
1

Associative Database
Management
Wilensky Chapter 22

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-June-18-2008 2

associative database

• an associative database is a collection of facts
retrievable by their contents
– is a poodle a dog?
– which people does Alice manage?

• as opposed to retrieving facts by their position in
the DB
– give me the 10'th fact
– what is the 10'th fact ?

• the facts in a database can be stored as patterns
• we can use a pattern matcher to search for facts

in a database
– match a query pattern against the patterns in the

database looking for one or more matches

2

CSE-3401-June-18-2008 3

example database facts

• simple facts have no variables
– (dog Fido) Fido is a dog
– (loves John Mary) John loves Mary

• can have more complex facts
– (implies (dog ?x) (animal ?x))

if x is a dog then x is an animal
– (loves ?x ?x)

a person loves himself/herself
• one has to carefully consider how to represent

facts; in the Lisp world it is customary to have
the first item on a list be the main predicate and
the remaining items be the arguments to the
predicate

CSE-3401-June-18-2008 4

example queries

• queries are patterns themselves – they
can be without variables
– is Fido a dog? (dog Fido)
– does John love Mary? (loves John Mary)

• can have more complex queries
– what is Fido? (?what Fido)
– who does John love? (loves John ?who)
– who loves whom? (loves ?who ?whom)

3

CSE-3401-June-18-2008 5

implementation

• in designing a database we need to consider how the facts
will be stored

• in our first implementation, the facts are all stored in a list
(dog Fido)
(loves John Mary)
(implies (dog ?x) (animal ?x))
(loves ?x ?x)

((dog Fido)
(loves john Mary)
(implies (dog (*var* #:var11)) (animal (*var* #:var11)))
(loves (*var* #:var12) (*var* #:var12))

)

CSE-3401-June-18-2008 6

add to the database

• store the database as the value of a symbol
• want to pass an unevaluated pattern and

unevaluated symbol to our add operation
– 1) use a macro
– 2) change the value of the symbol to update the DB
– consider the following:

DB: ((loves ?x Mary))
query: (loves John ?x)
try asking the query – it fails!
one solution : change the names of the variables in a
fact as soon as it is added to the DB

– 3) thus, need to replace the names of the pattern
matching variables to be unique

4

CSE-3401-June-18-2008 7

add to the database
(cont’d)

(defmacro add-to-data-base (item d-b-name)
`(setq ,d-b-name

(cons (replace-variables (quote ,item))
,d-b-name)

)
)

CSE-3401-June-18-2008 8

replace variable names

• replace the variables names in item
– replacing variables names needs to be done consistently
– create a binding list that keeps track of renaming
– start off with a nil binding
– returns the rebuilt item and the bindings of old and new

variable names

• (defun replace-variables (item)
(values (replace-variables-with-bindings

item nil)))

5

CSE-3401-June-18-2008 9

replace variable names
using bindings

• use the current bindings to replace variables consistently
(defun replace-variables-with-bindings (item bindings)
– for an atom nothing to replace

(cond ((atom item) (values item bindings))
– for a pattern variable return a replacement, if necessary

((pattern-var-p item)
(let ((var-binding (get-binding item bindings)))

(if var-binding ; if on binding list return the binding
(values var-binding bindings)
; else generate a new symbol
(let ((newvar (list '*var* (gensym "VAR"))))

(values newvar (add-binding item newvar
bindings))))))

CSE-3401-June-18-2008 10

replace variable names
using bindings (cont’d)

– item is neither an atom nor a pattern variable
– use recursion

– have to remember bindings from the "car" recursion for
the "cdr" recursion
(t (multiple-value-bind (newlhs lhsbindings)

(replace-variables-with-bindings
(car item) bindings)

(multiple-value-bind (newrhs finalbindings)
(replace-variables-with-bindings

(cdr item) lhsbindings)
(values (cons newlhs newrhs)

finalbindings))))
))

6

CSE-3401-June-18-2008 11

replace variable examples

• (replace-variables '(loves John Mary))
(LOVES JOHN MARY)

