
1

Lambda Calculus
see notes on Lambda Calculus

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-May-21-2008 2

recap

• so far:
– Lisp data structures
– basic Lisp programming
– bound/free variables, scope of variables
– Lisp symbols, property lists
– control over evaluation and function

application
• today:

– Lambda calculus
– pure functional programming

2

CSE-3401-May-21-2008 3

λ-calculus history

• developed by Alonzo Church during
1930’s-40’s

• one fundamental goal was to describe
what can be computed

• full definition of λ-calculus is equivalent in
power to a Turing machine
– Turing machines and λ-calculus are alternate

descriptions of our understanding of what is
computable

CSE-3401-May-21-2008 4

λ-calculus history (cont’d)

• in the mid to late 1950’s, John McCarthy
developed Lisp
– a programming language based on λ-calculus
– implementation includes syntactic sugar

functions and forms that do not add to the
power of what we can compute but make
programs simpler and easier to understand

3

CSE-3401-May-21-2008 5

λ-calculus basis

• mathematical theory for anonymous functions
– functions that have not been bound to names

• present a subset of full definition to get the flavor
• notation and interpretation scheme identifies

– functions and their application to operands
argument-parameter binding

– clearly indicates which variables are free and which are
bound

CSE-3401-May-21-2008 6

bound and free variables

• bound variables are similar to local variables in
Java function (or any procedural language)
– changing the name of a bound variable (consistently)

does not change the semantics (meaning) of a function

• free variables are similar to global variables in
Java function (or any procedural language)
– changing the name of a free variable normally changes

the semantics (meaning) of a function

4

CSE-3401-May-21-2008 7

λ-functions

• consider following expression
– (u + 1) (u – 1)
– is u bound or free?

• disambiguate the expression with the following λ-function
– (λ u . (u + 1) (u – 1))

– clearly indicates that u is a bound variable
• note the parallel with programming language functions

– functionName (arguments) { function definition }
– it seems obvious now but that is because programming

languages developed out of these mathematical notions

bound variables defining form

CSE-3401-May-21-2008 8

λ-functions (cont’d)

• consider the following expression
– (u + a) (u + b)

• can have any of the following functions,
depending on what you mean
– (λ u . (u + a) (u + b))

u is bound, a and b are free (defined in the enclosing
context)

– (λ u, b . (u + a) (u + b))
u and b are bound, a is free

– (λ u, a, b . (u + a) (u + b))
u, a and b are all bound, no free variables in the
expression

5

CSE-3401-May-21-2008 9

function application

• functions are applied to arguments in a list
immediately following the λ-function
– { λ u . (u + 1) (u + 2) } [3]

3 u then ==> (3 + 1) (3 + 2) 20
– { λ u . (u + a) (u + b) } [7 – 1]

7–1 u then ==> (6 + a) (6 + b)
and no further in this context

– {λ u, v . (u – v) (u + v) } [2p + q , 2p - q]
==> ((2p+q) – (2p - q)) ((2p + q) + (2p – q))
can pass expressions to a variable

• can use different bracketing symbols for visual
clarity; they all mean the same thing.

CSE-3401-May-21-2008 10

using auxiliary definitions

• build up longer definitions with auxiliary
definitions
– define u / (u + 5)

where u = a (a + 1)
where a = 7 – 3

{ λ u . u / (u + 5) } [{ λ a . a (a + 1) } [7 – 3]]

note the nested function definition and argument
application
==> { λ u . u / (u + 5) } [4 (4 + 1)]

{ 20 / (20 + 5) }
0.8

6

CSE-3401-May-21-2008 11

functions are variables

• define f (3) + f (5)
where f (x) = a x (a + x)

where a = 4
{ λ f . f (3) + f (5) } [{ λ a . { λ x . a x (a + x) } } [4]]

• arguments must be evaluated first
==> { λ f . f (3) + f (5) } [{ λ x . 4 x (4 + x) }]

{ λ x . 4 x (4 + x) } (3) + { λ x . 4 x (4 + x) } (5)
4 * 3 (4 + 3) + 4 * 5 (4 + 5) ==> 264

CSE-3401-May-21-2008 12

Lambda notation in Lisp

• Lambda expressions are a direct analogue of λ-
calculus expressions
– they are the basis of Lisp functions – a modified syntax

to simplify the interpreter

• e.g.
– (defun double (x) (+ x x))

is the named version of the following unnamed lambda
expression
(lambda (x) (+ x x)) ––– { λ x . (x + x) }
note the similar syntax with λ-calculus and the change
to prefix, from infix, to permit a uniform syntax for
functions of any number of arguments

