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ABSTRACT

The main focus of program understanding and reverse en-
gineering research has been on modeling the structure of a
program by examining its code. This has been the result
of the nature of the systems investigated and the perceived
goals of the reverse engineering activities. The types of sys-
tems under investigation have changed, however, and the
maintenance objectives have evolved. Many legacy systems
today are object-oriented and component-based. One of the
most prominent maintenance objectives is system migration
to distributed environments, most notably the World Wide
Web, for interoperation with other systems. This new main-
tenance objective has a great impact on the types of models
expected as products of reverse engineering. As the tradi-
tional static software analysis techniques keep their valuable
role in program comprehension, additional techniques, espe-
cially those focusing on run-time analysis of the subject sys-
tems, become equally important. In this paper, we focus on
the analysis of the system’s dynamic behavior, as it pertains
to understanding the system’s processes and uses. We give
an overview of currently used dynamic reverse engineering
techniques and identify some challenges yet to be tackled.
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1. INTRODUCTION

Software that is used in a real-world environ-
ment must change or become less and less useful
in that environment.

Lehman Law of evolution [29]

As the context, in which the software system is deployed,
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changes, the software has to be maintained and adapted in
order to deliver the new functions required of it and to meet
the new constraints imposed on it. A necessary pre-requisite
for effectively maintaining and evolving a software system is
to maintain an “operational” understanding of the system
in question, and this is the objective of reverse-engineering
research. According to Chikofsky and Cross, the purpose of
reverse engineering is to analyze a system in order to identify
its current components and their dependencies, and to cre-
ate abstractions of the system design [4]. More specifically,
reverse engineering of a software system takes almost always
place in service of a specific purpose such as re-engineering
to add a specific feature, maintenance to improve the effi-
ciency of a process, reuse of some of its modules in a new
system, or assessment in order to decide on whether or not
to purchase it.

For a comprehensive understanding of any software system,
several complementary views need to be constructed, cap-
turing information about different aspects of the system in
question. The “4+1 Views” model, introduced in [25], for
example, identifies four different architectural views: the
logical view of the system data, the process view of the sys-
tem’s threads of control, the physical view describing the
mapping of the software elements onto hardware, and the
development view describing the organization of the soft-
ware modules during development. Scenarios of how the
system is used in different types of situations are used to
integrate, illustrate and validate the above views. However,
in spite of our awareness that a single view is rarely suffi-
cient for understanding a software system, the main focus
of program-understanding and reverse-engineering research
has been on identifying and modeling the structure of a pro-
gram by examining its code. There are two main reasons
for this focus: first, the nature of the systems investigated
up to now and second, the perceived goals of the reverse-
engineering activities. On one hand, the software systems
that have traditionally been the subject of reverse engineer-
ing were mostly written in procedural languages and run
on a single machine. At the same time, the maintenance
goal, in support of which reverse engineering has tradition-
ally been performed, has been the adaptation of a single
legacy system, to extend its original functionality or to port
it to a more modern platform.

Both the nature of the systems under investigation and the
maintenance objectives have evolved. An increasing part of
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the legacy systems today is designed in the object-oriented
style and often their components are distributed in multi-
tier architectures. Furthermore, one of the most prominent
maintenance objectives today is the migration of legacy sys-
tems to distributed environments, most notably the World
Wide Web, for interoperation with other systems. This new
maintenance objective has a great impact on the types of
models expected as products of reverse engineering. Instead
of identification of the inter-dependencies between the orig-
inal data structures and procedures of the system, so as not
to be disturbed during the subsequent program adaptation
phase, the desired products are specifications of function-
ally coherent subsystems with interesting high-level behav-
iors that can be integrated in the interoperating system con-
sortium.

The landscape of reverse-engineering research is now chang-
ing in response to the evolution of the overall problem.
Software-architecture extraction is extending to include all
the different aspects of software mentioned above. In this
paper, we focus on the analysis of the system’s dynamic
behavior, as it pertains to understanding the system’s pro-
cesses and uses.

The rest of this paper is organized as follows. Section
2 reviews a range of reverse-engineering tasks for which
dynamic-behavior analysis can play an important role. In
Section 3 we discuss various aspects of software visualization
supporting program comprehension. Special classes of soft-
ware systems and the infrastructure necessary for inspect-
ing their behavior is discussed in Section 4. Finally, section
5 outlines some directions for future work in reverse engi-
neering, integrating static and dynamic analysis of software
systems.