• (replace-variables '(loves ?x ?x))
(LOVES (*VAR* #:VAR20) (*VAR* #:VAR20))

CSE-3401-June-18-2008 12

create a database

• (setq DB nil)
NIL

• (add-to-data-base (loves John Mary) DB)
((loves John Mary))

• (add-to-data-base (loves ?x ?x) DB)
((loves (*var* #:var22) (*var* #:var22))

(loves John Mary))
• (add-to-data-base (dog Fido) DB)

((dog Fido)
((loves (*var* #:var22) (*var* #:var22))
(loves John Mary))

7

CSE-3401-June-18-2008 13

query the database

• use the matcher program to query the database
– returns a list of bindings that match
(defun query (request data-base)

(mapcan
#'(lambda (item)

(multiple-value-bind (flag bindings)
(match item request)

(if flag (list bindings))))
data-base))

– mapcan is like mapcar except it uses nconc in place of append
– nconc is a destructive replacement of the cdr part of a cell for

efficiency
– mapcan also removes nil (see chapter 15, page 268-269)

CSE-3401-June-18-2008 14

example queries

• (query '(Fido dog) DB) ; not in database
nil

• (query '(dog Fido) DB) ; in DB - no variables
(nil)

• (query '(loves John John) DB) ; in DB - hidden variables
((((*var* #:var22) John)))

• (query '(dog ?name) DB) ; variable in query
((((*var* name) Fido)))

• (query '(loves ?x ?y) DB) ; multiple matches
((((*var* x) (*var* y))((*var* #:var22) (*var* x)))

(((*var* y) Mary) ((*var* x) John))
)

8

CSE-3401-June-18-2008 15

implementation (cont’d)

• previous implementation becomes slow as the
database increases in size
– search is O(n) – where n is the number of facts

• reduce search time by indexing the facts
– put facts with different predicates on different lists
– put facts with the same predicate on the same list
– search significantly shorter lists by only searching lists

that match the predicate in the query

• the fact lists are put on the property list of the
predicate with the key being the database symbol
– facts could be in some databases and not in others

CSE-3401-June-18-2008 16

indexing example

• enter the following into the indexed database
(index '(loves John Mary) 'DB)
(index '(loves ?x ?x) 'DB)
(index '(person John) 'DB)
(index '(poodle Fido) 'DB)

• then look at the property lists for the predicates
(symbol-plist 'person) (db ((person John)))
(symbol-plist 'poodle) (db ((poodle Fido)))
(symbol-plist 'loves)

(db ((loves (*var* #:var13) (*var* #:var13))
(loves John Mary)))

9

CSE-3401-June-18-2008 17

other index lists

• the previous examples assumed facts would
begin with an atom that could become a symbol
with a property list

• what if a fact begins with a list?
– for example, could represent "if x is a woman then x is

mortal" as the following (--> is a valid symbol in Lisp)
((?x woman) --> (?x mortal))

– have the special atom *list* to hold such facts

• what if a fact begins with a variable?
– "everyone loves Barney" could be encoded as

(?x loves Barney)
– have the special atom *var* to hold such facts

CSE-3401-June-18-2008 18

what about searching the
entire DB?

• if we have a query that begins with a variable, then the
variable could match a variable, a list or any atom; hence
the entire data base would need to be searched

• how can we do this if the database is scattered across the
property lists of many symbols?

• have to keep track of the index symbols with the symbol for
the database
– add to the property list for the database symbol the list of

keys that have been used as indices
– in the example, several slides back, you could look at the

symbol list for DB
• (symbol-plist 'DB) (*keys* (poodle person loves))

10

CSE-3401-June-18-2008 19

index function for a
database

(defun index (item data-base)
– place is where we want to store the item – use the key for the

pattern
(let ((place (cond ((atom (car item)) (car item))

((pattern-var-p (car item)) '*var*)
(t '*list*))))

– store the item itself
(setf (get place data-base)

(cons (replace-variables item) ; rename variables
(get place data-base)))

– store the key for the item – adjoin adds only if not there
(setf (get data-base '*keys*)

