e goal “counter value” does not change
e some problems require an accumulator
— parts explosion problem
— summing a list of numbers

CSE-3401-July-16-2008 4

factorial using recursion

o following is a recursive definition of factorial
- factorial (N) = N * factorial (N - 1)
- factr (N, F) -- F is the factorial of N
factr (0, 1).
factr (N, F):-JisN-1,factr (J, F1),
Fis N * F1.
e the problem (J, F1) is a smaller version of (N , F)

e does not work for factr (N ,120) and
factr (N, F).
— cannot do arithmetic J is N - 1 because N is undefined

CSE-3401-July-16-2008 5

factorial using iteration -
accumulators

e An iterative definition of factorial
- facti (N, F):-facti(0,1,N,F).
facti(N,F, N, F).
facti (I, Fi,N,F):-JisI+1,FjisJ*Fi,
facti(J,Fj, N, F).

e the last two arguments are the goal and they remain the
same throughout.

e the first two arguments are the accumulator and they start
from a fixed point and accumulate the result

e works for queries factr (N ,120) and factr (N, F) because
values are always defined for the is operator

CSE-3401-July-16-2008 6

Fibonacci - ordinary
recursion

e following is a recursive definition of the Fibonacci series
e for reference here are the first few terms of the series
- index-012345 67 8 910 11 12
- value-11235813 21 345589 144 233
e Fibonacci (N) = Fibonacci (N - 1) + Fibonacci (N -2)
fib (0, 1).
fib (1,1).
fib (N,F):-NlisN-1,N2isN -2,
fib (N1 ,F1),fib (N2,F2), FisF1 + F2.
e does not work for queries fib (N, 8)andfib (N, F)
- values for is operator are undefined

CSE-3401-July-16-2008 7

Fibonacci — tail recursion

* a tail recursive definition of the Fibonacci series
— tail recursion is equivalent to iteration
fibt (0, 1).
fibt (1, 1).
fibt (N,F):-fibt(2,1,1,N,F).
fibot (N, Last2, Lastl, N, F) :- Fis Last2 + Lastl.
fibt (I, Last2 ,Lastl ,N,F):-JisI+ 1,
Fi is Last2 + Last1,
fibt (J, Lastl , Fi, N, F).
e works for queries fibt (N, 120) and fibt (N, F)

- values are always defined for is operator.

CSE-3401-July-16-2008 8

sum a list of numbers

e sumList(List, Total) asserts List is a list of
numbers and Total = + / List
- uses an accumulator
- sumListA asserts (+ / List) + Acc = Total

sumList(List, Total) :- sumListA(List, 0, Total).
sumListA([],Acc, Acc).
sumListA([First|Rest], Acc, Total) :-
NewAcc is Acc + First,
sumListA(Rest, NewAcc, Total).

CSE-3401-July-16-2008 9

parts explosion - the
problem 1

e parts explosion is the problem of accumulating all
the parts for a product from a definition of the
components of each part

e consider a bicycle; we could have

- the following basic components
basicPart(spokes). basicPart(rim). basicPart(tire).
basicPart(inner_tube). basicPart(handle_bar).
basicPart(front_ fork). basicPart(rear_fork).

- the following definitions for sub assemblies
assembly(bike, [wheel, wheel, frame]).
assembly(wheel, [spokes, rim, wheel_cushion]).
assembly(wheel_cushion, [inner_tube, tire]).
assembly(frame, [handle_bar, front_fork, rear_fork]).

CSE-3401-July-16-2008 10

parts explosion - the
problem 2

e we are interested in obtaining a parts list for a
bicycle
- [rear_ fork , front_ fork , handle_bar, tire
, inner_tube , rim , spokes , tire , inner_tube , rim
, spokes]
- we have two wheels so there are two tires, inner_tubes,
rims and spokes.
e using accumulators we can avoid wasteful re-
computation as in the case for the ordinary
recursion definition of the Fibonacci series

CSE-3401-July-16-2008 11

parts explosion -
accumulator 1

e partsof (X ,P) - P is the list of parts for item X
e partsacc (X, A,P)-parts_of (X) || A=P.

partsof (X, P) :- partsacc (X, [1, P).
basic part — parts list contains the part || is append

partsacc (X, A, [X]| A]) :- basicPart (X).
not a basic part - find the components of the part
partsacc (X, A, P) :- assembly (X, Subparts) ,
parsacclist — parts_of (Subparts) [| A=P
partsacclist (Subparts , A, P).

CSE-3401-July-16-2008 12

parts explosion -
accumulator 2

e partsacclist (ListOfParts , AccParts, P)
- parts_of (ListOfParts) || AccParts = P
> no parts = no change in accumulator
partsacclist ([], A, A).
partsacclist ([Head | Tail], A, Total) :-
> get the parts for the first on the list
partsacc (Head , A, HeadParts)

> and catenate with the parts obtained from
the rest of the ListOfParts

, partsacclist (Tail , HeadParts , Total).

