
1

CSE3213 Computer Network ICSE3213 Computer Network I

Chapter 3.7 and 3.9
Digital Transmission Fundamentals

Course page:
http://www.cse.yorku.ca/course/3213

Slides modified from Alberto Leon-Garcia and Indra Widjaja

2

Modem and Digital ModulationModem and Digital Modulation

3

Data EncodingData Encoding

• Digital Data, Digital Signals
– NRZ, Bipolar, Manchester, etc.

•• Digital Data, Analog SignalsDigital Data, Analog Signals
–– ASK, FSK, PSK, etc.ASK, FSK, PSK, etc.

• Analog Data, Digital Signals
– PCM

• Analog Data, Analog Signals
– AM, FM, PM

4

BandpassBandpass ChannelsChannels

• Bandpass channels pass a range of frequencies around
some center frequency fc
– Radio channels, telephone & DSL modems

• Digital modulators embed information into waveform
with frequencies passed by bandpass channel

• Sinusoid of frequency fc is centered in middle of
bandpass channel

• Modulators embed information into a sinusoid

fc – Wc/2 fc0 fc + Wc/2

5

Information 1 1 1 10 0

+1

-1
0 T 2T 3T 4T 5T 6T

Amplitude
Shift

Keying

+1

-1

Frequency
Shift

Keying 0 T 2T 3T 4T 5T 6T

t

t

Amplitude Modulation and Frequency Amplitude Modulation and Frequency
ModulationModulation

Map bits into amplitude of sinusoid: “1” send sinusoid; “0” no sinusoid
Demodulator looks for signal vs. no signal

Map bits into frequency: “1” send frequency fc + δ ; “0” send frequency fc - δ
Demodulator looks for power around fc + δ or fc - δ

6

Phase ModulationPhase Modulation

• Map bits into phase of sinusoid:
– “1” send A cos(2πft) , i.e. phase is 0
– “0” send A cos(2πft+π) , i.e. phase is π

• Equivalent to multiplying cos(2πft) by +A or -A
– “1” send A cos(2πft) , i.e. multiply by 1
– “0” send A cos(2πft+π) = - A cos(2πft) , i.e. multiply by -1

+1

-1

Phase
Shift

Keying 0 T 2T 3T 4T 5T 6T t

Information 1 1 1 10 0

7

Modulate cos(2πfct) by multiplying by Ak for T seconds:

Ak x

cos(2πfct)

Yi(t) = Ak cos(2πfct)

Transmitted signal
during kth interval

Demodulate (recover Ak) by multiplying by 2cos(2πfct)
for T seconds and lowpass filtering (smoothing):

x

2cos(2πfct)
2Ak cos2(2πfct) = Ak {1 + cos(2π2fct)}

Lowpass
Filter

(Smoother)
Xi(t)Yi(t) = Akcos(2πfct)

Received signal
during kth interval

Modulator & DemodulatorModulator & Demodulator

8

1 1 1 10 0

+A

-A
0 T 2T 3T 4T 5T 6T

Information

Baseband
Signal

Modulated
Signal

x(t)

+A

-A
0 T 2T 3T 4T 5T 6T

Example of ModulationExample of Modulation

A cos(2πft) -A cos(2πft)

9
1 1 1 10 0

Recovered
Information

Baseband
signal discernable

after smoothing

After multiplication
at receiver

x(t) cos(2πfct)

+A

-A
0 T 2T 3T 4T 5T 6T

+A

-A
0 T 2T 3T 4T 5T 6T

Example of DemodulationExample of Demodulation
A {1 + cos(4πft)} -A {1 + cos(4πft)}

10

Fact from modulation theoryFact from modulation theory

Baseband signal x(t)
with bandwidth B Hz

If

then B

fc+B

f

f
fc-B fc

Modulated signal
x(t)cos(2πfct) has
bandwidth 2B Hz

11

Ak x

cos(2πfct)

Yi(t) = Ak cos(2πfct)

Bk x

sin(2πfct)

Yq(t) = Bk sin(2πfct)

+ Y(t)

Yi(t) and Yq(t) both occupy the bandpass channel
QAM sends 2 pulses/Hz

QuadratureQuadrature Amplitude Modulation (QAM)Amplitude Modulation (QAM)
• QAM uses two-dimensional signaling