(adjoin place (get data-base '*keys*)))))

CSE-3401-June-18-2008 20

fast query

(defun fast-query (request data-base)
(if (pattern-var-p (car request))

(mapcan #'(lambda (key) ; search entire DB
(query request (get key data-base)))

(get data-base '*keys*))
(nconc
; else search under "atom" or *list*
(query request (get (if (atom (car request))

(car request) '*list*)
data-base)

)
; add in search under *var* if "atom" or *list* search
(query request (get '*var* data-base)))))

11

CSE-3401-June-18-2008 21

deductive retrieval

• query and fast-query can’t perform deduction
– if a and a b, then b

• we want to create a retriever that can do this

CSE-3401-June-18-2008 22

deductive retrieval (cont’d)

• we use backward chaining
• store implications in the database in the following

form
(<- consequent antecedent)

• in addition to querying the database in the
normal way, we add the following query

(<- request ?antecedent)
• if this succeeds, we recursively query using the

returned antecedent as a new request
• and so on – we proceed backwards from the

query to the base facts

12

CSE-3401-June-18-2008 23

deductive retrieval example

• let's add the following to the database
(index '(<- (mammal ?x) (dog ?x)) 'DB)
(index '(<- (dog ?x) (poodle ?x)) 'DB)
(index '(poodle fido) 'DB)

• and make the following query
(mammal fido)

– matches fact 1 using the implication search with
request if (dog fido)

• make the recursive query – matches fact 2
– (dog fido) if (poodle fido)

• make the recursive query - matches fact 3
– return success ; no further recursion

CSE-3401-June-18-2008 24

deductive retrieval function

(defun retrieve (request data-base)
• combine a regular search
(nconc (fast-query request data-base)
• with a recursive search over the implications

(mapcan
... the function to apply to the implication search ...

• get the next level of implication search – note the
use of a macro to construct the pattern to use for the
search

(fast-query `(<- ,request ?antecedent)
data-base)

)))

13

CSE-3401-June-18-2008 25

deductive retrieval function
(cont’d)

... the function to apply to the implication search ...
#'(lambda (bindings)

– search for each of the bindings of antecedent and add to
the list of bindings
(mapcar #'(lambda (rbindings)

(append rbindings bindings))
– recursive search on an antecedent; need to replace the

variables in antecedent with their values, if any (e.g.
Fido for ?x in (dog ?x))

(retrieve (substitute-vars
(get-binding '?antecedent bindings)
bindings)

data-base)
))

CSE-3401-June-18-2008 26

substituting variables

• suppose we have the following binding list
((?antecedent (loves John ?y)) (?y ?z) (?z Mary))

• we do not want to search for the more general
(loves John ?y)

because we have bindings that restrict the value of ?y
• a first level substitution for ?z --> ?y yields a search

pattern of
(loves John ?z)

• but this is still too general as we have a binding for ?z
• need to do a second level, ?Mary --> ?z, recursive

substitution to get the pattern we want to search on
(loves John Mary)

14

CSE-3401-June-18-2008 27

substitute variables for
deductive retrieval

(defun substitute-vars (item bindings)
– nothing to do if item is an atom

(cond ((atom item) item)
– potential substitution if a variable
((pattern-var-p item)

(let ((binding (get-binding item bindings)))
– substitute only if we have a binding for the item

(if binding
(substitute-vars binding bindings)
item)))

– have a list, so recursively substitute on first and rest
(t (cons (substitute-vars (car item) bindings)

(substitute-vars (cdr item) bindings)))))

1

Prolog Introduction
Clocksin & Mellish Ch 1 & 2

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-June-18-2008 2

Prolog history

• Prolog invented (1972) by the AI
researcher Alan Colmeraurer
– used at York in the Student Information

System to check applications for input errors

• widely used to develop expert systems &
other AI applications including natural
language processing
– early ideas developed at University of

Montreal; then University of Marseilles

2

CSE-3401-June-18-2008 3

Prolog use & availability

• Prolog rumored to be embedded in MS
Office

• on all major and many minor platforms
• several free and shareware versions
• standard: ‘Edinburgh-style’

CSE-3401-June-18-2008 4

low- and high-level

• Prolog is a higher-level language for
knowledge-based programming
– more powerful, not necessarily as efficient
– more compact
– more understandable programs.

