
1

CSE-3401
Functional and Logic

Programming
Course overview

Shakil M. Khan
http://www.cse.yorku.ca/~skhan

skhan@cse.yorku.ca

adapted from Yves Lespérance

CSE-3401-May-7-2008 2

purpose

• expand your understanding of key
concepts in the evolution of programming
languages

• learn to adapt to a new mind-set
(actually two new mindsets!)

pure functional programming
declarative programming

2

CSE-3401-May-7-2008 3

"the main stream"

• Java, C, scripting languages are all built
on the same idea:
procedural, or operational semantics

• program describes operation of a machine
as a sequence of steps:

e. g. x = x + 1;

CSE-3401-May-7-2008 4

a road less travelled

• Lisp, J, Haskell, ML / Prolog, Goedel
• denotational languages

describe what rather than how
– program = set of mathematical expressions or

statements
– meaning (denotation) = mathematical object

• example: y <= 2*y
• denotation: complex relationship between x

and y

3

CSE-3401-May-7-2008 5

denotational vs. procedural

• (defun equal (l1 l2)
(and (eq (first l1) (first l2))

(equal (rest l1) (rest l2))))
• while (n <= s1.length() & s1[n] == s2[n])

n++;

CSE-3401-May-7-2008 6

another perspective:
symbolic computing

• computing on non-numbers, non-
character strings.
– analogy to numbers and characters: atoms

from atoms we build symbolic structures:
lists, trees, terms, propositions, etc.

– Symbols are used to describe,
so symbolic programming has come to be programming
that uses and creates descriptions.

– Symbolic computing is often reflexive:
a program is computed from a description.

4

CSE-3401-May-7-2008 7

functional vs. declarative
programming

• functional programming uses
mathematical functions and functional
expressions to describe objects.
– E.g.: Lisp

• declarative programming uses logical
statements to describe objects.
– E.g. Prolog

CSE-3401-May-7-2008 8

functional expressions

• examples
x + 1
– x + 1 denotes a numeric value

y = x + 1
– result is a logical value (true, false).

• Lisp notation:
(+ x 1)
(EQ y (+ x 1))

5

CSE-3401-May-7-2008 9

timelessness vs change of
state

• denotational semantics uses mathematical
language:

timeless propositions
nothing changes: 'x = x +1' is false.

• operational semantics uses the language
of state (memory) and change of state:

'x = x + 1' describes a change of state

CSE-3401-May-7-2008 10

in a nutshell

• we will investigate symbolic computation
• by looking at programming which

manipulates symbols to specify what is to
be computed, rather than how.

• using two "classic" languages
Lisp (MIT, 1959)
Prolog (Montréal, Marseille, 1973)

6

CSE-3401-May-7-2008 11

application areas

• semantic web & web services
• deductive databases, active databases
• agent programming languages, e.g.

Golog, JACK
• workflow systems, modeling business

rules, e.g. RuleML

CSE-3401-May-7-2008 12

a bit of background on
Lisp

• created by the AI pioneer John McCarthy

7

CSE-3401-May-7-2008 13

major AI programming tool

• widely used in research on AI for over 40
years.
– used in industry to develop expert systems &

other AI applications
• found inside applications like Emacs and

AutoCAD as an embedded language
– makes the embedding application easily

extensible
• Guile/Scheme: dialect of Lisp, extension

language for FSF products, e. g. Gimp

CSE-3401-May-7-2008 14

Lisp as an extensional
language

• embedding Lisp makes it easy to extend
an application

• creation of new languages built "on" Lisp

8

CSE-3401-May-7-2008 15

many versions

• available on all major and many minor
platforms
– all 1st year MIT computer students as well as

students from about 95 other universities get
their intro to CS through MIT Scheme.

• industrial-strength versions are usually
standardized on Common Lisp

CSE-3401-May-7-2008 16

course info

• Website:
http://www.cse.yorku.ca/course/3401

• Texts:
– Common LISPcraft, R. Wilensky, 1986
– Programming in Prolog, W. F. Closksin & C. S. Melish

(5th ed.), 2004

• Evaluation:
– 3 reports (6% + 7% + 7%) = 20%
– 2 class tests (2 x 20%) = 40%
– Final exam 40%

9

Basic Lisp

Shakil M. Khan
adapted from G. Gotshalks & Y. Lespérance

CSE-3401-May-7-2008 18

Lisp good points

• consistent structure for data and
programs
– both are lists

• clean design for ‘pure’ Lisp
– Common Lisp not so clean – lots of operational

features

• promotes modular programming through
lots of small functions

10

CSE-3401-May-7-2008 19

Lisp bad points

• excessive use of parenthesis can make it
difficult to understand
– Lots of Insignificant Silly Parenthesis

• prefix for all operators makes arithmetic
clumsy
– but for everything else matches procedure

calls

• Lambda calculus underpinning can be
difficult for beginners to understand

CSE-3401-May-7-2008 20

a general form for data

• Lisp uses different basis than conventional
data structures
– compound structures (arrays, strings) usually

built from numbers, chars

• a more general approach
– base all compound data structures on the

list.

