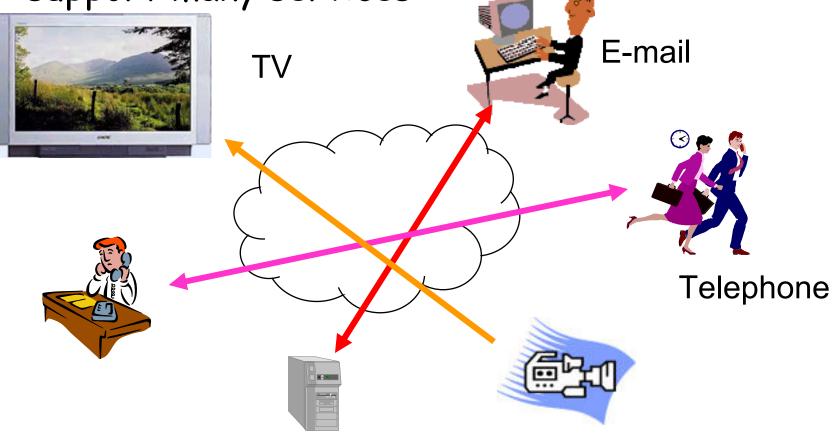
CSE3213 Computer Network I


Chapter 3 Digital Transmission Fundamentals

Course page: http://www.cse.yorku.ca/course/3213

Slides modified from Alberto Leon-Garcia and Indra Widjaja

<u>Digital Networks</u>

 Digital transmission enables networks to support many services

<u>Questions of Interest</u>

- How long will it take to transmit a message?
 - How many bits are in the message (text, image)?
 - How fast does the network/system transfer information?
- Can a network/system handle a voice (video) call?
 - How many bits/second does voice/video require? At what quality?
- How long will it take to transmit a message without errors?
 - How are errors introduced?
 - How are errors detected and corrected?
- What transmission speed is possible over radio, copper cables, fiber, infrared, ...?

Digital Representation of Information

Bits, numbers, information

- Bit: number with value 0 or 1
 - *n* bits: digital representation for $0, 1, ..., 2^n$
 - Byte or Octet, n = 8
 - Computer word, *n* = 16, 32, or 64
- *n* bits allows enumeration of 2^{*n*} possibilities
 - *n*-bit field in a header
 - *n*-bit representation of a voice sample
 - Message consisting of n bits
- The number of bits required to represent a message is a measure of its information content
 - More bits \rightarrow More content

Block vs. Stream Information

Block

- Information that occurs in a single block
 - Text message
 - Data file
 - JPEG image
 - MPEG file
- Size = Bits / block
 or bytes/block
 - 1 kbyte = 2¹⁰ bytes
 - 1 Mbyte = 2²⁰ bytes
 - 1 Gbyte = 2^{30} bytes

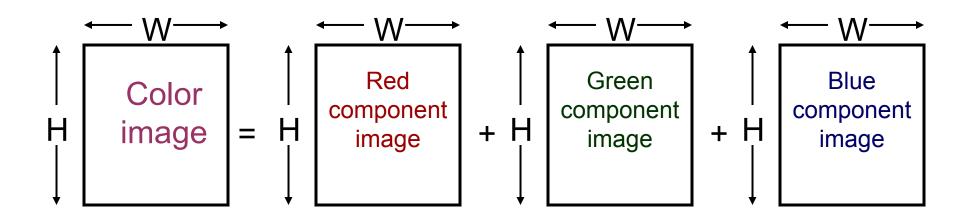
Stream

- Information that is produced & transmitted *continuously*
 - Real-time voice
 - Streaming video
- Bit rate = bits / second
 - 1 kbps = 10³ bps
 - 1 Mbps = 10⁶ bps
 - 1 Gbps =10^{9 bps}

Transmission Delay

- L number of bits in message
- *R* bps speed of digital transmission system
- L/R time to transmit the information
- t_{prop} time for signal to propagate across medium
- d distance in meters
- c speed of light (3x10⁸ m/s in vacuum)

 $Delay = t_{prop} + L/R = d/c + L/R$ seconds


Use data compression to reduce L Use higher speed modem to increase R Place server closer to reduce d