2. BEHAVIOR ANALYSIS FOR REVERSE-
ENGINEERING TASKS

A variety of tasks, ranging from software assessment to sys-
tem re-development, employ reverse engineering as a sup-
porting activity. Some of these tasks require an overall un-
derstanding of the subject software systems while others fo-
cus on a specific part or a feature in the system. When big
architectural level changes are required, the whole system
typically needs to be understood. However, there are also
cases in which the analysis is targeted at a specific part of
the system. Such cases include, for instance, understanding
the interface of an unknown (and possibly distributed) com-
ponent or application and debugging the source of a specific
(and typically false) behavior. In this section, we examine
a range of reverse-engineering tasks and we discuss the role
that dynamic-behavior analysis can play in these tasks.

2.1 Extracting SystemModularizations

A lot of software-engineering research, both past and cur-
rent, has emphasized modularity as an important quality
of software systems. Modular systems are easier to under-
stand and to maintain and a lot of effort has been put into
characterizing the nature of alternative modularizations and
providing methods to support the development of modular
systems. It is not a surprise then that a substantial reverse-
engineering effort has been devoted to extracting modular-

izations of legacy software systems.

A variety of alternative modularizations can be produced,
based on different types of relations extracted with code
analysis. In fact, many reverse engineering tools provide al-
ternative views to the repository of relations extracted from
the code, and enable the user to browse the relations of
their choice, and the modularizations they give rise to. The
basic technology underlying the modularization construc-
tion is clustering of closely related elements, and a range
of clustering algorithms have been investigated in this con-
text. The constructed clusterings always require user in-
volvement; the user makes clusterings that she finds useful
for understanding the subject system. Approaches and prin-
ciples for making this a semi-automated process have been
developed. For instance, the clustering can be based on
structures and encapsulation properties of the language, for
instance, packages in Java and some product metrics values.
Such a metric-based principle could be “high cohesion and
low coupling” [31].

Clustering-based approaches to understanding the modular
structure of software systems suffer mainly from the follow-
ing shortcomings:

o they are brittle: code modifications may result in dis-
proportionate changes in the inferred modularizations;

e they have typically considered only static relations;
and

e they are tightly dependent on the programming lan-
guage, in which the subject software system is written.

There has been a lot of evidence to the brittleness of
clustering-based approaches. An experiment reported in
[45], for example, showed that random removals of up to
1% of the “extracted facts” database resulted in changes up-
wards of 2% in the resulting clusterings, in 10% of the cases.
A battery of experiments, reported in [1], revealed that
changes, especially in the ill-designed parts of a system, may
result in steep changes in the modularizations produced by
clustering. The brittleness of clustering depends on the clus-
tering criteria used. A clustering just reflects a single point
of view (and sometimes a guess) on the modular structure of
the software according to the understanding of the reverse
engineer. For example, a clustering criteria may be based on
domain-independent issues (e.g., graph-theoretic measures
such as connectivity) or on domain-dependent information
(e.g., application naming conventions) [44]. Therefore, the
clustering may be misleading if used for other purposes than
that it was originally built for.

Call-graph dependencies have been extensively used as the
basis for clustering the elements of a software system. Con-
sider, however, two alternative call dependencies between
two pairs of classes; the first call is actually executed once
at the beginning of the program, where the second is ex-
ercised fairly regularly throughout the program execution.
The first call may represent a case in which a configuration
or an initialization function is called, possibly by several
other functions in the system. Intuitively, one would think
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that the latter relationship is stronger than the former, espe-
cially if the re-engineering objective is to extract a “cluster”
of collaborating classes to be reused in a different context.
The heart of the problem is that, traditionally, only code-
based metrics have been used to infer the strength of the
relation between two elements - a prerequisite for defining
distance in clustering. Dynamic metrics [32] could also
be used. The advantage of such measurements is that, in
general, they are good indicators for important external be-
havioral attributes, such as performance and memory usage,
and could be used for the assessment of cluster quality in
terms of non-functional requirements, such as maintainabil-
ity, reliability, reusability, and usability.

Finally, different languages provide a different degree of syn-
tactic support for encapsulation. In pure object-oriented
languages, such as Java for instance, methods and variables
are encapsulated inside classes, and the classes are further
enclosed in packages. This, in turn, facilitates the usage of
automated clustering algorithms. The quality of the gener-
ated clustering depends on how well the classes are formed
(i-e., how related the methods and variables are) and how
successful and descriptive their encapsulation in packages
is. It does not, for instance, reveal situations in which only
loosely cohesive parts are “forced together”, that is, the prin-
ciple of “high cohesion and loose coupling” is not followed.
On the contrary, such a clustering may hide parts that vio-
late this principle, while finding them would be most valu-
able for understanding and correcting the design flaws.