11

CSE-3401-May-7-2008 21

Lisp data structures

• atoms – essentially simple (number or
word), but can have a complex internal
structure
– see notes on symbols

• lists – sequence of any kinds of objects
(including lists)
– recursive data structure (what’s another

example?)
– E.g.: (a), (a b c)

(a (b c) d), (a (((b)) c))

CSE-3401-May-7-2008 22

expressions made of
symbols

• lists are not typed: not restricted to just
numbers or just chars etc.
– lists are not arrays -- why?

list elements not referenced by an index

• lists are the main kind of symbolic
expressions (s-expressions)
– constructed from symbols and numbers.

12

CSE-3401-May-7-2008 23

dotted notation

• most general notation
• underlying structure of lists:

– actually binary trees
– built using a constructor: . = ‘dot’

point to list
or atom

point to list
or atom

CSE-3401-May-7-2008 24

dotted notation (cont’d)

• parenthesis pair denote a cell with a dot
separating the two parts of the cell

• an s-expression is an atom or dotted pair
of s-expressions
– note the recursive definition

a b

(.)

(a . b)

13

CSE-3401-May-7-2008 25

dotted notation example

((((A.nil).B).nil).((C.nil).D))

A nil

B C

Dnil

nil

CSE-3401-May-7-2008 26

s-expressions

• most common structure is a list
• simplify by removing the ‘redundant’ dots

and parenthesis
(A B C D)

• instead of
(A . (B . (C . (D . nil))))

A

B

C

D nil

14

CSE-3401-May-7-2008 27

s-expressions – example 1

list with sublists
((A B) C (D E F) G)

A

B nil

C

D

E

F

G nil

nil

((A . (B . nil)) . (C . ((D . (E . (F . nil))) . (G . nil))))

CSE-3401-May-7-2008 28

s-expressions – example 2

A B

C D

E F

G H

nil

may contain dotted
notation

list of dotted pairs
((A . B) (C . D) (E . F) (G . H))

15

CSE-3401-May-7-2008 29

s-expressions (cont’d)

• the empty list is
nil = ()

• it is both an atom and a list !

CSE-3401-May-7-2008 30

dotted => s-expression

• apply the following rules from right to left
1 replace . nil) with)
– end of a list
– (A . nil) ----> (A)

2 replace . (...) with ‘space’ ...
– end of a list
– (A . (B . C)) ---> (A B . C)
– what is the length of the above list?

16

CSE-3401-May-7-2008 31

example

Can apply rule 1 in three places
((A . (B . nil)) . (C . ((D . (E . (F . nil))) . (G . nil))))
((A . (B)) . (C . ((D . (E . (F))) . (G))))

Can apply rule 2 in three places
((A . (B)) . (C . ((D . (E . (F))) . (G))))
((A B) . (C . ((D . (E F)) G)))

Successive applications of rule 2
((A B) . (C . ((D . (E F)) G)))
((A B) . (C . ((D E F) G)))
((A B) . (C (D E F) G))
((A B) C (D E F) G)

Basic Lisp Operations

Shakil M. Khan
adapted from G. Gotshalks & Y. Lespérance

17

CSE-3401-May-7-2008 33

functional expressions

• terms (functional expressions) are
represented as lists
– write f(x, y) as (f x y).
– (a b c) represents the term a(b, c).

• already we see a bit of the power of
symbolic computing:
– expressions have same form as data
– a function name is just an atom (a symbol)
– could itself be computed

CSE-3401-May-7-2008 34

function invocation

• it is an S-expression – just another list!
(function arg1 arg2 ... argN)

– first list item is the function – prefix notation
– the other list items are the arguments to the

function.
– arguments can themselves be lists
– arguments are evaluated before the function is

applied

18

CSE-3401-May-7-2008 35

example

• (+ 1 2 3 (+ 4 5 6) 7 8 9) ==> 45
– outer + has 7 arguments, inner + has 3

arguments
– eval(1) = 1
– …
– eval(+ 4 5 6) = (+ eval(4) eval(5) eval(6))