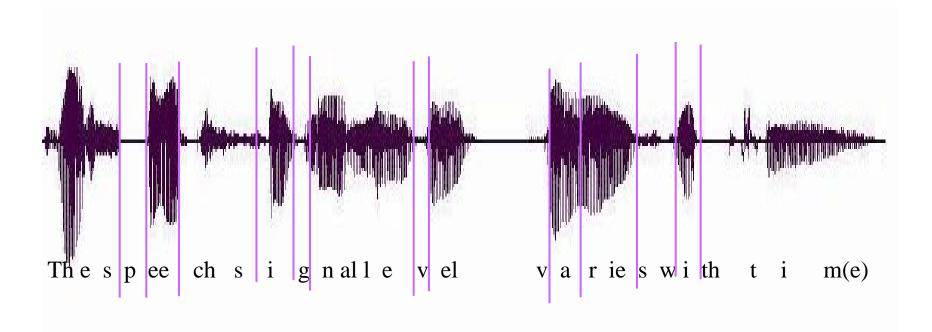
<u>Compression</u>

- Information usually not represented efficiently
- Data compression algorithms
 - Represent the information using fewer bits
 - Noiseless: original information recovered exactly
 - E.g. zip, compress, GIF, fax
 - Noisy: recover information approximately
 - JPEG
 - Tradeoff: # bits vs. quality
- Compression Ratio

#bits (original file) / #bits (compressed file)

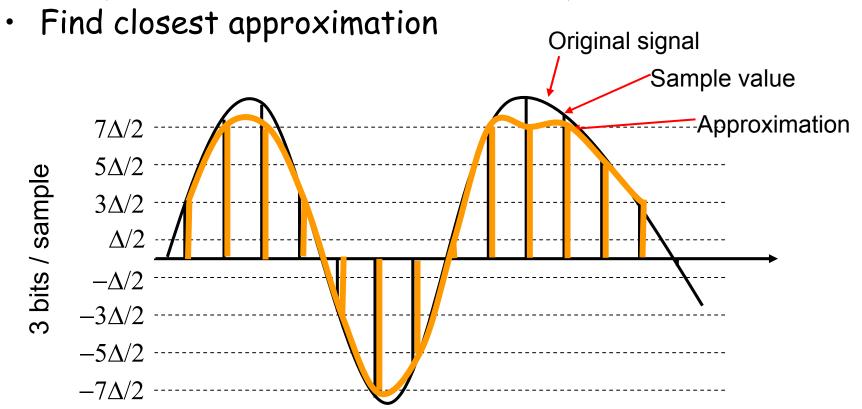
<u>Color Image</u>

Total bits = $3 \times H \times W$ pixels $\times B$ bits/pixel = 3HWB bits


Example: 8×10 inch picture at 400×400 pixels per inch² $400 \times 400 \times 8 \times 10 = 12.8$ million pixels 8 bits/pixel/color 12.8 megapixels × 3 bytes/pixel = 38.4 megabytes

Examples of Block Information

Туре	Method	Format	Original	Compressed(Ratio)
Text	Zip, compress	ASCII	Kbytes- Mbytes	(2-6)
Fax	CCITT	A4 page 200x100	256	5-54 kbytes
	Group 3	pixels/in ²	kbytes	(5-50)
Color	JPEG	8x10 in² photo	38.4	1-8 Mbytes
Image		400² pixels/in²	Mbytes	(5-30)


Stream Information

- A real-time voice signal must be digitized & transmitted as it is produced
- Analog signal level varies continuously in time

Digitization of Analog Signal

• Sample analog signal in time and amplitude

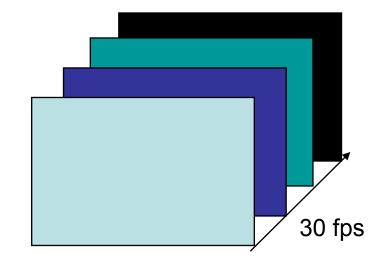
R_s = Bit rate = # bits/sample x # samples/second

Bit Rate of Digitized Signal

- Bandwidth W_s Hertz: how fast the signal changes
 - Higher bandwidth \rightarrow more frequent samples
 - Minimum sampling rate = $2 \times W_s$
- Representation accuracy: range of approximation error
 - Higher accuracy
 - \rightarrow smaller spacing between approximation values
 - \rightarrow more bits per sample

