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Modem and Digital ModulationModem and Digital Modulation
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Data EncodingData Encoding

• Digital Data, Digital Signals
– NRZ, Bipolar, Manchester, etc.

•• Digital Data, Analog SignalsDigital Data, Analog Signals
–– ASK, FSK, PSK, etc.ASK, FSK, PSK, etc.

• Analog Data, Digital Signals
– PCM

• Analog Data, Analog Signals
– AM, FM, PM
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BandpassBandpass ChannelsChannels

• Bandpass channels pass a range of frequencies around 
some center frequency fc
– Radio channels, telephone & DSL modems

• Digital modulators embed information into waveform 
with frequencies passed by bandpass channel

• Sinusoid of frequency fc is centered in middle of 
bandpass channel

• Modulators embed information into a sinusoid

fc – Wc/2 fc0 fc + Wc/2
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Amplitude Modulation and  Frequency Amplitude Modulation and  Frequency 
ModulationModulation

Map bits into amplitude of sinusoid:  “1” send sinusoid; “0” no sinusoid
Demodulator looks for signal vs. no signal

Map bits into frequency:  “1” send frequency fc + δ ; “0” send frequency fc - δ
Demodulator looks for power around fc + δ or fc - δ
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Phase ModulationPhase Modulation

• Map bits into phase of sinusoid:
– “1” send A cos(2πft) , i.e. phase is 0
– “0” send A cos(2πft+π) , i.e. phase is π

• Equivalent to multiplying cos(2πft) by +A or -A
– “1” send A cos(2πft) , i.e. multiply by 1
– “0” send A cos(2πft+π) = - A cos(2πft) , i.e. multiply by -1

+1

-1

Phase
Shift

Keying 0 T 2T 3T 4T 5T 6T t

Information 1 1 1 10 0
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Modulate cos(2πfct) by multiplying by Ak for T seconds:

Ak x

cos(2πfct)

Yi(t) = Ak cos(2πfct)

Transmitted signal 
during kth interval

Demodulate (recover Ak) by multiplying by 2cos(2πfct) 
for T seconds and lowpass filtering (smoothing):

x

2cos(2πfct)
2Ak cos2(2πfct) = Ak {1 + cos(2π2fct)}

Lowpass
Filter

(Smoother)
Xi(t)Yi(t) = Akcos(2πfct)

Received signal 
during kth interval

Modulator & DemodulatorModulator & Demodulator
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Example of ModulationExample of Modulation

A cos(2πft) -A cos(2πft)
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Recovered
Information

Baseband
signal discernable 

after smoothing

After multiplication
at receiver

x(t) cos(2πfct)

+A

-A
0 T 2T 3T 4T 5T 6T

+A

-A
0 T 2T 3T 4T 5T 6T

Example of DemodulationExample of Demodulation
A {1 + cos(4πft)} -A {1 + cos(4πft)}
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Fact from modulation theoryFact from modulation theory

Baseband signal x(t)
with bandwidth B Hz

If

then B

fc+B

f

f
fc-B fc

Modulated signal 
x(t)cos(2πfct) has 
bandwidth 2B Hz
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Ak x

cos(2πfct)

Yi(t) = Ak cos(2πfct)

Bk x

sin(2πfct)

Yq(t) = Bk sin(2πfct)

+ Y(t)

Yi(t) and Yq(t) both occupy the bandpass channel
QAM sends 2 pulses/Hz 

QuadratureQuadrature Amplitude Modulation (QAM)Amplitude Modulation (QAM)
• QAM uses two-dimensional signaling

– Ak modulates in-phase cos(2πfct) 
– Bk modulates quadrature phase cos(2πfct + π/4) = sin(2πfct)
– Transmit sum of inphase & quadrature phase components

Transmitted
Signal
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QAM DemodulationQAM Demodulation

Y(t) x

2cos(2πfct)
2cos2(2πfct)+2Bk cos(2πfct)sin(2πfct)

= Ak {1 + cos(4πfct)}+Bk {0 + sin(4πfct)}

Lowpass
filter 

(smoother)
Ak

2Bk sin2(2πfct)+2Ak cos(2πfct)sin(2πfct)
= Bk {1 - cos(4πfct)}+Ak {0 + sin(4πfct)}

x

2sin(2πfct)