– Ak modulates in-phase cos(2πfct)
– Bk modulates quadrature phase cos(2πfct + π/4) = sin(2πfct)
– Transmit sum of inphase & quadrature phase components

Transmitted
Signal

12

QAM DemodulationQAM Demodulation

Y(t) x

2cos(2πfct)
2cos2(2πfct)+2Bk cos(2πfct)sin(2πfct)

= Ak {1 + cos(4πfct)}+Bk {0 + sin(4πfct)}

Lowpass
filter

(smoother)
Ak

2Bk sin2(2πfct)+2Ak cos(2πfct)sin(2πfct)
= Bk {1 - cos(4πfct)}+Ak {0 + sin(4πfct)}

x

2sin(2πfct)

Bk

Lowpass
filter

(smoother)

smoothed to zero

smoothed to zero

13

Signal ConstellationsSignal Constellations

• Each pair (Ak, Bk) defines a point in the plane
• Signal constellation set of signaling points

4 possible points per T sec.
2 bits / pulse

Ak

Bk

16 possible points per T sec.
4 bits / pulse

Ak

Bk

(A, A)

(A,-A)(-A,-A)

(-A,A)

14

Ak

Bk

4 possible points per T sec.

Ak

Bk

16 possible points per T sec.

Other Signal ConstellationsOther Signal Constellations

• Point selected by amplitude & phase
Ak cos(2πfct) + Bk sin(2πfct) = √Ak

2 + Bk
2 cos(2πfct + tan-1(Bk/Ak))

15

Telephone Modem StandardsTelephone Modem Standards
Telephone Channel for modulation purposes has

Wc = 2400 Hz → 2400 pulses per second

Modem Standard V.32bis
• Trellis modulation maps m bits into one of 2m+1 constellation

points
• 14,400 bps Trellis 128 2400x6
• 9600 bps Trellis 32 2400x4
• 4800 bps QAM 4 2400x2

Modem Standard V.34 adjusts pulse rate to channel
• 2400-33600 bps Trellis 960 2400-3429 pulses/sec

16

Error DetectionError Detection

17

Error ControlError Control

• Digital transmission systems introduce errors
• Applications require certain reliability level

– Data applications require error-free transfer
– Voice & video applications tolerate some errors

• Error control used when transmission system does not
meet application requirement

• Error control ensures a data stream is transmitted to
a certain level of accuracy despite errors

• Two basic approaches:
– Error detection & retransmission (ARQ)
– Forward error correction (FEC)

18

Key IdeaKey Idea
• All transmitted data blocks (“codewords”) satisfy a

pattern
• If received block doesn’t satisfy pattern, it is in

error
• Redundancy: Only a subset of all possible blocks can

be codewords
• Blindspot: when channel transforms a codeword into

another codeword

ChannelEncoderUser
information

Pattern
checking

All inputs to channel
satisfy pattern or condition

Channel
output

Deliver user
information or
set error alarm

19

Single Parity CheckSingle Parity Check

• Append an overall parity check to k information bits
Info Bits: b1, b2, b3, …, bk

Check Bit: bk+1= b1+ b2+ b3+ …+ bk modulo 2

Codeword: (b1, b2, b3, …, bk,, bk+!)

• All codewords have even # of 1s
• Receiver checks to see if # of 1s is even

– All error patterns that change an odd # of bits are
detectable

– All even-numbered patterns are undetectable
• Parity bit used in ASCII code

20

Example of Single Parity CodeExample of Single Parity Code

• Information (7 bits): (0, 1, 0, 1, 1, 0, 0)
• Parity Bit: b8 = 0 + 1 +0 + 1 +1 + 0 = 1
• Codeword (8 bits): (0, 1, 0, 1, 1, 0, 0, 1)

• If single error in bit 3 : (0, 1, 1, 1, 1, 0, 0, 1)
– # of 1’s =5, odd
– Error detected

• If errors in bits 3 and 5: (0, 1, 1, 1, 0, 0, 0, 1)
– # of 1’s =4, even
– Error not detected

21

CheckbitsCheckbits & Error Detection& Error Detection

Calculate
check bits

Channel

Recalculate
check bits

Compare

Information bits Received information bits

Sent
check
bits

Information
accepted if
check bits
match

Received
check bits

k bits

n – k bits

22

How good is the single parity check code?How good is the single parity check code?