Clusterings are constructed for a certain purpose and from
a certain point of view. In addition to static clusterings that
aim at characterizing structural modularizations (e.g., sub-
system identification), dynamic clustering that are based on
behavioral issues can be constructed. Dynamic clusters are
often represented as use cases and recurring behavioral pat-
terns [43, 17, 14, 8]. The dynamic clusters can be used,
e.g., for feature identification and visualization. It is worth
noticing that static and dynamic clusterings do not typi-
cally match. On the contrary, they are usually orthogonal:
a single use case presumably uses classes belonging to sev-
eral structural clusters. Therefore, a static clustering does
not provide much support in understanding the internal be-
havior of various features of the software, and may in fact,
even obscure it.

The fundamental problem underlying modularizations con-
structed solely based on analysis of the static code structure
is that a legacy system often includes “dead” and “glue”
code. In component-based software engineering, software
systems are ideally built by combining existing software
components with well defined and clear interfaces in a “plug
and play” fashion. However, this seldom is the case in re-
ality. Instead, because teh constituent components do not
interoperate, a lot of glue code is needed to plug the com-
ponents together and to make them play. Furthermore, in
net-centric software systems, a variety of problems that may
occur at run-time, such as unannounced changes in the re-
sources involved, errors and recovery from them for exam-
ple, must be anticipated by the system’s implementation.
Finally, maintenance is often carried out using minimized
effort. This, in turn, yields to uncontrolled evolution of the
software and increased amount of glue code used. By study-
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ing the software evolution in various case studies, Lehman
et al. have noticed that adding new code typically causes
increasing complexity, declining comprehensibility, and in-
creasing resistance to future changes [30]. The examination
of a system’s run-time behavior can help to focus the scope
the overall problem of system understanding; it can focus the
examination of the code only to these parts of the system
structure exercised by the system use and it can illuminate
the context in which data is used. Therefore, reverse engi-
neering techniques that combine static and dynamic analysis
provide valuable support for the engineer to understanding
the need for glue code and, in general, the functionality and
role of different software components [20, 28, 36, 42, 21].

2.2 LegacylInterface Migration

With the advent of e-commerce, one of the most important
activities in the IT industry today is the web-enablement
of legacy systems. For example, many organizations, in or-
der to facilitate their collaborations with their partners or
to improve their customer service, want to allow access of
their proprietary legacy systems over the Web. The domi-
nant industrial practice for addressing this problem has been
“screen scraping”, i.e., development of emulators for “trans-
lating” the data from(to) the legacy system, which is for-
matted for ascii terminal screens, into(from) modern WIMP
interfaces and Web browsers. This practice, which has been
exclusively manual, relies on the understanding the run-time
behavior of the legacy user interface.

CELLEST [10, 19, 39, 41] provides a semi-automated
method for reverse engineering the legacy user interface,
in order to support exactly this type of practice. The
CELLEST reverse engineering process starts by collecting
traces of the users’ interaction with the original legacy in-
terface through specially instrumented emulators. Based on
these traces, a state-transition model of the user interface of
the legacy system is constructed. This model identifies the
unique user-interface screens and the actions that the user
can perform to navigate from one screen to another. The
legacy interface screens are identified by clustering visually
similar screen snapshots in the collected traces, and the syn-
tax of the screen-transition actions is extracted as general-
ized patterns of specific actions performed in the collected
traces. This interface model describes how the application
is actually used through its current interface.

The next step of the process, after having constructed a
model of the overall system interface, is to construct task-
specific models of the system-user information exchange.
For this step, traces of users executing the same task,
albeit with different problem parameters, are collected.
These task-specific traces are analyzed in order to iden-
tify the pieces of information provided(received) by the user
to(from) the system. The resulting model is subsequently
used as the basis for designing a new web-accessible interface
that acts a legacy from-end, thus enabling the migration to
the Web of specific tasks supported by the legacy system.

The CELLEST method is independent of the programming-
language used to develop the application and as a result,
it is quite generally applicable. In fact, a similar method
has been applied to existing thin-client web-based applica-
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tions [40], in order to construct adapter front-ends so that
many applications can exchange data in a common formal-
ism. Furthermore, it is quite lightweight in terms of the skills
it assumes. Finally, since it does not change the legacy sys-
tem implementation, it is almost without risk as long as the
objective is service migration, as opposed to service modifi-
cation.