Bk

Lowpass
filter 

(smoother)

smoothed to zero

smoothed to zero
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Signal ConstellationsSignal Constellations

• Each pair (Ak, Bk) defines a point in the plane
• Signal constellation set of signaling points

4 possible points per T sec.
2 bits / pulse

Ak

Bk

16 possible points per T sec.
4 bits / pulse

Ak

Bk

(A, A)

(A,-A)(-A,-A)

(-A,A)
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Ak

Bk

4 possible points per T sec.

Ak

Bk

16 possible points per T sec.

Other Signal ConstellationsOther Signal Constellations

• Point selected by amplitude & phase
Ak cos(2πfct) + Bk sin(2πfct) = √Ak

2 + Bk
2 cos(2πfct + tan-1(Bk/Ak))
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Telephone Modem StandardsTelephone Modem Standards
Telephone Channel for modulation purposes has

Wc = 2400 Hz → 2400 pulses per second

Modem Standard V.32bis
• Trellis modulation maps m bits into one of 2m+1 constellation 

points
• 14,400 bps Trellis 128 2400x6
• 9600 bps Trellis 32 2400x4
• 4800 bps QAM 4 2400x2

Modem Standard V.34 adjusts pulse rate to channel
• 2400-33600 bps   Trellis 960 2400-3429 pulses/sec
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Error DetectionError Detection
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Error ControlError Control

• Digital transmission systems introduce errors
• Applications require certain reliability level

– Data applications require error-free transfer
– Voice & video applications tolerate some errors

• Error control used when transmission system does not
meet application requirement

• Error control ensures a data stream is transmitted to 
a certain level of accuracy despite errors 

• Two basic approaches:
– Error detection & retransmission (ARQ)
– Forward error correction (FEC)
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Key IdeaKey Idea
• All transmitted data blocks (“codewords”) satisfy a 

pattern
• If received block doesn’t satisfy pattern, it is in 

error
• Redundancy:  Only a subset of all possible blocks can 

be codewords
• Blindspot:  when channel transforms a codeword into 

another codeword

ChannelEncoderUser
information

Pattern
checking

All inputs to channel
satisfy pattern or condition

Channel
output

Deliver user 
information or
set error alarm
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Single Parity CheckSingle Parity Check

• Append an overall parity check to k information bits
Info Bits:       b1, b2, b3, …, bk

Check Bit:    bk+1= b1+ b2+ b3+ …+ bk modulo 2

Codeword:       (b1, b2, b3, …, bk,, bk+!)

• All codewords have even # of 1s
• Receiver checks to see if # of 1s is even

– All error patterns that change an odd # of bits are 
detectable

– All even-numbered patterns are undetectable
• Parity bit used in ASCII code
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Example of Single Parity CodeExample of Single Parity Code

• Information (7 bits):  (0, 1, 0, 1, 1, 0, 0)
• Parity Bit: b8 = 0 + 1 +0 + 1 +1 + 0 = 1
• Codeword (8 bits): (0, 1, 0, 1, 1, 0, 0, 1)

• If single error in bit 3 : (0, 1, 1, 1, 1, 0, 0, 1)
– # of 1’s =5, odd
– Error detected

• If errors in bits 3 and 5: (0, 1, 1, 1, 0, 0, 0, 1)
– # of 1’s =4, even
– Error not detected
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CheckbitsCheckbits & Error Detection& Error Detection

Calculate 
check bits

Channel

Recalculate 
check bits

Compare

Information bits Received information bits

Sent 
check
bits

Information 
accepted if 
check bits 
match

Received 
check bits

k bits

n – k bits
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How good is the single parity check code?How good is the single parity check code?