• Redundancy: Single parity check code adds 1
redundant bit per k information bits:
overhead = 1/(k + 1)

• Coverage: all error patterns with odd # of errors can
be detected
– An error pattern is a binary (k + 1)-tuple with 1s where

errors occur and 0’s elsewhere
– Of 2k+1 binary (k + 1)-tuples, ½ are odd, so 50% of error

patterns can be detected
• Is it possible to detect more errors if we add more

check bits?
• Yes, with the right codes

23

TwoTwo--Dimensional Parity CheckDimensional Parity Check

1 0 0 1 0 0

0 1 0 0 0 1

1 0 0 1 0 0

1 1 0 1 1 0

1 0 0 1 1 1

Bottom row consists of
check bit for each column

Last column consists
of check bits for each
row

• More parity bits to improve coverage
• Arrange information as columns
• Add single parity bit to each column
• Add a final “parity” column
• Used in early error control systems

24

1 0 0 1 0 0

0 0 0 1 0 1

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 1 1 1

1 0 0 1 0 0

0 0 0 0 0 1

1 0 0 1 0 0

1 0 0 1 1 0

1 0 0 1 1 1

1 0 0 1 0 0

0 0 0 1 0 1

1 0 0 1 0 0

1 0 0 1 1 0

1 0 0 1 1 1

1 0 0 1 0 0

0 0 0 0 0 1

1 0 0 1 0 0

1 1 0 1 1 0

1 0 0 1 1 1

Arrows indicate failed check bits

Two
errors

One error

Three
errors Four errors

(undetectable)

ErrorError--detecting capabilitydetecting capability

1, 2, or 3 errors
can always be

detected; Not all
patterns >4 errors
can be detected

25

Other Error Detection CodesOther Error Detection Codes

• Many applications require very low error rate
• Need codes that detect the vast majority of errors
• Single parity check codes do not detect enough

errors
• Two-dimensional codes require too many check bits
• The following error detecting codes used in practice:

– Internet Check Sums
– CRC Polynomial Codes

26

Internet ChecksumInternet Checksum

• Several Internet protocols (e.g. IP, TCP, UDP) use
check bits to detect errors in the IP header (or in the
header and data for TCP/UDP)

• A checksum is calculated for header contents and
included in a special field.

• Checksum recalculated at every router, so algorithm
selected for ease of implementation in software

• Let header consist of L, 16-bit words,
b0, b1, b2, ..., bL-1

• The algorithm appends a 16-bit checksum bL

27

The checksum bL is calculated as follows:
• Treating each 16-bit word as an integer, find

x = b0 + b1 + b2+ ...+ bL-1 modulo 216-1
• The checksum is then given by:

bL = - x modulo 216-1
Thus, the headers must satisfy the following pattern:

0 = b0 + b1 + b2+ ...+ bL-1 + bL modulo 216-1
• The checksum calculation is carried out in software

using one’s complement arithmetic

Checksum CalculationChecksum Calculation

28

Internet Checksum ExampleInternet Checksum Example
Use Modulo Arithmetic
• Assume 4-bit words
• Use mod 24-1 arithmetic
• b0=1100 = 12
• b1=1010 = 10
• b0+b1=12+10=7 mod15
• b2 = -7 = 8 mod15
• Therefore
• b2=1000

Use Binary Arithmetic
• Note 16 =1 mod15
• So: 10000 = 0001 mod15
• leading bit wraps around

b0 + b1 = 1100+1010
=10110
=10000+0110
=0001+0110
=0111
=7

Take 1s complement
b2 = -0111 =1000

29

Polynomial CodesPolynomial Codes

• Polynomials instead of vectors for codewords
• Polynomial arithmetic instead of check sums
• Implemented using shift-register circuits
• Also called cyclic redundancy check (CRC)

codes
• Most data communications standards use

polynomial codes for error detection
• Polynomial codes also basis for powerful

error-correction methods

30

Addition:

Multiplication:

Binary Polynomial ArithmeticBinary Polynomial Arithmetic
• Binary vectors map to polynomials