7

CSE-3401-May-21-2008 13

anonymous functions

• recall in the abstraction for sumint we defined
support functions to handle each case

(defun double (int) (+ int int))
(defun square (int) (* int int))
(defun identity (int) int)

• this adds additional symbols we may not want,
especially if the function is to be used only once

• using lambda we get the same effect without
adding symbols

(sumint #‘(lambda (int) (+ int int)) 10)
(sumint #‘(lambda (int) (* int int)) 10)
(sumint #‘(lambda (int) int) 10)

CSE-3401-May-21-2008 14

the function ‘function’

• what is the meaning of #‘ in the following
(sumint #‘(lambda (int) (+ int int)) 10)

• it is a short hand
#‘(...) (function (...))

• one of its attributes is it works like quote, in that
its argument is not evaluated, thus, in this simple
context the following will also work

(sumint ‘(lambda (int) (+ int int)) 10)
• later we will see another attribute of function that

makes it different from quote
• whenever a function is to be quoted use #‘ in

place of ‘

8

CSE-3401-May-21-2008 15

recursion

• recursion with lambda functions uses labels to
temporarily name a function

• the following is a general λ-calculus template
– the name is in scope within the entire body but is out of

scope outside of the lambda expression
{ label name (lambda arguments .

body_references_name) }
• in Lisp can use labels to define a mutually

recursive set of functions
(labels (list of named lambda expressions)

sequence of forms using the temporarily named
functions

)

CSE-3401-May-21-2008 16

example of recursion

• a recursive multiply that uses only addition
– the temporary function is called mult
– use quote and eval not function

(eval '(labels
((mult (k n)

(cond ((zerop n) 0)
(t (+ k (mult k (1- n))))

)
))
(mult 2 3)

)
)

9

CSE-3401-May-21-2008 17

example of recursion
(cont’d)

• recTimes computes k * n by supplying the
paramters to a unary function that is a variation
of previous example
(defun recTimes (k n)

(labels ((temp (n)
(cond ((zerop n) 0)

(t (+ k (temp (1- n))))
)))

(temp n)
))

Functional Programming
see notes on functional programming

Shakil M. Khan
adapted from Gunnar Gotshalks

10

CSE-3401-May-21-2008 19

functional programming:
history

• 1977 Turing1 Lecture John Backus
described functional programming
– “the problem with ‘current languages’ is that

they are word-at-a-time”2

notable exceptions then were Lisp and APL
now ML, Haskell and others

1 Turing award is the Nobel prize of computer science
2 “Word-at-a-time” translates to “byte-at-a-time” in
modern jargon. A word typically held 2 to 8 bytes
depending upon the type of computer

CSE-3401-May-21-2008 20

meaningful units of work

• work with operations meaningful to the
application, not to the underlying
hardware & software
– analogy with word processing is not to work

with characters and arrays or lists of
characters

– but work with words, paragraphs, sections,
chapters and even books at a time, as
appropriate

11

CSE-3401-May-21-2008 21

requires abstraction

• abstract out the control flow patterns
• give them names to easily reuse the

control pattern
– for example in most languages we explicitly

write a loop every time we want to process an
array of data

– if we abstract out the control pattern, we can
think of processing the entire array as a single
operation

CSE-3401-May-21-2008 22

example 1

• consider the inner product of two vectors
< a1, a2, ... , an > < b1, b2, ... , bn >

(a1*b1 + a2*b2 + ... + an*bn)

• in Java or C/C++, the following is an algorithm
result = 0;
for (i = 1 , i <= n , i++) {

result = result + a[i]*b[i];
}

• note the explicit loop (or recursion) and
introduction of variables result, i and n (have to
explicitly know the length of the vectors

12

CSE-3401-May-21-2008 23

example 1 – FP form

• innerProduct ::= (/ +) o (α x) o trans
• note the following properties of functional

programs
– NO explicit loops (or recursion)
– NO sequencing at a low level
– NO local variables

• in addition, functional programs have the
following properties
– functions as input – in the above

+ (plus), x (times), trans
– functions as output – not shown in the above

in FP frequently write functions that produce a
new function using other functions as input