CSE-3401-July-16-2008 13

difference lists and holes

e the accumulator in the parts explosion
program is a stack

— items are stored in the reverse order in which
they are found

* how do we store accumulated items in the
same order in which they are formed?
- use a queue

e difference lists with holes are equivalent to
a queue

CSE-3401-July-16-2008 14

examples for holes

e consider the following list
[a,b,c,d]| X]

- X is a variable indicating the tail of the list. It
is like a hole that can be filled in once a value
for X is obtained

o for example
Res=[a,b,c,d|X], X=[e,f].
yields
Res=[a,b,c,d,e, f]

CSE-3401-July-16-2008 15

examples for holes - 2

* or could have the following with the hole
going down the list
Res=[a,b,c,d]| X]
- more goal searching gives X =[e, f| Y]
- more goal searching givesY =[h ,i,]j]
- back substitution Yields
Res=[a,b,c,d,e,f,h,i,j]

CSE-3401-July-16-2008 16

parts explosion - difference
list 1

e partsofd (X, P) - P is the list of parts for item X
e partsdiff (X, Hole , P) — parts_of (X) || Hole = P

- hole and P are reversed compared to Clocksin & Mellish
(v5) to better compare with accumulator version

partsofd (X, P) :- partsdiff (X, [], P).

— base case we have a basic part, then the parts list
contains the part

partsdiff (X , Hole , [X | Hole]):- basicPart (X).

CSE-3401-July-16-2008 17

parts explosion - difference
list 2

- not a base part, so we find the components of
the part

partsdiff (X , Hole , P) :-
assembly (X, Subparts)
- parsdifflistd — parts_of (Subparts) || Hole = P
, partsdifflist (Subparts , Hole , P).

CSE-3401-July-16-2008 18

parts explosion - difference
lists 3

o parsdifflist (ListOfParts , Hole , P)

- parts_of (ListOfParts) || Hole = P
partsdifflist ([], Hole , Hole).
partsdifflist ([Head | Tail], Hole , Total) :-
e get the parts for the first on the list
partsdiff (Head , Holel , Total)

e and catenate with the parts obtained from the
rest of the ListOfParts
, partsdifflist (Tail , Hole , Holel).

e Holel is the “total” of Tail

CSE-3401-July-16-2008 19

compare accumulator with
hole

partsof (X, P) :- partsacc (X, [], P). Accumulator
partsofd (X , P) :- partsdiff (X, [], P). Difference/Hole

partsacc (X, A, [X] A]) :- basicPart (X).
partsdiff (X, Hole , [X | Hole 1) :- basicPart (X).

partsacc (X, A, P) :- assembly (X, Subparts)
, partsacclist (Subparts , A, P).

partsdiff (X , Hole , P) :- assembly (X, Subparts)
, partsdifflist (Subparts , Hole , P).

CSE-3401-July-16-2008 20

compare accumulator with
hole - 2

partsacclist ([], A, A).
partsdifflist ([] , Hole , Hole).

partsacclist ([Head | Tail], A, Total)
:- partsacc (Head , A, HeadParts)
, partsacclist (Tail , HeadParts , Total).

partsdifflist ([Head | Tail] , Hole , Total)
.- partsdiff (Head , Holel , Total)
, partsdifflist (Tail , Hole , Holel).

CSE-3401-July-16-2008

21

Cut & Not

Shakil M. Khan
adapted from Gunnar Gotshalks

cut - !

e cut, the ! operator, is used to
- not waste time on useless choices

1. know that if current rule fails then trying further rules for
the current predicate is useless

- if you got this far then, this is the only rule to try
2. stop after one solution — do not look for alternate solutions
3. if you continue with this predicate, you will not find a
solution

- use of !, fail

e cut commits to all choices made when entering parent goal
- the predicate at the head of the rule
» cannot be re-satisfied on backtracking
a:-b,c !, d e.

CSE-3401-July-16-2008 23

confirming choice of rule

e rule 2 for intersection has confirmation use of cut
- intersection (A, B,C)-ANB=C
intersection ([], B, []).
intersection ([Ah | At],B,[Ah | Ct])
:- member (Ah, B), !, intersection (At, B, Ct).
- rule 2 is applicable when head (A) in B
intersection ([Ah | At],B,C)
:- intersection (At, B, C).
- rule 3 is applicable when head (A) not-in B

e once we have established that Ah is a member of B, then if
we backtrack over the member predicate, there is no need
to consider rule 3

CSE-3401-July-16-2008 24

stopping - found first
solution

e consider the predicate sum_to (N ,T), where T
is the sum of the integers 1 .. N
sum_to (1, 1).
sum_to (N, T):-N1lisN-1,
sum_to (N1,T1),
TisT1 + N.

e the above program works as long as N is an
integer >=1
- but there is only one solution, there is no point in trying
rule 2 if rule 1 is ever satisfied

- if ; return is used Prolog loops until memory is)
exhausted searching for a non existent second solution

CSE-3401-July-16-2008 25

stopping - found first
solution - 2

e so introduce cut into the first case
sum_to(1,1):-1!.
sum_to (N, T):-N1lisN-1,
sum_to (N1,T1),
TisT1l + N.

e now only one solution is found. Search
terminates without infinite loop.