• ‘pure’ Prolog:
– denotational & declarative
– just 1 state

a ‘knowledge’ base = database for facts

3

CSE-3401-June-18-2008 5

Lisp vs. Prolog?

• which AI language an AI researcher uses often
depends on where they studied
– at Edinburgh, almost all Prolog
– at MIT and Stanford, almost all Lisp
– MIT has used a dialect of Lisp called Scheme in their first

year programming course for many years
– we have been more a ‘Prolog shop’ than a ‘Lisp shop’ in

this department
– prof. Stachniak teaches a 4th year course on Logic

Programming which includes a more advanced look at
Prolog

CSE-3401-June-18-2008 6

what is a Prolog program?

• used for solving problems that involves objects
and the relationship between objects

• Prolog is a conversational language
• programming is Prolog consists of:

– declaring some facts about objects and their relationship
– defining some rules about objects and their relationships
– asking questions about objects and their relationships

4

CSE-3401-June-18-2008 7

facts

• a program consists of a database containing one
or more facts
– a fact is a relationship between a collection of objects

• e.g.
– dog (fido).

Fido is a dog
it is true that Fido is a dog

– mother (mary, joe).
Mary is the mother of Joe
it is true that Mary is the mother of Joe

– compete (ali, leila, tennis).
Ali and Leila compete in tennis
it is true that Ali and Leila compete in tennis

CSE-3401-June-18-2008 8

facts (cont’d)

• the full stop character ‘.’ must come at the
end of a fact

• relationships can have any number of
objects

• names are usually chosen to be
meaningful
– within Prolog, names are just arbitrary strings;

it is people who give meaning to names
– could have used bSpears(sCowell) rather than

dog(fido)!

5

CSE-3401-June-18-2008 9

rules

• and a program consists of a database of zero or
more rules
– a rule is an if...then relationship of facts

• e.g.
– use (umbrella) :- weather (raining).

use an umbrella if it is raining
– use (umbrella) :- weather(raining) , own (umbrella).

use an umbrella if it is raining and you own an
umbrella

– use (umbrella) :- weather (raining) ,
(own (umbrella) ; borrow (umbrella)).

use an umbrella if it is raining and you either own an
umbrella or can borrow an umbrella

CSE-3401-June-18-2008 10

more on rules

• rules have the general structure
head :- body

– only one fact can be in the head – the consequent
– the body is a Boolean combination of predicates
– use , (and) and ; (or) and () (parenthesis) to logically

organize the "condition" – the antecedent/body

• rules are written backwards to
– emphasize the backward chaining for database search
– be more regular in structure, since the head is only one

predicate

6

CSE-3401-June-18-2008 11

constants

• constants are names of that begin with
lower case letters
– e.g. ali, leila, tennis, dog, fido, mother, mary,

joe, umbrella, raining, weather, own, borrow
– names of relationships are constants
– see text (C&M 2.1.1) for a complete set of

rules for the syntax of constants

CSE-3401-June-18-2008 12

variables

• in place of constants in facts and rules one can
have variables
– variables are names that begin with upper case letters
– e.g. X, Y, Who, Whom, List, Person

• example of rules with variables
– loves (Everyone, barney).

everyone loves barney
for all values of Everyone it is the case that
loves(Everyone, barney) is true

– sister_of (X, Y) :- female (X),
parents (X, M, F), parents (Y,M,F).

for all X and Y, X is a sister of Y if…

7

CSE-3401-June-18-2008 13

variables (cont’d)

– dwarf (Person) :- brother (Person, Other) ,
dwarf (Other).

a person is a dwarf, if they the brother of other and
the other is a dwarf

• variables can also begin with _ (underscore)
– _ (anonymous variable)
– _1 _abc (not anonymous variable)
– several anonymous variables in the same structure need

not be given consistent interpretations
c1 (X) :- a1 (X, _), a2 (X), a3 (_).

may represent two different variables

CSE-3401-June-18-2008 14

queries

• a query in Prolog is Boolean combination of
predicates – like the antecedent of a rule
– a query is like a rule, except we leave out the

consequent true
– true :- dwarf (alberich).

becomes simply
dwarf (alberich).

