
1

Prolog Introduction
(cont’d)

Clocksin & Mellish Ch 1 & 2

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-June-25-2008 2

structures

• structures are a means of grouping a collection of
other objects
– structures are also called compound terms, or complex

terms
– the name of a structure is called a functor
– the items within a structure are called components

• the general pattern is
functor (component_1 , component_2 ,

...
component_n)

2

CSE-3401-June-25-2008 3

structures (cont’d)

• components can also be structures –
recursive definition

• e.g.:
functor (functor1 (comp1, comp2),

component_2 ,
...
component_n)

CSE-3401-June-25-2008 4

example structures

• books have authors and titles, so we could have
book (dickens , great_expectations)

• people have books; in particular, Leila could have
Great Expectations

has (leila , book (dickens , great_expectations))

• facts in Prolog are structures where the predicate
is the functor of a structure and the arguments of
the predicate are the components of the structure

3

CSE-3401-June-25-2008 5

characters

• prolog is based on the ASCII character set
• characters are treated as small integers 0 .. 127
• characters may be

– printed
– read from a file or keyboard
– compared
– take part in arithmetic operations

• characters are distinguished as
– printing – visible on the paper
– nonprinting – look like whitespace

CSE-3401-June-25-2008 6

operators

• all predicates in Prolog are functors, even ,, ;
and, :-

• a rule such as
– dwarf (Person) :- brother (Person , Other) ,

dwarf (Other) .

is a shorthand for
– :- (dwarf (Person)

, , (brother (Person , Other)
, dwarf (Other)

)
).

4

CSE-3401-June-25-2008 7

operators (cont’d)

• arithmetic and relational operators are
also functors, thus
– a + b * c internally is + (a , * (b , c))

• this is inconvenient so Prolog permits
operators to be written in standard infix
notation
– you will learn later how you can define your

own infix operators

CSE-3401-June-25-2008 8

arithmetic

• the arithmetic operators do not do arithmetic; no
assignments are made
– it is simply pattern matching – infix operators are simply a

convenience for expressing a structure
• e.g.:

– 5 = 4 + 1. no
– 4 + 1 = 4 + 1. yes
– 1 + 4 = 4 + 1. no

• use the operator is to do arithmetic
– 5 is 4 + 1. yes 1 + 4 is 4 + 1. no

• arithmetic is only done on the right!
• right hand side is evaluated using arithmetic, then a

pattern match is made with the left hand side.

5

CSE-3401-June-25-2008 9

arithmetic (cont’d)

• can use variables in arithmetic
expressions for pattern matching
– A = 4 + 1. A has the pattern "4+1"

– spaces removed
– A is 4 + 1. A has as value the pattern 5

• more complex example
– B is 3 + 2 , C is B * 5 , A is C + B.

B = 5, C = 25, A =30

CSE-3401-June-25-2008 10

lists

• as in Lisp, lists are a ubiquitous structure in
Prolog; the syntax changes
– () are used to delimit structure components and to

provide precedence for operators, so using them for lists
as well would be confusing

• the structure is
– [item-1 , item-2 , ... , item-n]

• e.g.
– [a , b , c]
– [a , [b , c] , [[[d]]] , e , []]

• The empty list is []

6

CSE-3401-June-25-2008 11

lists (cont’d)

• the square bracket notation is a shorthand in
place of using the functor . or dot

[a , b , c] is really . (a , . (b , . (c , [])))
• as in Lisp, lists have a head (car / first) and a tail

(cdr / rest), thus
[Head | Tail]

• but you do not have operators to extract the
head and tail, all you have is pattern matching
– we will look at example Prolog utilities on lists to

demonstrate
• Empty list has no head or tail

[] ≠ [_ | _]

Utility programs
In utilities.pro discussed at various
times throughout rest of the course

Shakil M. Khan
adapted from Gunnar Gotshalks

7

CSE-3401-June-25-2008 13

member (I , L)

• item I is a member of the list L
– reduce the list (second rule)

until first in list (first rule) or
empty (no rule, so fail)

– member (X , [X | _]).
member (X , [_ | Z]) :- member (X , Z).

• note the use of the anonymous variable _
– we do not care about the value of the rest in the first

rule, nor the value of first in the second rule
– typically use it when it is the only instance of that

variable in the rule

CSE-3401-June-25-2008 14

append (L1, L2 , R)

• R is the result of appending list L2 to the end of
list L1
– cannot redefine in Qunitus Prolog.
– append ([] , L , L).

appending to nil yields the original list
– append ([X | L1] , L2 , [X | L3])

:- append (L1 , L2 , L3).
simultaneous recursive descent on L1 & L3 first of the
left list is the first of the result

• pattern
– L1 = a b c L2 = 2 3 4 5 R = a b c 2 3 4 5

8

CSE-3401-June-25-2008 15

append (L1 , L2 , R) –
cont’d

• queries – ask for results in all combinations; not
like Java or C where functions are programmed
for only one query
– append ([1 , 2 , 3] , [a , b , c] , R).

what is the result of appending L1 and L2?
– append (L1 , [a , b , c] , [1 , 2 , 3 , a , b , c]).

what L1 gives [1 , 2 , 3 , a , b , c] when appended
with [a , b , c] ?