CSE-3401-May-21-2008 24

evaluating
(/ +) o (α x) o trans

• apply the function to a single argument
consisting of a list of the actual arguments.
– innerProduct : < < a1, ... , an > < b1, ... bn > >

• work from right to left – o is function composition
– f o g : x f (g (x))
– thus we execute trans first – which means the transpose

of a matrix – swap rows and columns
trans : < < a1, ... , an > < b1, ... bn > >

< < a1, b1> < a2, b2 > ... < an, bn > >

13

CSE-3401-May-21-2008 25

evaluating … (cont’d)

• now execute (α ×)
– (α ×) – read as apply times to all – means apply the

function × (times) to all items in the argument list
– (α ×) : < < a1, b1> < a2, b2 > ... < an, bn > >

< a1 × b1, a2 × b2, ... , an × bn >

• now execute (/ +)
– (/ +) – read as reduce using + – means put the function

+ (plus) between the arguments and apply from left to
right

– (/ +) : < a1 × b1, a2 × b2, ... , an × bn >
a1 × b1 + a2 × b2 + ... + an × bn

• and we have the inner product

CSE-3401-May-21-2008 26

Backus notation (BN) and Lisp

• data structures – the list
– Lisp – (a b c d)
– BN – < a, b, c, d >

the list is a fundamental structure we will see it again
in Prolog

• selector functions
– Lisp – car / first, cdr / rest
– BN – tail (equivalent to rest), 1, 2, 3, ... as needed or

implemented, select item from the list
• constructor functions

– Lisp – cons
– BN – [f-1 , f-2 , ... , f-n] – each f-i operates on the

input to produce a list as output

14

CSE-3401-May-21-2008 27

BN and Lisp (cont’d)

• choice – if … then … else …
– Lisp – (cond (p.1 s.1-1 s.1-2 ... s.1-p)

(p.2 s.2-1 s.2-2 ... s.2-q)
...
(p.n s.n-1 s.n-2 ... s.n-r)

)
– BN –p.1 --> function.1 ;

p.2 --> function.2 ;
… ;
p.n --> function.n

if p.1 then function.1 else…

CSE-3401-May-21-2008 28

BN and Lisp (cont’d)

• function application
– Lisp – (f x1 ... xn), (apply f (x1 ... xn)), (funcall f x1 ... xn)

– BN – f : < x1, ... xn >

• mapping functions
– Lisp – (mapcar f ...), (maplist f ...), ...
– BN – (α f)

• other functions
reduction composition binding constant

– Lisp – (reduce f x) (comp f g) (bu f k) literal
– BN – (/ f) f o g (bu f k) literal

15

CSE-3401-May-21-2008 29

inner product – one
argument versions

• lisp recursive version
(defun innerProduct (a-b-pair)

(cond ((null (car a-b-pair)) 0)
(t (+ (* (caar a-b-pair) (caadr a-b-pair))

(innerProduct (list (cdar a-b-pair)
(cdadr a-b-pair)))))

))

CSE-3401-May-21-2008 30

inner product – one
argument versions (cont’d)

• lisp functional version
(defun innerProduct (a-b-pair)

(reduce ‘+ (mapcar ‘* (first a-b-pair)
(second a-b-pair))))

• Backus notation
innerProduct ::= (/ +) o (α x) o trans

mapcar does transpose
due to having multiple
arguments

16

CSE-3401-May-21-2008 31

library of functions

• depending upon the application area other
functions are created.
– e.g. trans – transpose a matrix

• some are created using existing
functionals
– e.g. innerProduct

CSE-3401-May-21-2008 32

library of functions (cont’d)

• others are created “outside” of the system for
efficiency reasons

• e.g. trans may be more efficient to implement
outside of Lisp
– although as compiler knowledge grows compilers

produce more efficient code than “coding by hand”
– machine speeds increase so many functions execute fast

enough

• the file
www.cse.yorku.ca/course/3401/functionals.lsp
contains additional library functions

17

CSE-3401-May-21-2008 33

binding function – bu

• given a binary function it is often useful to bind
the first parameter to a constant – creating a
unary function
– also called currying after the mathematician Curry who

developed the idea
– (bu ‘+ 3) – creates a unary “add 3” from the binary

function “+”
(mapcar (bu ‘+ 3) ‘(1 2 3)) (4 5 6)

– cons x before every item in a list
(mapcar (bu ‘cons ‘x) ‘(1 2 3)) ((x.1) (x.2) (x.3))