- also example of choice of rule. Once rule 1 has
been picked no point in trying rule 2

CSE-3401-July-16-2008 26

cut-fail in action

e consider the following
avg_taxpayer(X) :- foreigner(X), !, fail.
avg_taxpayer(X) :- ...

e fail always fails

o definition makes use of cut fail to
terminate when the person is a foreigner
(even if that person has all other qualities
of an average taxpayer, denoted by ...
above)

CSE-3401-July-16-2008 27

not

 when a rule has the following form
head :-A, B, C, D.
e you can think of
- A as being a guard to trying B, C, D
- A, B as being a guard to trying C, D
- A, B, C as being a guard to trying D
e for example the use of member (Ah, B)
in the rule 2 for intersection

CSE-3401-July-16-2008 28

not - 2

e the predicate not (P) is used as a guard to
select cases as in the following
-Q([HI|T],...):-not(H=[_]1_1),P(H,...).

> only try P if H does not have a head and tail
-Q([HI|T],...):-not(H=[]),P(H,...).
> only try P if H is not the empty list
-Q([HI|T],X,...):-not(H=X),P(H,..).
> only try P if H is not equal to X

CSE-3401-July-16-2008 29

not — definition

e not is not built into some Prologs (it is in SWI
Prolog) as its interpretation depends upon what
you want it to mean

Prolog searches are based on
closed universe
truth is relative to the database

e yes means the query can be satisfied by the
database

* no means the query cannot be satisfied by the
database
- it does not mean the query is false, just unsatisfiable

CSE-3401-July-16-2008 30

not — definition

e the following is the definition of not as defined in
utitlities.pro and in Clocksin & Mellish

not(P):-call (P),!, fail.
not (_).
e rule 1 triescall (P)
- call queries the database with the predicate P
- analogous to eval in Lisp

e if the call succeeds, then the !, fail combination says fail
and do not try the second rule

- so if P gives yes, then not (P) gives no
e if the call fails, then rule 2 is tried and always succeeds
- so if P gives no, then not (P) gives yes

CSE-3401-July-16-2008 31

not definition -
consequence

» the following shows that not as defined
has side effects

- a double negative is not equivalent to a
positive!

CSE-3401-July-16-2008 32

cut & not equivalence

e cut and not can be used interchangeably
with a change in rule structure
- note the use of B as a guard
A:-B,C. A:-B,!,C.
A:-not(B),D. A:-D.
e if B succeeds then success or failure of A
depends upon C

e if B fails, then success or failure of A
depends upon D

CSE-3401-July-16-2008 33

cut is dangerous

e using cut we are taking advantage of the way Prolog
searches the database

e consider the predicate number_of_parents (X, N)
- X has N parents defined as follows
number_of_parents (adam , 0) :-!.
number_of_parents (eve, 0) :- 1.
number_of_parents (X, 2).

e definition works correctly if we query such as the following
when using ; return - the cut prevents finding extra
solutions for adam and eve

number_of_parents (adam , N). ==>0
number_of_parents (eve , N). ==>0
number_of_parents (wilhelma , N). ==> 2

CSE-3401-July-16-2008 34

cut is dangerous - 2

e but fails on the following queries

number_of_parents (adam , 2). ==> yes
number_of_parents (eve, 2). ==> yes

e change the definition to
number_of_parents (adam ,N) :-!, N =
number_of_parents (eve, N) :-!, N = 0.

number_of_parents (X, 2).

e or change the definition to
number_of_parents(adam , 0) :-!.
number_of_parents(eve , 0) :- 1.
number_of_parents(X,2) :- X \= adam , X \= eve.

o still fail on queries such as the following, expecting backtracking
to enumerate all the possibilities

number_of_parents (Who , N).

CSE-3401-July-16-2008 35

cut is dangerous - moral

e if you introduce cuts to obtain correct behavior
when the goals are of one form, there is no
guarantee that anything sensible will happen if
goals of another form start appearing

e it follows that it is only possible to use cut
reliably if you have a clear policy about how your
rules are going to be used. If you change this
policy, all the uses of cut must be reviewed

CSE-3401-July-16-2008 36