2.3 Understanding the role of software arti-
facts

The end goal in software construction is to build software
systems that deliver the behavior desired of them. The re-
quirements of a system’s end-user usually focus on specifi-
cations of its desired behavior. And as these requirements
may change, understanding the role of the elements of the
system structure becomes crucial.

Because of the strong dependencies between structural and
behavioral aspects of software, static and dynamic analy-
sis should also be coupled. In fact, experiments with users
aiming at constructing task-specific explanations to answer
software-understanding questions [11] have shown that de-
velopers use execution traces in order to identify the libraries
involved in a particular behavior they need to modify.

In Shimba prototype reverse engineering environment [43,
42], static information is extracted from Java class files and
viewed as a nested graph using Rigi reverse engineering envi-
ronment [31]. The dynamic information is generated by run-
ning the target software under a debugger. The debugged
event trace information (including, e.g., method invocations
and thrown exceptions) is split (automatically or according
to the user’s guidance) into a set of sequence diagrams and
visualized with a prototype tool called SCED [22].

Both static and dynamic views contain information about
the software artifacts (e.g., classes and methods) and their
relations (e.g., method calls). This information overlap en-
ables, and also implies the need for, information exchange
between the views. Static and dynamic views can thus be
used to improve and modify each other and to understand
the role of the software artifacts. For instance, the static
Rigi views can be used to guide the generation of dynamic
information and dynamic SCED views. This is useful when
the engineer is interested in a specific part of the software.
It is not meaningful then to generate a huge amount of trace
information for the whole system. Shimba further allows the
user to slice the static Rigi graph with a selected set of SCED
sequence diagrams. This technique can be used to analyze
which parts of the software are used to implement the cap-
tured behavior and how these parts have been constructed.
The roles of the high-level static clusters can be understood
by using them to construct high-level sequence diagrams
that view the interaction among these clusters (e.g., com-
ponents in a MCV architecture).

Many dynamic reverse engineering tools use variations of
Message Sequence Charts (MSCs) [15] to visualize the run-
time behavior of the target object-oriented software sys-
tem [14, 17, 23, 28, 6]. In Shimba, the visualization of
the run-time behavior of object-oriented software has been
taken one step further: for selected objects and methods
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taking part in the sequence diagrams, state diagrams can be
composed automatically using SCED. Generated state dia-
grams allow the user to examine the dynamic behavior from
a different angle compared to sequence diagrams. While
sequence diagrams show the interaction between several ob-
jects, a state diagram shows the overall behavior of an object
or a method of interest in the system. Optionally, informa-
tion about the dynamic control flow of selected objects can
be extracted and added to the sequence diagrams. Using the
state diagram synthesis feature of SCED, the dynamic con-
trol flow of a selected object or a method can be visualized
as a state diagram.

2.4 Dehugging and Profiling

There are a lot of performance-related properties of soft-
ware systems, which are of extreme importance in assessing
its overall quality. The are usually not visible by exam-
ining the software code, but they become apparent when
its dynamic behavior is analyzed. Such properties include
memory management, code usage, and efficiency, to name a
few.

Efficiency, especially, is crucial for time critical systems. For
improving slowly behaving systems, the memory manage-
ment needs to be understood. Jinsight is a tool for visu-
alizing the dynamic behavior of Java programs [14, 7]. It
views information about object population, method invo-
cations, garbage collection, CPU and memory bottlenecks,
thread interactions, and deadlocks. [46] introduces another
method for visualizing program execution information using
high-level models. The visualization focuses on object in-
formation and interaction information (e.g., a current call
stack and a summary of calls). The object information, in
turn, includes information on the lifetime (creation and de-
struction) of objects.

Overall correctness is also difficult to establish. When a bug
is discovered, for example, the first step is to reproduce it
in order characterize the situations when it occurs. Goal-
driven reverse engineering approaches are especially useful
for debugging. Tracking down a bug might be difficult. For
example, consider a software system that is irregularly un-
stable. In this case, it might not be sufficient to know when
the failure occurs, or what events happened before the fail-
ure; the engineer needs to find out in which order these
events occurred before the failure. The visualization tech-
niques used in reverse engineering tools also support soft-
ware debugging. In Shimba, the exceptional behavior of the
subject system is first recorded and then used to slice the
static models in order to support the engineer to understand
how the parts of the software causing this false behavior are
built [43].

