
# Chapter 5

Q 21. Compare the operation of Stop-and-Wait ARQ with bidirectional Go-Back-N ARQ with a window size of 1. Sketch out a sequence of frame exchanges using each of these protocols and observe how the protocols react to the loss of an information frame and to the loss of an acknowledgment frame.

## Solution

The figure below shows that the bidirectional Go-Back-N ARQ recovers from errors in the same time that Stop-and-Wait:



Stop & Wait

Q 33. A telephone modem is used to connect a personal computer to a host computer. The speed of the modem is 56 kbps and the one-way propagation delay is 100 ms. Q.2 A scanner has a resolution of 600 x 600 pixels/square inch. How many bits are produced by an 8-inch x 10-inch image if scanning uses 8 bits/pixel? 24 bits/pixel?

a. Find the efficiency for Stop-and-Wait ARQ if the frame size is 256 bytes; 512 bytes. Assume a bit error rate of  $10^{-4}$ .

### Solution

 $P_f = 1 - (1 - 10^{-4})^{n_f}$   $n_f = 256 \times 8 = 2048 \text{ or } n_f = 512 \times 8 = 4096$   $t_{prop} = 100 \text{ ms}$   $n_o = 0$   $n_a = 64 \text{ bits}$  $t_{proc} = 0$ 

Using the results in Equation 5.4,

$$\eta = (1 - P_f) \frac{1 - \frac{n_o}{n_f}}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})}{n_f}R}$$
  
= 0.125 (n\_f = 2048)  
= 0.177 (n\_f = 4096)

b. Find the efficiency of Go-Back-N if three-bit sequence numbering is used with frame sizes of 256 bytes; 512 bytes. Assume a bit error rate of  $10^{-4}$ .

#### Solution

Given that  $W_S = 2^3 - 1 = 7$ , we can calculate that the window size is:

$$\frac{n_f \times W_S}{R} = 256ms$$

Since this is greater than the round trip propagation delay, we can calculate the efficiency by using the results in Equation 5.8.

$$\eta = (1 - P_f) \frac{1 - \frac{n_o}{n_f}}{1 + (W_s - 1)P_f}$$
  
= 0.385 (n\_f = 2048)  
= 0.220 (n\_f = 4096)

Q 34. A communications link provides 1 Mbps for communications between the earth and the moon. The link is used to send color images from the moon. Each image consists of  $10,000 \times 10,000$  pixels, and 16 bits are used for each of the three-color components of each pixel.

a. How many images per second can be transmitted over the link?

Solution

The number of images that can be transmitted per second is:

$$1 \times 10^{6} \frac{bits}{\text{sec}} / (10000^{2} \times 16 \times 3 \frac{bits}{image}) = 2.1 \times 10^{-4} images / \text{sec ond}$$

b. If each image is transmitted as a single block, how long does it take to get an acknowledgment back from earth? The distance between earth and the moon is approximately 375,000 km.

#### Solution

$$t_{O} = t_{f} + 2t_{prop} = \frac{(10000^{2} \times 16 \times 3\frac{bits}{image})}{1 \times 10^{6} \frac{bits}{\sec}} + 2\frac{375000 \times 10^{3} m}{3 \times 10^{8} \frac{m}{\sec}}$$

 $= 4800 + 2.50 = 4802.5 \,\text{sec}/image$ 

Note that if each image is transmitted in a single block,  $t_{prop}$  becomes insignificant compared to  $t_{f}$ .