

Multi-rate Transmissions

John Stemberger

COSC 6590A York University

Lecture Outline

- What is Multi-rate
- A brief look at ARF
- A in depth look at RBAR
- ARF vs RBAR
- Medium Time Metric (MTM)

Multi-rate

- 1Mbps 11Mbps
 - depends on hardware, distance, etc.
- Modulation schemes
 - encode bits into symbols.
 - data rate = bits per symbol
- SNR and BER
 - the higher the data rate the higher the bit error rate

Faster Isn't Always Better

Advantages of Speed:

- We all want data faster
- Bandwidth is a scares resource for MANETS

Disadvantages of Speed:

SNR and BER

Rate Adaption

- Channel Quality Estimations
 - Accurate
 - Up to date
 - Destination (RBAR)
 - Source (ARF)
- Rate Selection
 - predetermined thresholds for transmission rates
 - may not be known exactly so we have to estimate

Auto Rate Fallback - ARF

- Source updates rate depending on ACKs received
- Drop transmission rate if ACKs are not received
- Increase transmission rate if timer expires of 10 consecutive ACKs are received

Summary of ARF

Advantage

adapts to changes in the network

Disadvantages

- Estimate calculated by the source
- Estimate based on past ACKs not on channel quality
- Takes a long time to detect changes

Measure channel quality and pick a rate

- Select rate using the RTS/CTS
 - selected per packet
- Selection made my destination
 - Noise on receiver end determines ability to receive packet
 - receiver has more information then the sender
 - transmitting estimate data can be expensive
- Implemented in 802.11 with minor modifications
 - DCF
 - RTS/CTS
 - NAV
 - Data packet header

Modifications to RTS/CTS

- replace duration with modulation and size of data
 - all nodes can compute the duration from this

 Destination uses RTS to measure quality of channel and returns a selected rate in the CRT

Hidden Terminals may have an outdated Reservation

 If destination selects a different speed then A will have a wrong duration

Have to modify data header to compensate

- Add a Reservation sub header (RSH) to all data packets
 - added to the MAC header
 - all hidden terminals will have to recalculate duration based on this
 - have to modify NAV to allow updates

MAC Header Modifications

- Added header check sum(HCS)
- unique frame control number to distinguish from other mac headers

The physical Layer also has to be modified

So hidden terminals can understand the MAC header.

- (c) Physical layer (PLCP) header.
- Signal transmission may require 2 physical transmission rate switches instead of 1
 - one switch to send the MAC header
 - one switch to send the data

The New DCF

Summary of RBAR

Advantage

- estimate is more accurate
 - base on more complete information
 - closer to actual transmission
- can be implemented into 802.11

Disadvantages

- More overhead for RSH
 - HCS
 - Slower MAC header
- Routing protocol prefers long unreliable links

ARF vs RBAR - Simulation Environment

Configuration 1:

- Single connection between two nodes
- one node fixed, the other moving in a straight line at 2 m/s
- Rayleigh fading channel

Configuration 2:

- 20 nodes in a 1500x300 m area
- Nodes randomly places at start and followed a randomly chosen path (random waypoint mobility pattern)
- randomly choses speed of ±10% of mean speed
- Mean speed of 2, 4, 6, 8, and 10 m/s
- DSR routing

ARF vs RBAR - C1

ARF vs RBAR - C1

ARF vs RBAR - C2

Shortest Path leads to longer links

- Routing protocols make decisions based on a min-hop metric
- Slower transmissions go farther
 - dominate medium longer no temporal fairness

Longer Paths with Faster Links can Lower throughput

Neighboring nodes have to defer transmission

Modify routing protocol to account for time

- Minimum Hop Path
 - fewest number of hops from source to destination
- Shortest Widest Path
 - shortest path that uses the fastest bottleneck
- Least Cost Path using a different metric

Medium Time Metric (MTM) is better

- Minimize end to end time for the packet to be sent
 - better use of the scares resource
 - alter weights to reflect time taken to send a packet between two nodes
 - inverse link speeds?
 - doesn't take packet overhead into account
 - small packets at slow speeds will take the same amount of time as large packets at fast rates

Weights should be packet size dependant

different set of weights for each packet size on the network

Link Rate	Inverse Weights	MTM wieghts
11	1	1
5.5	2	1.44
2	5.5	3
1	11	5.45

Implementing in current routing protocols

- Link State Protocols
 - each node computes next hop based on local connections
 - topology information already present to alter paths using different weights depending on packet size
- Distance Vector Protocols
 - each node has a full topology of the network by sharing their routing tables
 - requires extra communication for each added weight
 - tune the weights to the standard packet size

Quick look at OAR & Simulation Environment

- Opportunistic Auto Rate
 - receiver based
 - allows high-rate multi-pack bursts
- Simulation Environment
 - maximum speed of 20 m/s
 - pause time as low as 0 seconds
 - Min Hop was calculated by DSDV
 - MTM was tuned to TCP traffic of 1460 byte packets
 - variable number of nodes

MTM improves throughput

Summary of MTM

Advantage

- shortest path metric can be added to distance vector and linkstate
- only needs to track changes in link rates
- routes do not depend on traffic patterns
- minimizes total interference

Disadvantages

- weights of connections depend on size of packet
- doesn't deal with high mobility

Lecture Summary

- multi rate transmissions can increase throughput
- receiver can estimate channel quality better then the sender
- the closer the estimate is to the transmission the better the estimate
- RBAR adapts to changes in signal strength quickly
- MTM will increase throughput by minimizing the use of the scares resource of bandwidth

Resources

- A Rate-Adaptive MAC protocol for Multi-Hop Wireless Networks, G. Holland, N. Vaidya, P. Bahl
- High Throughput Route Selection in Multi-Rate Ad-Hoc Wireless Networks, B. Awerbuch, D. Holmer, H. Rubens
- WaveLAN-II: A high Performance Wireless LAN for the Unlicensed Band, A. Kamerman, L. Monteban
- Opportunistic Media Access for Multirate Ad hoc networks,
 B. Sadeghi, V. Kanodia, A. Sabharwal, E. Knightly