• note that mapcar expects a function definition as
the second argument, so we use bu to help
construct the function

CSE-3401-May-21-2008 34

bu (cont’d)

• we could define the function 3+
(define 3+ (x) (+ 3 x))

and use
(mapcar ‘3+ ‘ (1 2 3)) (4 5 6)

but this adds to our name space
• for use-once functions we can use lambda

expressions
(mapcar #‘(lambda (x) (+ 3 x)) ‘(1 2 3)) (4 5 6)
(mapcar (function(lambda (x) (+ 3 x))) ‘(1 2 3))

(4 5 6)

18

CSE-3401-May-21-2008 35

bu (cont’d)

• the previous slide solutions are seen as being
clumsy and more difficult to read compared to
the following – bu has a clear meaning – with the
above you have to reverse engineer to
understand

(mapcar (bu ‘+ 3) ‘(1 2 3)) ==> (4 5 6)
• can define functions using bu

(defun 3+ (y) (funcall (bu ‘+ 3) y))
in such cases we would rather write

(defun 3+ (y) (+ 3 y))
we do not normally use bu to define named
functions

CSE-3401-May-21-2008 36

bu (cont’d)

• BU is defined as follows
(defun bu (f x)

#‘(lambda (y) (funcall f x y))
)

• the long form
(defun bu (f x)

(function (lambda (y) (funcall f x y)))
)

• BU uses a function as input and produces a
function as output

19

CSE-3401-May-21-2008 37

bu (cont’d)

• how does Lisp represent the output of bu?
• in GCL (Gnu Common Lisp) you can see what

takes place
– (bu ‘+ 3)

(LAMBDA-CLOSURE ((X 3) (F +)) ()
((BU BLOCK #<@001E8D10>))

(Y)
(FUNCALL F X Y)

)
• we see the parameter and body from the

definition of bu together with the bindings
((X 3) (F +))

• the closure adds the bindings to the environment
so the body uses those bindings when it executes

CSE-3401-May-21-2008 38

the functional rev

• rev – reverse the order of the arguments of a
binary function

(defun rev (f) #‘ (lambda (x y)(funcall f y x)))
• earlier we wrote

(mapcar (bu ‘cons ‘a) ‘(1 2 3))
((a.1) (a.2) (a.3))

• suppose we want ((1.a) (2.a) (3.a)) then we
write

(mapcar (bu (rev ‘cons) ‘a) ‘(1 2 3))
((1.a) (2.a) (3.a))

20

CSE-3401-May-21-2008 39

other useful functionals

• on course page (functionals.lsp) and the notes on
functionals, the following functionals are
described
– (comp unaryFunction1 unaryFunction2)

compose two unary functions
– (compl unaryFunction1 unaryFunction2 ...

unaryFunctionN)
compose a list of unary functions

– (trans matrix)

• see slides on developing functional programs

CSE-3401-May-21-2008 40

other useful functionals
(cont’d)

• (distl anItem theList)
distribute anItem to the left of items in
theList
(distl ‘a ‘(1 2 3)) ((a 1) (a 2) (a 3))

• (distr anItem theList)
distribute anItem to the right of items in
theList
(distr ‘a ‘(1 2 3)) ((1 a) (2 a) (3 a))

21

Examples of how a
Functional Program can be

Developed
from an existing recursive program

analysis of input and output diagrams

Shakil M. Khan
adapted from Gunnar Gotshalks

CSE-3401-May-21-2008 42

transpose a 2d matrix – 1

• 2-d matrix is represented as a list of rows all of
the same length

• e.g.
1 2 3
4 5 6 ((1 2 3) (4 5 6) (7 8 9))
7 8 9

• the transpose (swap rows and columns) of the
above is

1 4 7
2 5 8 ((1 4 7) (2 5 8) (3 6 9))
3 6 9

22

CSE-3401-May-21-2008 43

transpose a 2d matrix – 2

(defun trans (theMatrix)
(cond ((null (car theMatrix)) nil)

(t (cons (firstOfEach theMatrix)
(trans (restOfEach theMatrix))))

))
(defun firstOfEach (theMatrix) ; extract first of each row

(cond ((null theMatrix) nil)
(t (cons (caar theMatrix)

(firstOfEach (cdr theMatrix))))
))
(defun restOfEach (theMatrix) ; remove first of each row

(cond ((null theMatrix) nil)
(t (cons (cdar theMatrix)

(restOfEach (cdr theMatrix))))
))

CSE-3401-May-21-2008 44

transpose a 2d matrix – 3

• analysis of the transpose program shows that
trans invokes firstOfEach to every decreasing
rows (restOfEach)

• this is what maplist does
• so a first pass of trans becomes

(defun trans (theMatrix)
(maplist ‘firstOfEach theMatrix)

)
(trans ‘((1 2 3) (4 5 6) (7 8 9))) ((1 4 7) (4 7) (7))

• what went wrong?