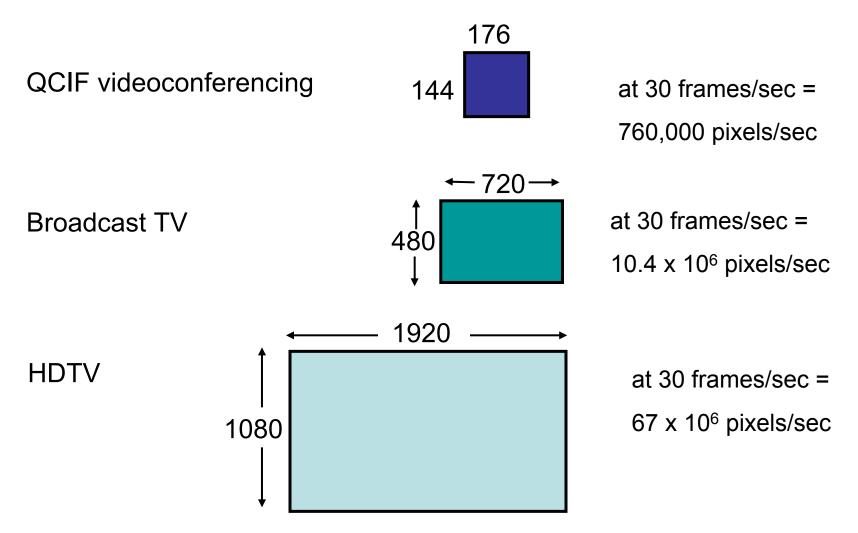
Example: Voice & Audio

Telephone voice


- $W_s = 4 \text{ kHz} \rightarrow 8000$ samples/sec
- 8 bits/sample
- *R_s*=8 × 8000 = 64 kbps
- Cellular phones use more powerful compression algorithms: 8-12 kbps

CD Audio

- $W_s = 22 \text{ kHertz} \rightarrow 44000 \text{ samples/sec}$
- 16 bits/sample
- *R_s*=16 x 44000= 704 kbps per audio channel
- MP3 uses more powerful compression algorithms: 50 kbps per audio channel


<u>Video Signal</u>

- Sequence of picture frames
 - Each picture digitized & compressed
- Frame repetition rate
 - 10-30-60 frames/second depending on quality
- Frame resolution
 - Small frames for videoconferencing
 - Standard frames for conventional broadcast TV
 - HDTV frames

Rate = M bits/pixel **x** (WxH) pixels/frame **x** F frames/second

Video Frames

Digital Video Signals

Туре	Method	Format	Original	Compressed
Video Confer- ence	H.261	176x144 or 352x288 pix @10-30 fr/sec	2-36 Mbps	64-1544 kbps
Full Motion	MPEG2	720x480 pix @30 fr/sec	249 Mbps	2-6 Mbps
HDTV	MPEG2	1920x1080 @30 fr/sec	1.6 Gbps	19-38 Mbps

Transmission of Stream Information

- Constant bit-rate
 - Signals such as digitized telephone voice produce a steady stream: e.g. 64 kbps
 - Network must support steady transfer of signal,
 e.g. 64 kbps circuit
- Variable bit-rate
 - Signals such as digitized video produce a stream that varies in bit rate, e.g. according to motion and detail in a scene
 - Network must support variable transfer rate of signal, e.g. packet switching or rate-smoothing with constant bit-rate circuit

Stream Service Quality Issues

Network Transmission Impairments

- Delay: Is information delivered in timely fashion?
- Jitter: Is information delivered in sufficiently smooth fashion?
- Loss: Is information delivered without loss? If loss occurs, is delivered signal quality acceptable?
- Applications & application layer protocols developed to deal with these impairments

Why Digital Communications?

<u>A Transmission System</u>

Transmitter

- Converts information into *signal* suitable for transmission
- · Injects energy into communications medium or channel
 - Telephone converts voice into electric current
 - Modem converts bits into tones

Receiver

- Receives energy from medium
- Converts received signal into form suitable for delivery to user
 - Telephone converts current into voice
 - Modem converts tones into bits

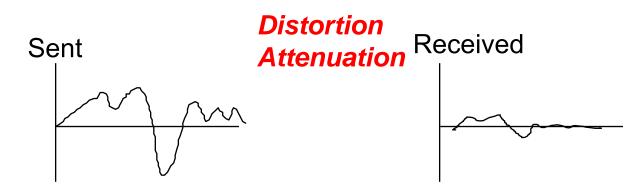
Transmission Impairments

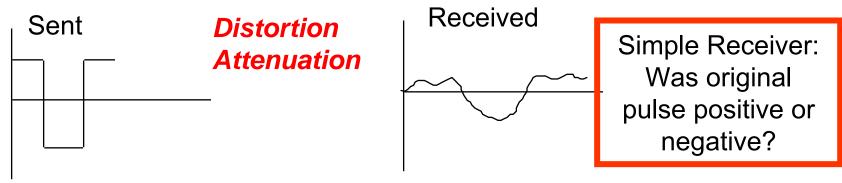
Communication Channel

- Pair of copper wires
- Coaxial cable
- Radio
- Light in optical fiber
- Light in air
- Infrared