• use comma (and), semicolon (or), and
parenthesis to form a query expression

• most common is to have a single predicate

8

CSE-3401-June-18-2008 15

queries (cont’d)

• answer is a binding of the variables that make
the query expression true – if no variables then
the answer is yes; if no such binding exists, the
answer is no

• the database is searched to match the query
(similar to the Lisp database program)

• the search
– uses backward chaining
– is depth first
– is sequential through the database from first to last

• try the exercise on ring.pro

CSE-3401-June-18-2008 16

satisfying goals -
backtracking

• example DB:
/*1*/ female (mary).
/*2*/ parent (john, ann, fred).
/*3*/ parent (mary, ann, fred).
/*4*/ sister_of (X,Y) :-

female (X),
parent (X, M, F), parent (Y, M, F).

• query:
sister_of (mary, X), female (X).

9

CSE-3401-June-18-2008 17

satisfying goals –
backtracking (cont’d)

• flow of satisfaction (summary)
– try to match sister_of (mary, X)

• if found in DB, try to satisfy female (X) with that binding of
X;

– if found, return that binding;
– else, backtrack to previous goal and try to find another

X for which sister_of holds; if found continue with this
new binding as before; else return no

• else return no

CSE-3401-June-18-2008 18

flow of satisfaction

• sister_of (mary, X)
– matches with the head of rule 4; mark this

position and try to satisfy the body of this rule
– female (mary), parent (mary, M, F),

parent (X, M, F).
– female (mary) satisfied by fact 1; mark this

position and try to satisfy parent (mary, M, F)
– parent (mary, M, F) matches with fact 3 with

bindings parent (mary, ann, fred); mark this,
and try to satisfy parent (X, ann fred)

10

CSE-3401-June-18-2008 19

flow of satisfaction (cont’d)

– parent (X, ann, fred) matches with fact 2 with
binding X john; mark this position; thus
sister_of (mary, X) is satisfied with binding
sister_of (mary, john)

• now try to satisfy female (john)
– it fails!

• backtrack to sister_of
– the last subgoal of sister_of was

parent (X, ann, fred), which earlier succeeded
with X john; ignore this binding and try to
resatisfy it starting from after fact 2

CSE-3401-June-18-2008 20

flow of satisfaction (cont’d)

– parent (X, ann, fred) matches with fact 3 with
binding X mary; mark this position; thus
sister_of (mary, X) is satisfied with binding
sister_of (mary, mary)

• now try to satisfy female (mary)
– it matches with fact 1; thus the whole query

succeeds with binding X mary, and Prolog
returns this binding

• note: we can initiate backtracking using ;

11

CSE-3401-June-18-2008 21

running a Prolog program

• programs are stored in one or more files that are
consulted

• on Prism to run SWI Prolog enter
% pl

• the following prompt appears
| ?-

• consult the appropriate file(s) – add to the
database

| ?- consult('ring.pro').
– while it is possible to enter facts and rules interactively using

consult(user), it is inconvenient and error prone
– SWI-prolog does not have a re-consult predicate, only consult

is used

CSE-3401-June-18-2008 22

running a Prolog program
(cont’d)

• make zero or more queries
• exit prolog

| ?- CTRL-d /* and for exiting consult (user)
on Prism */

• consult(user) enables you to enter facts & rules
into the database without storing them in a file;
it is not an effective way to work with Prolog

12

CSE-3401-June-18-2008 23

info

• class test 1 marks are out
– max : 38/40 A+
– min : 12/40 F
– median : 23/40 D+
– average : 22.24/40 D+
– use courseInfo 3401 to check your marks

• check course page after Friday for
assignment 2

• this Friday’s office hours are cancelled