(ik-1 , ik-2 ,…, i2 , i1 , i0) ik-1xk-1 + ik-2xk-2 + … + i2x2 + i1x + i0

(x7 + x6 + 1) + (x6 + x5) = x7 + x6 + x6 + x5 + 1

= x7 +(1+1)x6 + x5 + 1

= x7 +x5 + 1 since 1+1=0 mod2

(x + 1) (x2 + x + 1) = x(x2 + x + 1) + 1(x2 + x + 1)

= x3 + x2 + x) + (x2 + x + 1)

= x3 + 1

31

Binary Polynomial DivisionBinary Polynomial Division
• Division with Decimal Numbers

32

35) 1222
3

105
17 2

4

140
divisor

quotient

remainder

dividend
1222 = 34 x 35 + 32

dividend = quotient x divisor +remainder

• Polynomial Division
x3 + x + 1) x6 + x5

x6 + x4 + x3

x5 + x4 + x3

x5 + x3 + x2

x4 + x2

x4 + x2 + x
x

= q(x) quotient

= r(x) remainder

divisor
dividend

+ x+ x2x3

Note: Degree of r(x) is less than
degree of divisor

32

Polynomial CodingPolynomial Coding
• Code has binary generating polynomial of degree n–k

• k information bits define polynomial of degree k – 1

• Find remainder polynomial of at most degree n – k – 1

g(x)) xn-k i(x)
q(x)

r(x)
xn-ki(x) = q(x)g(x) + r(x)

• Define the codeword polynomial of degree n – 1

b(x) = xn-ki(x) + r(x)
n bits k bits n-k bits

g(x) = xn-k + gn-k-1xn-k-1 + … + g2x2 + g1x + 1

i(x) = ik-1xk-1 + ik-2xk-2 + … + i2x2 + i1x + i0

33

Polynomial Encoding: StepsPolynomial Encoding: Steps

1. Multiply i(x) by xn-k

2. Divide xn-ki(x) by g(x)
xn-ki(x) = g(X)q(x) + r(x)

3. Add remainder r(x) to xn-ki(x)
b(x) = xn-ki(x) + r(x) transmitted codeword

34

Transmitted codeword:
b(x) = x6 + x5 + x
b = (1,1,0,0,0,1,0)

1011) 1100000
1110

1011

1110
1011

1010
1011

010

x3 + x + 1) x6 + x5

x3 + x2 + x

x6 + x4 + x3

x5 + x4 + x3

x5 + x3 + x2

x4 + x2

x4 + x2 + x

x

Polynomial example: Polynomial example: k k = 4, = 4, nn––k k = 3= 3
Generator polynomial: g(x)= x3 + x + 1
Information: (1,1,0,0) i(x) = x3 + x2

Encoding: x3i(x) = x6 + x5

35

The The PatternPattern in Polynomial Codingin Polynomial Coding

• All codewords satisfy the following pattern:

• All codewords are a multiple of g(x)!
• Receiver should divide received n-tuple by g(x) and

check if remainder is zero
• If remainder is nonzero, then received n-tuple is not a

codeword

b(x) = xn-ki(x) + r(x) = q(x)g(x) + r(x) + r(x) = q(x)g(x)

36

Undetectable error patternsUndetectable error patterns

• e(x) has 1s in error locations & 0s elsewhere
• Receiver divides the received polynomial R(x) by g(x)
• Blindspot: If e(x) is a multiple of g(x), that is, e(x) is a

nonzero codeword, then
R(x) = b(x) + e(x) = q(x)g(x) + q’(x)g(x)

• The set of undetectable error polynomials is the set of
nonzero code polynomials

• Choose the generator polynomial so that selected error
patterns can be detected.

b(x)

e(x)

R(x)=b(x)+e(x)+
(Receiver)(Transmitter)

Error polynomial(Channel)

37

Standard Generator PolynomialsStandard Generator Polynomials

• CRC-8:

• CRC-16:

• CCITT-16:

• CCITT-32:

CRC = cyclic redundancy check

HDLC, XMODEM, V.41

IEEE 802, DoD, V.42

Bisync

ATM= x8 + x2 + x + 1

= x16 + x15 + x2 + 1
= (x + 1)(x15 + x + 1)

= x16 + x12 + x5 + 1

= x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