– append ([1 , 2 , 3] , L2 , [1 , 2 , 3 , a , b , c]).
what L2 gives [1 , 2 , 3 , a , b , c] when appended to
[1 , 2 , 3] ?

CSE-3401-June-25-2008 16

append (L1 , L2 , R) –
cont’d

– append (L1 , L2 , [1 , 2 , 3 , a , b , c]).
what L1 and L2 gives [1 , 2 , 3 , a , b , c]
when L2 is appended to L1?

– append (L1 , L2 , R).
what L1 and L2 give R? Infinite number of
answers

– append (Before , [Middle | After] , List).
if middle is defined we can get the before and
after
append (Before, [4 | After], [1,2,3,4,5,6,7]).

9

CSE-3401-June-25-2008 17

trace –
append (P, [a] , [1 , 2 , 3 , a])

• variables are renamed every time a rule is used
for matching
– append ([] , L , L).

append ([X | L1] , L2 , [X | L3])
:- append (L1 , L2 , L3).

• try to match rule 1
– P = [], [a] = L_1, [1,2,3,a] = L_1

• 1 – fail, try to match rule 2
– P = [X_2 | L1_2], [a] = L2_2, [1,2,3,a] = [X_2 | L3_2]
– succeed with X_2 = 1, L2_2 = [a], L3_2 = [2,3,a]

CSE-3401-June-25-2008 18

trace – (cont’d)
append (P, [a] , [1 , 2 , 3 , a])

– append ([] , L , L).
append ([X | L1] , L2 , [X | L3])

:- append (L1 , L2 , L3).

• try to match rule 1 append(L1_2, [a], [2,3,a])
– L1_2 = [], [a] = L_3, [2,3,a] = L_3

• 2 – fail, try to match rule 2
– L1_2 = [X_4 | L1_4], L2_4 = [a],

[2,3,a] = [X_4 | L3_4]
– succeed with X_4 = 2, L2_4 = [a], L3_4 = [3,a]

• try to match rule 1 append(L1_4, [a], [3,a])
– L1_4 = [], [a] = L_5, [3,a] = L_5

10

CSE-3401-June-25-2008 19

trace – (cont’d)
append (P, [a] , [1 , 2 , 3 , a])

– append ([] , L , L).
append ([X | L1] , L2 , [X | L3])

:- append (L1 , L2 , L3).

• 3 – fail, try to match rule 2
– L1_4 = [X_6 | L1_6], [a] = L2_6, [3,a] = [X_6 | L3_6]
– succeed with X_6 = 3, L2_6 = [a], L3_6 = [a]

• try to match rule 1 append(L1_6, [a], [a])
– L1_6 = [], [a] = L_7, [a] = L_7

• succeed, recursion stops, backtrack and
substitute values

CSE-3401-June-25-2008 20

trace – (cont’d)
append (P, [a] , [1 , 2 , 3 , a])

• in step 3
L1 _4 = [3 | []] = [3]

• in step 2 we had
L1_2 = [X_4 | L1_4], L2_4 = [a],
[2,3,a] = [X_4 | L3_4]

– succeed with X_4 = 2, L2_4 = [a], L3_4 = [3,a]
– and from step 3, L1_4 = [3]
– thus L1_2 = [2, 3]

• in step 1 we had
P = [X_2 | L1_2], [a] = L2_2, [a,1,2,3] = [X_2 | L3_2]

– succeed with X_2 = 1, L2_2 = [a], L3_2 = [2,3,a]
– and from step 2, L1_2 = [2, 3]
– thus P = [1, 2, 3]

11

CSE-3401-June-25-2008 21

delete (I , L , R)

• R is the result of deleting item I from the list L.
– delete (X , [X | Y] , Y).

like saying L = (cons (car L) (cdr L)) in Lisp
– delete (X , [Y | W] , [Y | Z]) :- delete (X , W , Z).

check the rest of the list if not the first item;
analogous to (cons (car L) (delete (cdr L)) in Lisp

CSE-3401-June-25-2008 22

prefix (P , L)

• P is the prefix of the list L; it can be
defined using append as follows:
– prefix (P , L) :- append (P , _ , L).

P is a prefix of L if something, including nil,
can be suffixed to P to form L

12

CSE-3401-June-25-2008 23

prefix (P , L) – cont’d

• we can define prefix in terms of itself as follows
– List YYYYYYXXXXX XXXXX

Prefix PPPPPP empty
^^^^^ check equality until prefix is exhausted

• the base case is having the empty list as the
prefix

prefix ([] , _).
• the recursive case is having the first items on the

prefix and the list being the same, and the
reduced prefix and list satisfy the prefix property

prefix ([A | B] , [A | C]) :- prefix (B , C).

CSE-3401-June-25-2008 24

suffix (S , L)

• S is the suffix of the list L; it can be
defined using append as follows
– suffix (S , L) :- append (_ , S , L).

