
1

Multiple Value Functions
(see Wilensky Chapter 16.4)

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-June-4-2008 2

multiple value functions

• in other languages, one can return multiple
values on one call
– e.g. in C, using call by reference (pointers)

• but in Lisp, all parameters are passed by value
– they cannot be changed

• to return multiple values in Lisp
– need to construct and return a list of the results you

want the function to return (this is costly!)
– the caller must extract, through car and cdr the values

of interest (inconvenient)
– this occurs frequently enough that Lisp permits multiple

values to be returned by some special functions/macros

2

CSE-3401-June-4-2008 3

catching multiple values

• by default, if a function returns multiple values
– only one is passed back, the rest are discarded
– unless you specifically ask for the other values

• e.g. (round aNumber) returns two values
– the rounded value and
– the value needed to add to the rounded result to get the

original number
• (round aNumber) roundedValue; difference

where, difference = aNumber - roundedValue
• (round 7.6) 8; -0.4

– not a list! (car (round 7.6)) fails
– (print (round 7.6)) 8

uses first value by default

CSE-3401-June-4-2008 4

catching multiple values
(cont’d)

• use the following macro to create a list of
multiple value returns
– (multiple-value-list (round aNumber))

(roundedValue restoreNumber)
– (multiple-value-list (round 7.6)) (8 -0.4)

• can assign the values to symbols using
the following macro
– (multiple-value-setq (val diff) (round 7.6))
– 8 val and -0.4 diff
– note setq implies global symbol

3

CSE-3401-June-4-2008 5

catching multiple values
(cont’d)

• can create a local context for variables
instead of using global variables

(let ((val nil) (diff nil))
(multiple-value-setq (val diff) (round 7.6))
;; ... use val and diff in list of forms
(print val)
(print diff)
(print (+ val diff))

)

CSE-3401-June-4-2008 6

catching multiple values
(cont’d)

• the following shows that let is syntactic sugar for
a lambda function
– ((lambda (val diff)

(multiple-value-setq (val diff) (round 7.6))
;; ... use val and diff in list of forms
(print val)
(print diff)
(print (+ val diff))

)
nil nil ;; initial values for val & diff

)

4

CSE-3401-June-4-2008 7

catching multiple values
(cont’d)

• instead of using let which needs initial
values for its parameters, can use the
following
(multiple-value-bind (val diff) (round 7.6)

;; ... list of forms using val and diff ...
(print val)
(print diff)
(print (+ val diff))

)

CSE-3401-June-4-2008 8

catching multiple values
(cont’d)

• consider the following:
(defun functionName (val diff)

(print val) (print diff) (print (+ val diff))
)

• suppose we want to pass the values returned by
round to functionName

(functionName (round 7.6))

• but ordinary cLisp argument handling mechanism
only passes a single value from a form to a
function

5

CSE-3401-June-4-2008 9

catching multiple values
(cont’d)

• can use the following to pass the return
values to a function
– its arity equals the number of returned values
– (multiple-value-call

#'functionName (round 7.6))

(defun functionName (val diff)
(print val) (print diff) (print (+ val diff))

)

CSE-3401-June-4-2008 10

generating multiple values

• the last form in a function is a call to values
(values 1 2 3) 1; 2; 3

• here is a function to tear a list into its first and
rest parts

(defun unCons (theList)
(values (car theList) (cdr theList))

)
(uncons '(a b c)) a; (b c)

• what about unconsing an entire list? use apply to
strip the outer level of parenthesis

(apply 'values '(a b c d e)) ==> a; b; c; d; e

6

CSE-3401-June-4-2008 11

generating multiple values
(cont’d)

• can use values (with no arguments) to
build a Lisp function that returns no values
at all
– the last statement of the function: (values)
– useful if a function is used only for its side-

effects
– Lisp supplies a gratuitous value of nil if such a

function is used in a context where it is not
anticipated

• e.g. (print (values)) nil

CSE-3401-June-4-2008 12

consequences of passing
around multiple values

• has some consequences on the design of a Lisp
system

• recall: code that does not anticipate multiple
values ignores all but the first value

• however, most built-in functions/macros that
tends to return the values of other forms are set
up to handle multiple values
– e.g. cond, let, … passes multiple values
– and, or passes multiple values from the last sub-forms
– (and nil (values 3 4)) nil

(and t (values 3 4)) 3; 4, (and (values 1 2) t) t

7

Pattern Matching
(see Wilensky Chapter 21)

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-June-4-2008 14

pattern matching

• a ubiquitous function in intelligence is pattern
matching
– e.g. IQ tests often contain pattern matching problems

• pattern matching means to compare one object
with another object and recognize if they are
similar
– basic case is comparing constants
– more interesting is to compare parameterized patterns

> A is like B except for
> A is like B where ...