23

CSE-3401-May-21-2008 45

transpose a 2d matrix – 4

• put a print statement in firstOfEach

(defun firstOfEach (theMatrix) ; extract first of each row
(print theMatrix)
(cond ((null theMatrix) nil)

(t (cons (caar theMatrix)
(firstOfEach (cdr theMatrix))))

))

CSE-3401-May-21-2008 46

transpose a 2d matrix – 5

• output
((1 2 3) (4 5 6) (7 8 9)) ; first call from maplist
((4 5 6) (7 8 9)) ; recursion
((7 8 9))
NIL
((4 5 6) (7 8 9)) ; second call from maplist
((7 8 9)) ; recursion
NIL
((7 8 9)) ; third call from maplist
NIL ; recursion
((1 4 7) (4 7) (7)) ; the answer

24

CSE-3401-May-21-2008 47

transpose a 2d matrix – 6

• maplist is removing the rows not the first of each row
because maplist is working on the matrix a row at a time
– input is ((1 2 3) (4 5 6) (7 8 9)) -- one list of rows

• we want maplist to work on each row
– input should be (1 2 3) (4 5 6) (7 8 9) -- three lists
– this is a common problem we want to remove the outer

parenthesis
– recall that apply removes the outer level of parenthesis when

invoking a function on arguments
• thus trans becomes

(defun trans (theMatrix)
(apply ‘maplist ‘firstOfEach theMatrix)

)

CSE-3401-May-21-2008 48

transpose a 2d matrix – 7

• we try trans and get an error message
such as

Error: Expected 1 args but received 3 args
Fast links are on: do (si::use-fast-links nil) for
debugging
Error signalled by MAPLIST
Broken at FIRSTOFEACH

25

CSE-3401-May-21-2008 49

transpose a 2d matrix – 8

• ah! now we have one argument for each row as
input to firstOfEach, but it expects a single
argument – a list of rows
– use the keyword &rest to collect all the arguments into one

(defun firstOfEach (&rest theMatrix)
(print theMatrix)
(cond ((null theMatrix) nil)

(t (cons (caar theMatrix)
(firstOfEach (cdr theMatrix))))

))

CSE-3401-May-21-2008 50

transpose a 2d matrix – 9

• we try trans and get infinite recursion –
the print statement shows the following
for the first few lines
((1 2 3) (4 5 6) (7 8 9))
(((4 5 6) (7 8 9))) ; list nested one deeper
(NIL)
(NIL)
(NIL) goes on forever

26

CSE-3401-May-21-2008 51

transpose a 2d matrix – 10

• each recursive call to firstOfEach adds a layer of
parenthesis
– again a common error – we need to remove the

parenthesis before the recursive call – use apply

(defun firstOfEach (&rest theMatrix)
(cond ((null theMatrix) nil)

(t (cons (caar theMatrix)
(apply 'firstOfEach (cdr theMatrix))))

))

CSE-3401-May-21-2008 52

transpose a 2d matrix – 11

• trans now works with the upper level being a
functional, but firstOfEach is still recursive
(defun trans (theMatrix)

(apply ‘maplist ‘firstOfEach theMatrix)
)
(defun firstOfEach (&rest theMatrix)

(cond ((null theMatrix) nil)
(t (cons (caar theMatrix)

(apply ‘firstOfEach (cdr theMatrix))))
))

27

CSE-3401-May-21-2008 53

transpose a 2d matrix – 12

• notice that firstOfEach takes the first item from
each sublist
(defun firstOfEach (&rest theMatrix)

(cond ((null theMatrix) nil)
(t (cons (caar theMatrix)

(apply ‘firstOfEach (cdr theMatrix))))
))

• car gives the first of a list and mapcar will apply
it to every sublist in a list and collect the results
in a list so we have
(defun firstOfEach (&rest theMatrix)