S is a suffix of L if something, including nil, can
be prefixed to S to form L

13

CSE-3401-June-25-2008 25

• we can define suffix in terms of itself as follows
– List PPPPPPXXXXX

Suffix YYYYY
^^^^^ reduce to the prefix part of the List

• in the base case the suffix is the list
suffix (L , L).

• the recursive case is to reduce the size of the
prefix of the list

suffix (S , [_ | L]) :- suffix (S , L).

suffix (S , L) – cont’d

CSE-3401-June-25-2008 26

sublist (S , L)

• S is a sublist of L can be defined using append as
follows
– sublist (S, L) :- append (_ , S, Lt), append (Lt, _ , L).

S is a sublist of L if something, including nil, can be
prefixed to S to form the list Lt
and something, including nil, can be suffixed to Lt to
form L

• in other words, S is a sublist of L if there exists a
prefix P to S and a suffix T to S such that
L = P |+| S |+| T
– where |+| means concatenation

14

CSE-3401-June-25-2008 27

sublist (S , L) – cont’d

• we can define sublist in terms of itself and prefix
as follows
– List PPPPSSSSSXXXXXX SSSSSXXXXXX

Sublist YYYYY YYYYY
^^^^ reduce the prefix part of the List

• in the base case the sublist is the prefix of the list
sublist (S , L) :- prefix (S , L).

• the recursive case is to reduce the size of the
prefix of the list

sublist (S , [_ | L]) :- sublist (S , L).

Example programs
Showing things to look for

Shakil M. Khan
adapted from Gunnar Gotshalks

15

CSE-3401-June-25-2008 29

infinite loops

• avoid circular definitions
– parent (A, B) :- child (B, A).

child (C, D) :- parent (D, C).

• easy to see here but as database grows
you can forget what is in it and circularity
can creep in

CSE-3401-June-25-2008 30

infinite loops – left
recursion

• left recursion can cause problems
– person (X) :- person (Y) , mother (Y, X).

person (eve).
– the query person (P) loops indefinitely as the

first rule is found first on every recursive call
– second rule is only tried if first rule fails

• reordering the rules will correct the
problem if only the first answer is wanted

• heuristic: put facts before rules

16

CSE-3401-June-25-2008 31

infinite loops – left
recursion (cont’d)

• left recursion can cause problems –
continued
– person (eve).

person (X) :- person (Y) , mother (Y, X).
– assuming mother fails, the query person (P)

loops indefinitely after P = eve
• left recursion is the problem
• do not assume Prolog will find the facts

and rules – need to know how searching
works

CSE-3401-June-25-2008 32

multiple answers – isList,
weakList

• the textbook gives the following predicate, but it loops on
the query isList (X).
– isList ([A | B]) :- isList (B).

isList ([]).
• it can be defined just as well by putting the fact first

– isList ([]).
isList ([A | B]) :- isList (B).

• but gives more than one answer for the query isList (X),
but does not loop forever

• for the latter query, to have only one answer, can assert
the following
– weak_isList ([]).

weak_isList ([_ | _]).

17

CSE-3401-June-25-2008 33

why is weak_isList weak?

• the strong definition says a list must have the
correct structure and must end in nil

• the weak definition simply says the list must
have the correct structure for one level and says
nothing about nil except for the empty list

• e.g. recall [...] is shorthand for the structure
.(...)
– isList (.(a , [])). yes
– isList (.(a , .(b , []))). yes
– isList (.(a , .(b, .(c , [])))). yes
– isList (.(a , b)). no
– isList (.(a , .(b , c , []))). no

• but all responses are yes for weak_isList

CSE-3401-June-25-2008 34

mapping

• consider the problem of translating a sentence from one
form to another

• e.g. as in the following "dialogue", the second sentence is a
translation of the preceding sentence
– you are a computer

I am not a computer
– do you speak french

no I speak german
– assume the following simplistic translations

• you I
• are am not
• do no
• french german

18

CSE-3401-June-25-2008 35

mapping (cont’d)

• let us represent sentences as a list of words
– you are a computer [you , are , a , computer]

• we represent the list of words to change as a set
of change rules
– change (you , i).

change (are , [am , not]).
change (french , german).
change (do , no).
change (X , X). /* catch all to make no

changes */

CSE-3401-June-25-2008 36

mapping (cont’d)

• then the translation rules can be the following
– alter([] , []).

alter ([H | T] , [X | Y]) :- change (H, X), alter (T, Y).

• then we can translate our example sentences
– alter ([you, are, a, computer] , Trans).

trans = [i , am , not , a , computer]
– try using ;<return> on the above; explain why there are

multiple answers; try a trace to see what is happening
– we need a method to prevent multiple answers

19

CSE-3401-June-25-2008 37

mapping (cont’d)

• try the inverse – with ; <return>
– alter (Org , [i , am , not , a , computer]).

• try a variable – with ; <return>
– alter ([you , are , a , X] , Trans)

CSE-3401-June-25-2008 38

warning – caution – danger

• logic and a finite database can lead to
strange and unexpected results

• use with extreme caution

20

CSE-3401-June-25-2008 39

info

• drop date: July 2
• I'll take the highest of the 2 class tests

and make it worth 40%!
• assignment/report 2
• test 2:

– July 9th (2 weeks from today)