(a statement that sub-objects, while not identical,
correspond to each other)

8

CSE-3401-June-4-2008 15

applications

• to classify data
– whether it has a certain property

• AI applications
– e.g. to extract information from natural

language like text
– “John hit Mary’’ (hurt Mary)

CSE-3401-June-4-2008 16

criterion for similarity

• when can we consider two patterns to be similar?
– exact match
– the first two items are the same
– the last item is the same
– …

• we want to build a generic pattern matcher
– can’t decide in advance what criterion to use
– rather, provide a fairly general scheme and later

implement different criteria for different applications
– one way to achieve this introduce pattern matching

variables

9

CSE-3401-June-4-2008 17

what is a pattern?

• in Lisp, a pattern is a form (s-expression) that
contains
– constants – called literals
– pattern matching variables

• we need a syntax to differentiate the two
– can prefix pattern matching variables with ?
– e.g. ?x ?abc

• an abstract pattern could look like
– (a b ?x c ?y)

• a more meaningful pattern could be
– (causes (hit ?x ?y) (hurt ?y))
– interpreted as – x hitting y, causes y to be hurt

CSE-3401-June-4-2008 18

pattern variable
representation

• how will we represent pattern matching
variables in Lisp?
– the rest is simply a list with symbols for the

constants

• use the construct (*VAR* X)
– where *VAR* is a special symbol we recognize

within the matcher program

10

CSE-3401-June-4-2008 19

when do two patterns
match?

• two patterns can be matched when it is possible
to unify them

• unification (a term borrowed from theorem
proving) means an assignment can be made to
the variables in each pattern such that the
patterns become identical
– we usually mean the most general possible assignment

• an assignment is shown by the pair
(variable value)
– ((*VAR* X) abc)
– ((*VAR* X) (*VAR* Y))

CSE-3401-June-4-2008 20

unification examples – 1

• (a ?x b) match if ?x <-- y
(a y b) we say that ?x is bound to y

• (a ?x b) match if ?x <-- ?y
(a ?y b)

• (a ?x (b ?z)) match if ?x <-- (((e)))
(a (((e))) ?y) ?y <-- (b ?z)

11

CSE-3401-June-4-2008 21

unification examples – 2

• more complex examples
(a ?x ?x) match if ?x = ?y
(a ?y c) and ?y = c

– cannot naively bind ?x to ?y and then ?x to c as then we
are trying to assign two different values to ?x

– need to substitute ?y for ?x and then see that ?y binds
to c

(a ?x ?x ?x)
(a ?y ?y ?y)

– cannot naively try to bind ?x to ?y, as on the second
attempt, we end up binding ?y to ?y, then on the third
attempt, we have an infinite loop

CSE-3401-June-4-2008 22

unification examples – 3

• more complex examples
(a ?x ?x) there is no consistent
(a ?y (b ?y)) binding to make a match

– again need to prevent an infinite loop

12

CSE-3401-June-4-2008 23

pattern variable input

• how do we represent input?
– we would like to keep the notation ?x
– instruct the read program to recognize the

construct ?symbol and create the list (*VAR*
symbol)
(set-macro-character #\? ;;see page 245
#‘(lambda (stream char)

(list '*var* (read stream t nil t))))
– test with (read), enter ‘?x and see (*VAR* x)

as the result

CSE-3401-June-4-2008 24

pattern matcher output

• need to distinguish three cases (see p369 for a
discussion)
– no match is possible

output is nil
– match is possible but no variable bindings are required

output is T ; nil – two values returned
– match is possible with variable bindings

output is T ; (list of bindings)
– a binding is a pair ((*VAR* variable) value)

• example with a binding required
– (match '(a ?x c ?y e) '(a b ?z d e))

T ; (((*VAR* Y) D) ((*VAR* Z) C) ((*VAR* X) B))

13

CSE-3401-June-4-2008 25

matcher

• reminder that we need to define the macro
characer ?