Transmission Impairments

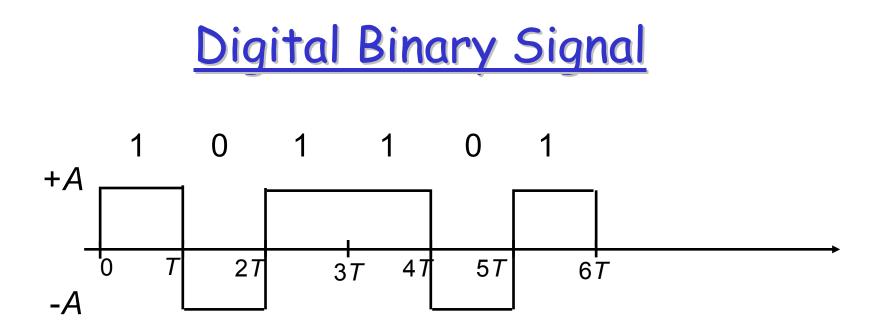
- Signal attenuation
- Signal distortion
- Spurious noise
- Interference from other signals


Analog Long-Distance Communications


- Each repeater attempts to restore analog signal to its original form
- Restoration is imperfect
 - Distortion is not completely eliminated
 - Noise & interference is only partially removed
- Signal quality decreases with # of repeaters
- Communications is distance-limited
- Still used in analog cable TV systems
- Analogy: Copy a song using a cassette recorder

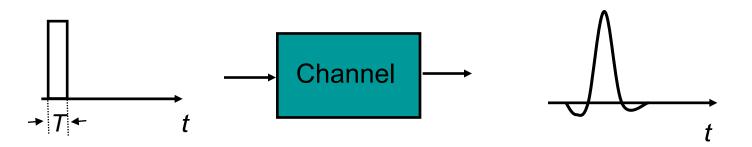
Analog vs. Digital Transmission

Analog transmission: all details must be reproduced accurately


Digital transmission: only discrete levels need to be reproduced

Digital Long-Distance Communications

- Regenerator recovers original data sequence and retransmits on next segment
- Can design so error probability is very small
- Then each regeneration is like the first time!
- Analogy: copy an MP3 file
- Communications is possible over very long distances
- Digital systems vs. analog systems
 - Less power, longer distances, lower system cost
 - Monitoring, multiplexing, coding, encryption, protocols...

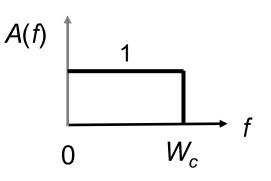

Bit rate = 1 bit / T seconds

For a given communications medium:

- How do we increase transmission speed?
- How do we achieve reliable communications?
- Are there limits to speed and reliability?

Pulse Transmission Rate

• Objective: Maximize pulse rate through a channel, that is, make Tas small as possible



- If input is a narrow pulse, then typical output is a spread-out pulse with ringing
- Question: How frequently can these pulses be transmitted without interfering with each other?
- Answer: $2 \times W_c$ pulses/second

where W_c is the bandwidth of the channel

Bandwidth of a Channel
$$X(t) = a \cos(2\pi ft) \longrightarrow$$
Channel $\longrightarrow Y(t) = A(f) a \cos(2\pi ft)$