= (+ 4 5 6) = 15
– eval(+ 1 2 3 15 7 8 9) = 45

CSE-3401-May-7-2008 36

basic functions

• list access & creation
– car or first – access first in list
– cdr or rest – access all but first
– cons – construct a list cell

• other
– quote or ' – take literally, do not interpret
– atom – true if argument is an atom
– eq – true if arguments are same object

19

CSE-3401-May-7-2008 37

list access functions

car/first cdr/rest

original name

modern name

pronounced
could-er

list cell

(car '(a b c)) = (first '(a b c)) = a
(cdr '(a b c)) = (rest '(a b c)) = (b c)

CSE-3401-May-7-2008 38

car/cdr structural view 1

D nil

A

B

C

(A B C D)
car = A

copies
value

cdr = (B C D)
copies
pointer

20

CSE-3401-May-7-2008 39

car/cdr structural view 2

A B

car = A cdr = .B

copies
pointer

copies
value

(A .B)

CSE-3401-May-7-2008 40

(car '(a b c)) – why the
quote?

• recall that arguments are evaluated before the
function

• if we wrote – (car (a b c))
– argument (a b c) would be evaluated before the car is

applied
– a would be a function call
– but we literally want the list (a b c) not the result of

evaluating a on the arguments b and c.

• '(...) is syntactic sugar for (quote ...), a special
function whose arguments are not evaluated
– (car '(a b c)) = (car (quote (a b c)))

21

CSE-3401-May-7-2008 41

why the names car/cdr?

• original Lisp developed for an IBM 704/709
computer which had 18 bit registers

• pairs of registers could be handled as a single 36
bit ‘word’

address register decrement register

one word = one Lisp cell

CAR = Contents Address Register
CDR = Contents Decrement Register

CSE-3401-May-7-2008 42

short hand for nested car's
and cdr's

• accessing deeper into Lisp structures
occurs so frequently that additional
functions are introduced into Lisp.

• for example
(cdddar ...) = (cdr (cdr (cdr (car ...))))

– interpret from right to left
– length depends upon the implementation

22

CSE-3401-May-7-2008 43

creating a new Lisp cell

• only one constructor function : cons
• copies pointers to the arguments
• laws

– (car (cons A B)) = A
– (cdr (cons A B)) = B

copies
pointer

copies
pointer

A
B

(cons A B)

CSE-3401-May-7-2008 44

destructive List
Construction

• cons is expensive as it creates a new cell
– memory allocation is invoked

• but it is non destructive – no side effects
• following is dangerous – do NOT use!

for efficiency Common Lisp provides a set of
destructive operations – they change lists
– (replca cell newValue) & (replcd cell newValue)

• replace the car and cdr fields of cell with pointers to
newValue

– (nconc x y)
• replace the cdr field of the last component of x with a

pointer to y

23

CSE-3401-May-7-2008 45

setq – define a symbol
value

• (setq x value)
– if the symbol x does not exist it is created
– symbol x is given the value value

• in this course USE ONLY AT THE GLOBAL
LEVEL to create symbols required to test
your programs

• eg.: (setq x ‘(1 2 4)) sets the value of x to the
list (1 2 4)
– note the x is not quoted but the second argument is if

you do not want to evaluate it.

CSE-3401-May-7-2008 46

compare set and setq

• (setq x ‘y)
– x has the value y

• (set x ‘z)
– x still has the value y
– but a new symbol y is created with the value z
– why?

• See the notes on symbols

24

CSE-3401-May-7-2008 47

defun – define a function

• (defun functionName (argumentList)
list of s-expressions to evaluate when
the function is invoked – usually only
one s-expression

)
– eg. (defun add (a b) (+ a b))
– value of the function is the value of the last s-

expression that is executed

• functions in Lisp are typically small
– rarely more than 1/2 a page in length

Basics of Using Lisp

Shakil M. Khan
adapted from Gunner Gotshalks

25

CSE-3401-May-7-2008 49

getting into and out of Clisp

• entering % clisp
• do Lisp work
• exiting (bye)

– a function with no arguments
– CTRL–d can also be used

CSE-3401-May-7-2008 50

do Lisp work

• edit in files with extension “.lsp”
• load the files

(load "filename.lsp")
– > Loading executes the S-expressions in the file
– > Loading defines symbols
– > No other computational effects are seen
– > Comments begin with “ ;”

• interactively execute S-expressions
– define and invoke functions
– use setq to define symbol values

26

CSE-3401-May-7-2008 51

the Lisp interpreter

• …is a loop over the following functions
– read

• an s-expression

– eval
• the s-expression

– print
• the result

• you can redefine these functions !!!
– but it is dangerous if you do not know what

you are doing