(set-macro-character #\?
#’(lambda (stream char)

(list '*var* (read stream t nil t))))
• the entry function creates the initial empty

binding
(defun match (pattern1 pattern2)

(match-with-bindings pattern1 pattern2 nil))

CSE-3401-June-4-2008 26

matching cases

• matching two patterns requires a
recursive descent into the patterns to
match sub-patterns; the following cases
can occur
– pattern1 – a variable, an atom, a list
– pattern2 – a variable, an atom, a list

14

CSE-3401-June-4-2008 27

matching cases (cont’d)

• the matching program has to examine the possible
combinations

• pattern1 pattern2 result
atom atom match if equal, else no match
atom variable try to bind atom to variable
atom list no match
variable atom try to bind atom to variable
variable variable try to bind variable to variable
variable list try to bind list to variable
list atom no match
list variable try to bind list to variable
list list recursive descent on first and rest

CSE-3401-June-4-2008 28

match with bindings

• organize when bindings need to be done
• (defun match-with-bindings (pattern1 pattern2 bindings)

(cond
;; pattern 1 is a variable?

((pattern-var-p pattern1)
(variable-match pattern1 pattern2 bindings))

;; pattern 2 is a variable?
((pattern-var-p pattern2)

(variable-match pattern2 pattern1 bindings))
;; pattern 1 is an atom? note use of values

((atom pattern1)
(if (eq pattern1 pattern2) (values t bindings)))

;; pattern 2 is an atom?
((atom pattern2) nil)

15

CSE-3401-June-4-2008 29

match with bindings
(cont’d)

;; pattern1 and pattern2 are both lists – use recursion and
multiple values

(t
(multiple-value-bind (flag carbindings)

(match-with-bindings (car pattern1)
(car pattern2)
bindings)

(and flag
(match-with-bindings (cdr pattern1)

(cdr pattern2)
carbindings)

)))))

CSE-3401-June-4-2008 30

variable match

• find a binding for pattern-var within item using the current
bindings

• (defun variable-match (pattern-var item bindings)
;; check for equality – no additional bindings are

necessary
(if (equal pattern-var item) (values t bindings)

;; otherwise ...

16

CSE-3401-June-4-2008 31

variable match (cont’d)

• need a binding
• (let ((var-binding ;; determine if a binding already exits

(get-binding pattern-var bindings)))
;; handle the case where a binding exists

(cond (var-binding
(match-with-bindings var-binding item bindings))

;; no binding for the variable – check for circularity –
need to see if the pattern-var occurs in item or is
bound to a variable in item

((not (contained-in pattern-var item bindings))
(values t

(add-binding pattern-var item bindings)))
)

)))

CSE-3401-June-4-2008 32

contained-in

• check for circularity by – seeing if pattern-var occurs in
item or is defined as the value of a binding of a variable in
item

• (defun contained-in (pattern-var item bindings)
;; cannot be contained in an atom

(cond ((atom item) nil)
;; check if item is a variable

((pattern-var-p item)
;; does pattern-var occur in item

(or (equal pattern-var item)
;; does pattern-var occur as the value of a binding?

(contained-in pattern-var
(get-binding item bindings)
bindings)))

17

CSE-3401-June-4-2008 33

contained-in (cont’d)

;; the item is a list so recursively check for contained-in
(t
(or (contained-in pattern-var (car item)

bindings)
(contained-in pattern-var (cdr item)

bindings)
))

))

CSE-3401-June-4-2008 34

matcher – housekeeping
functions

• add the binding to the current bindings (a list of 2 element
lists)

(defun add-binding (pattern-var item bindings)
(cons (list pattern-var item) bindings))

• if item is a pattern variable return true, else return false
(defun pattern-var-p (item)

(and (listp item) (eq '*var* (car item))))
• get the binding, if any, for pattern-var in the binding list

bindings
(defun get-binding (pattern-var bindings)

(cadr (assoc pattern-var bindings :test #'equal)))

18

CSE-3401-June-4-2008 35

info

• class test 1 on June 11
– closed book exam
– syllabus: everything covered up to and

including multiple value functions
– bring York photo ID

• good luck!