• Redundancy:  Single parity check code adds 1 
redundant bit per k information bits:             
overhead = 1/(k + 1)

• Coverage:  all error patterns with odd # of errors can 
be detected
– An error pattern is a binary (k + 1)-tuple with 1s where 

errors occur and 0’s elsewhere
– Of  2k+1 binary (k + 1)-tuples, ½ are odd, so 50% of error 

patterns can be detected 
• Is it possible to detect more errors if we add more 

check bits?  
• Yes, with the right codes



23

TwoTwo--Dimensional Parity CheckDimensional Parity Check

1  0  0  1  0  0

0  1  0  0  0  1

1  0  0  1  0  0

1  1  0  1  1  0

1  0  0  1  1 1

Bottom row consists of 
check bit for each column 

Last column consists 
of check bits for each 
row

• More parity bits to improve coverage
• Arrange information as columns
• Add single parity bit to each column
• Add a final “parity” column
• Used in early error control systems 
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1  0  0  1  0  0

0  0  0  1  0  1

1  0  0  1  0  0

1  0  0  0  1  0

1  0  0  1  1  1   

1  0  0  1  0  0

0  0  0  0  0  1

1  0  0  1  0  0

1  0  0  1  1  0

1  0  0  1  1  1   

1  0  0  1  0  0

0  0  0  1  0  1

1  0  0  1  0  0

1  0  0  1  1  0

1  0  0  1  1  1   

1  0  0  1  0  0

0  0  0  0  0  1

1  0  0  1  0  0

1  1  0  1  1  0

1  0  0  1  1  1   

Arrows indicate failed check bits

Two 
errors

One error

Three 
errors Four errors 

(undetectable)

ErrorError--detecting capabilitydetecting capability

1, 2, or 3 errors 
can always be 

detected;  Not all 
patterns >4  errors 
can be detected
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Other Error Detection CodesOther Error Detection Codes

• Many applications require very low error rate
• Need codes that detect the vast majority of errors
• Single parity check codes do not detect enough 

errors
• Two-dimensional codes require too many check bits
• The following error detecting codes used in practice:

– Internet Check Sums
– CRC Polynomial Codes
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Internet ChecksumInternet Checksum

• Several Internet protocols (e.g. IP, TCP, UDP)  use 
check bits to detect errors in the IP header (or in the 
header and data for TCP/UDP)

• A checksum is calculated for header contents and 
included in a special field.  

• Checksum recalculated at every router, so algorithm 
selected for ease of implementation in software 

• Let header consist of L, 16-bit words, 
b0, b1, b2, ..., bL-1 

• The algorithm appends a 16-bit checksum bL
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The checksum bL is calculated as follows:
• Treating each 16-bit word as an integer, find

x = b0 +  b1 +  b2+  ...+  bL-1 modulo 216-1
• The checksum is then given by: 

bL = - x   modulo 216-1
Thus, the headers must satisfy the following pattern:

0 = b0 +  b1 +  b2+  ...+  bL-1 +  bL modulo 216-1 
• The  checksum calculation is  carried out in software 

using one’s complement arithmetic 

Checksum CalculationChecksum Calculation
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Internet Checksum ExampleInternet Checksum Example
Use Modulo Arithmetic
• Assume 4-bit words
• Use mod 24-1 arithmetic
• b0=1100 = 12
• b1=1010 = 10
• b0+b1=12+10=7 mod15
• b2 = -7 = 8 mod15
• Therefore
• b2=1000

Use Binary Arithmetic
• Note 16  =1 mod15
• So: 10000 = 0001 mod15
• leading bit wraps around

b0 + b1 = 1100+1010
=10110
=10000+0110
=0001+0110
=0111
=7

Take 1s complement
b2 = -0111  =1000
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Polynomial CodesPolynomial Codes

• Polynomials instead of vectors for codewords
• Polynomial arithmetic instead of check sums
• Implemented using shift-register circuits
• Also called cyclic redundancy check (CRC)

codes
• Most data communications standards use 

polynomial codes for error detection
• Polynomial codes also basis for powerful 

error-correction methods
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Addition:  

Multiplication:  

Binary Polynomial ArithmeticBinary Polynomial Arithmetic
• Binary vectors map to polynomials

(ik-1 , ik-2 ,…, i2 , i1 , i0)  ik-1xk-1 + ik-2xk-2 + … + i2x2 + i1x + i0

(x7 + x6 + 1) + (x6 + x5) = x7 + x6 + x6 + x5 + 1

= x7 +(1+1)x6 + x5 + 1

= x7 +x5 + 1   since 1+1=0 mod2

(x + 1) (x2 + x + 1) = x(x2 + x + 1) + 1(x2 + x + 1)