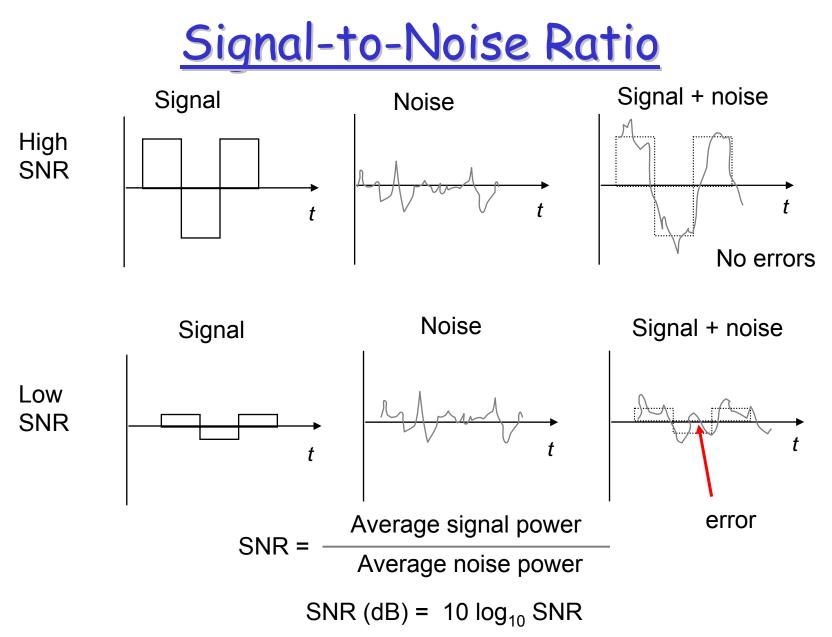
- If input is sinusoid of frequency f, then
 - output is a sinusoid of same frequency f
 - Output is attenuated by an amount A(f) that depends on f
 - $A(f) \approx 1$, then input signal passes readily
 - $A(f) \approx 0$, then input signal is blocked
- Bandwidth W_c is range of frequencies passed by channel

Ideal low-pass channel

Multilevel Pulse Transmission

- Assume channel of bandwidth W_c , and transmit 2 W_c pulses/sec (without interference)
- If pulses amplitudes are either -A or +A, then each pulse conveys 1 bit, so
 Bit Rate = 1 bit/pulse x 2W_c pulses/sec = 2W_c bps

• If amplitudes are from $\{-A, -A/3, +A/3, +A\}$, then bit rate is 2 x 2 W_c bps


• By going to $M = 2^m$ amplitude levels, we achieve

Bit Rate = m bits/pulse x 2 W_c pulses/sec = $2mW_c$ bps

In the absence of noise, the bit rate can be increased without limit by increasing m

Noise & Reliable Communications

- All physical systems have noise
 - Electrons always vibrate at non-zero temperature
 - Motion of electrons induces noise
- Presence of noise limits accuracy of measurement of received signal amplitude
- Errors occur if signal separation is comparable to noise level
- Bit Error Rate (BER) increases with decreasing signalto-noise ratio
- Noise places a limit on how many amplitude levels can be used in pulse transmission

Shannon Channel Capacity

$C = W_c \log_2 (1 + SNR)$ bps

- Arbitrarily reliable communications is possible if the transmission rate R < C.
- If R > C, then arbitrarily reliable communications is not possible.
- "Arbitrarily reliable" means the BER can be made arbitrarily small through sufficiently complex coding.
- C can be used as a measure of how close a system design is to the best achievable performance.
- Bandwidth W_c & SNR determine C

<u>Example</u>

- Find the Shannon channel capacity for a telephone channel with $W_c = 3400$ Hz and SNR = 10000
 - $C = 3400 \log_2 (1 + 10000)$ = 3400 $\log_{10} (10001) / \log_{10} 2 = 45200 \text{ bps}$

Note that SNR = 10000 corresponds to $SNR (dB) = 10 \log_{10}(10001) = 40 dB$

Bit Rates of Digital Transmission

Systems

System	Bit Rate	Observations
Telephone twisted pair	33.6-56 kbps	4 kHz telephone channel
Ethernet twisted pair	10 Mbps, 100 Mbps	100 meters of unshielded twisted copper wire pair
Cable modem	500 kbps-4 Mbps	Shared CATV return channel
ADSL twisted pair	64-640 kbps in, 1.536- 6.144 Mbps out	Coexists with analog telephone signal
2.4 GHz radio	2-11 Mbps	IEEE 802.11 wireless LAN
28 GHz radio	1.5-45 Mbps	5 km multipoint radio
Optical fiber	2.5-10 Gbps	1 wavelength
Optical fiber	>1600 Gbps	Many wavelengths

Examples of Channels

Channel	Bandwidth	Bit Rates	
Telephone voice channel	3 kHz	33 kbps	
Copper pair	1 MHz	1-6 Mbps	
Coaxial cable	500 MHz (6 MHz channels)	30 Mbps/ channel	
5 GHz radio (IEEE 802.11)	300 MHz (11 channels)	54 Mbps / channel	
Optical fiber	Many TeraHertz	40 Gbps / wavelength	