(mapcar ‘car theMatrix)
)

CSE-3401-May-21-2008 54

transpose a 2d matrix – 13

• we now have two functionals for the solution
(defun trans (theMatrix)

(apply ‘maplist ‘firstOfEach theMatrix)
)
(defun firstOfEach (&rest theMatrix)

(mapcar ‘car theMatrix)
)

• using lambda we can eliminate firstOfEach
(defun trans (theMatrix)

(apply ‘maplist #‘(lambda (&rest theMatrix)
(mapcar ‘car theMatrix))

theMatrix
)

)

28

CSE-3401-May-21-2008 55

transpose a 2d matrix – 14

• but nothing beats creative insight and
knowledge of available operations!!!

• the following gives the transpose
(defun trans (theMatrix)

(apply 'mapcar 'list theMatrix)
)

CSE-3401-May-21-2008 56

all pairs functional – 1

• we want the following functional
allPairs : < <a, b, c> <1, 2, 3, 4> > input

< <a,1> <a,2> <a,3> <a,4>
<b,1> <b,2> <b,3> <b,4> output
<c,1> <c,2> <c,3> <c,4> >

• we make use of the ‘picture’ of the input
and output to infer a functional solution

29

CSE-3401-May-21-2008 57

all pairs functional – 2

• looking at the functionals in the library it seems that
distribution may be useful

• lets try it
distl : < <a, b, c> <1, 2, 3, 4> >

< << a, b, c >, 1 > << a, b, c >, 2 > << a, b, c >, 3 > ... >
• looks good but we want to distribute second argument over

the first
• rev could be used but we have distr

distr : < <a, b, c> <1, 2, 3, 4> >

< < 1, < a, b, c > > < 2, < a, b, c > > < 3, < a, b, c > ... >

CSE-3401-May-21-2008 58

all pairs functional – 3

• we have
distr : < <a, b, c> <1, 2, 3, 4> >

< < 1, < a, b, c > > < 2, < a, b, c > > < 3, < a, b, c > ... >

• if we distribute ‘right’ the numbers over each list
we have

< < <a , 1>, < b, 1>, <c, 1 > > ... >
• but examining the output we see that ‘a’ is

repeated first not the “1”
< <a,1> <a,2> <a,3> <a,4>

<b,1> <b,2> <b,3> <b,4> output
<c,1> <c,2> <c,3> <c,4> >

30

CSE-3401-May-21-2008 59

all pairs functional – 4

• what we need to do is to reverse the order of the
arguments so the letters are distributed first

distr o [2 , 1] : < <a, b, c> <1, 2, 3, 4> >
distr : < <1, 2, 3, 4> <a, b, c> >
< < a, < 1, 2, 3, 4 > > < b, < 1, 2, 3, 4 > > ... >

• now if we apply distribute left to each sublist we
have
(α distl) : < < a, < 1, 2, 3, 4 > >

< b, < 1, 2, 3, 4 > > ... >

< < < a, 1 > < a, 2 > < a, 3 > < a, 4 > >
< < b, 1 > ... >

CSE-3401-May-21-2008 60

all pairs functional – 5

• so far we have
(α distl) o distr o [2 , 1]

< < < a, 1 > < a, 2 > < a, 3 > < a, 4 > > < < b, 1 > ... >

• but we have the pairs nested within an extra pair
of lists

• what we need to do is to reduce the lists into one
using append
(/ append) :
< < < a, 1 > < a, 2 > < a, 3 > < a, 4 > > < < b, 1 > ... >

< < a, 1 > < a, 2 > < a, 3 > < a, 4 > < b, 1 > ... >

31

CSE-3401-May-21-2008 61

all pairs functional – 6

• so the final function definition is
allPairs ::= (/ append) o (α distl) o distr o [2 , 1]

• other orderings are possible using other
combinations of swapping or not swapping the
initial lists and using left or right distribution for
the second distribution
allPairs ::= (/ append) o (α distr) o distr o [2 , 1]
allPairs ::= (/ append) o (α distl) o distr
allPairs ::= (/ append) o (α distr) o distr

CSE-3401-May-21-2008 62

info

• assignment/report 1 is out
– due June 4
– hand in hard copy + submit soft copy

(programs only: submit 3401 r1 <files>)

• class test 1 (7:00~8:30) on June ???
– June 4 (2 weeks from now)

June 11 (3 weeks from now)
– included everything covered up to June ???