= x3 + x2 + x) + (x2 + x + 1)

= x3 + 1 
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Binary Polynomial DivisionBinary Polynomial Division
• Division with Decimal Numbers

32

35 ) 1222
3

105
17 2

4

140
divisor

quotient

remainder

dividend
1222 = 34 x 35 + 32

dividend = quotient x divisor  +remainder

• Polynomial Division
x3 + x + 1 ) x6 + x5 

x6 +      x4 + x3

x5 + x4 + x3

x5 +        x3 + x2

x4 +        x2

x4 +        x2 + x
x

=  q(x) quotient

= r(x) remainder

divisor
dividend

+ x+ x2x3

Note:  Degree of r(x) is less than 
degree of divisor
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Polynomial CodingPolynomial Coding
• Code has binary generating polynomial of degree n–k 

• k information bits define polynomial of degree k – 1 

• Find remainder polynomial of at most degree n – k – 1 

g(x) ) xn-k i(x)
q(x)

r(x)
xn-ki(x) = q(x)g(x) + r(x)

• Define the codeword polynomial of degree n – 1

b(x)   =  xn-ki(x)  +   r(x)
n bits k bits n-k bits

g(x) = xn-k + gn-k-1xn-k-1 + … + g2x2 + g1x + 1

i(x) = ik-1xk-1 + ik-2xk-2 + … + i2x2 + i1x + i0
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Polynomial Encoding: StepsPolynomial Encoding: Steps

1. Multiply i(x) by xn-k

2. Divide xn-ki(x) by g(x)
xn-ki(x)  = g(X)q(x) + r(x)

3. Add remainder r(x) to xn-ki(x) 
b(x) = xn-ki(x) + r(x) transmitted codeword
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Transmitted codeword:
b(x) = x6 + x5 + x
b = (1,1,0,0,0,1,0)

1011 ) 1100000
1110

1011

1110
1011

1010
1011

010

x3 + x + 1 ) x6 + x5

x3 + x2 + x

x6 +        x4 + x3

x5 + x4 + x3

x5 +        x3 + x2

x4 +        x2

x4 +        x2 + x

x

Polynomial example: Polynomial example: k k = 4, = 4, nn––k k = 3= 3
Generator polynomial:  g(x)= x3 + x + 1
Information: (1,1,0,0)            i(x) = x3 + x2

Encoding:    x3i(x) = x6 + x5
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The The PatternPattern in Polynomial Codingin Polynomial Coding

• All codewords satisfy the following pattern:

• All codewords are a multiple of g(x)!
• Receiver should divide received n-tuple by g(x) and 

check if remainder is zero
• If remainder is nonzero, then received n-tuple is not a 

codeword

b(x) = xn-ki(x) + r(x) = q(x)g(x) + r(x) + r(x) = q(x)g(x) 



36

Undetectable error patternsUndetectable error patterns

• e(x) has 1s in error locations & 0s elsewhere
• Receiver divides the received polynomial R(x) by g(x)
• Blindspot:  If e(x) is a multiple of g(x), that is, e(x) is a 

nonzero codeword, then
R(x) = b(x) + e(x) = q(x)g(x) + q’(x)g(x)

• The set of undetectable error polynomials is the set of 
nonzero code polynomials

• Choose the generator polynomial so that selected error 
patterns can be detected.

b(x)

e(x)

R(x)=b(x)+e(x)+
(Receiver)(Transmitter)

Error polynomial(Channel)
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Standard Generator PolynomialsStandard Generator Polynomials

• CRC-8:

• CRC-16:

• CCITT-16:

• CCITT-32:

CRC = cyclic redundancy check

HDLC, XMODEM, V.41

IEEE 802, DoD, V.42 

Bisync

ATM= x8 + x2 + x + 1

= x16 + x15 + x2 + 1
= (x + 1)(x15 + x + 1)

= x16 + x12 + x5 + 1

= x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1