3. VISUALIZA TION

Most reverse-engineering tools come with visualization ca-
pabilities. In addition to constructing models in some in-
ternal representation, they usually also provide a visual
representation of these models. The underlying reason is
that the software developer using the tool has to “trust”
the constructed models to be correct before using them for
her re-engineering or maintenance task. Visual representa-
tions have been found particularly effective in communicat-
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ing complex information to the users who have to under-
stand the extracted models. Since different tasks require
different types of information to be shown to the user, a va-
riety of graphical notations have been developed, covering a
wide spectrum of information abstraction and detail.

Reverse-engineering tools visualizing dynamic system be-
havior often use variations of directed graphs. For example,
a directed graph can be used to visualize the run-time object
interactions by representing objects as nodes and method
calls or variable accesses as arcs between the nodes. When
sequential information on the order of the calls is desired,
various kinds of scenario diagrams are used. Both of these
graphical representations are simple and fairly intuitive and
thus suitable to be used for program understanding pur-
poses. However, without notational extensions, they do not
scale up. A large amount of run-time information is typically
generated, even as a result of a relatively brief usage of the
system. Thus, managing and abstracting the extracted in-
formation is necessary. This is usually the most challenging
problem in dynamic reverse engineering. Behavioral pat-
terns are often used to build abstract views of the dynamic
event trace information. High-level views can also be con-
structed by taking advantage of the static clustering.

The extracted information is not useful unless it can be
shown in a readable and descriptive way. Current reverse
engineering tools use basically two different approaches to
visualize the extract information, possibly originating from
different sources: (1) all the information is merged into a sin-
gle view thus avoiding the problem of keeping the different
views synchronized or (2) different views for different pur-
poses are used. Both of these approaches have advantages
and disadvantages.

A single view directly illustrates connections, e.g., between
static and dynamic information. In addition, the quality of
the view can be insured when merging static and dynamic
information. This approach is used, for instance, in the
Dali tool [20]. On the other hand, building abstractions for
merged views can be difficult because static and dynamic
abstractions usually differ considerably as discussed in Sec-
tion 2.1. Furthermore, forming merged views themselves
might be complicated. It is easy to add, e.g., information
on code usage to a static view but it is much more difficult to
add information about concurrency or sequential behavior.
Finally, an inevitable problem is that the more information
is attached to a single view, the less readable it becomes,
thus failing to fulfill one of its main purposes.

In forward engineering, UML [33, 37, 3] has become an in-
dustrial standard for the presentation of various design ar-
tifacts in object-oriented software development. UML pro-
vides different diagram types that can be used to view a
system from different perspectives and/or at different levels
of abstraction. Hence, the various UML models of the same
system are not independent specifications but strongly over-
lapping, depending on each other in many ways [38]. From
a large set of diagrams, the user chooses the ones that best
suit for her purposes. Ideally, this should be the case also in
reverse engineering. If a large set of diagrams is chosen, the
problem of keeping them consistent and connected to each
other needs to be attacked, as in forward engineering. How-
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ever, UML is currently an informal notation and does not
support “tight” cross-referencing among the different mod-
els of the system. Furthermore, its behavioral models are
insufficient to visualize all interesting aspects of the system
run-time behavior, such as behavioral patterns. They are
quite verbose and result in large diagrams for fairly small
interactions. In addition, UML does not support composi-
tion of behavioral diagrams, and as a result representation
of complex behavior becomes in effect impossible.

The number and type of diagrams to be used depend on
the purpose and needs in the same way as in forward en-
gineering. Distinguishing static and dynamic views allows
showing information that would be hard, or event impos-
sible, to include in a single merged view. This, in turn,
offers extended possibilities to support program slicing and
to build abstractions, requiring that there is a connection
that enables information exchange between the views.

In principle, a notation should support multiple types of
models, loosely corresponding to the complementary views
discussed above. A comprehensive notation should enable

e problem-domain descriptions, possibly in natural lan-
guage or visually with domain-specific icons;

e user-specific descriptions, such as program features,
the basic services on which they are built and how
they can be invoked from the system user interface;

o structural descriptions of the basic components of the
system and their connectors;

e behavioral descriptions of how these components col-
laborate, i.e., synchronize and exchange data, at run
time; and

e physical descriptions of how the code base is organized
and controlled during development and how the pro-
cesses are distributed on the hardware during execu-
tion.

In addition to providing such complementary views, the no-
tation should enable the user to consistently review and
modify them. For example, if the user reviews and changes
the system structure, she should be able to see these changes
reflected in the behavioral description, or at least the need
for corresponding changes should be flagged. Furthermore,
within a single view, more or less detailed descriptions
should be supported. For example, the structure of an
object-oriented system could be viewed at the class level
or at the component level, and its run-time behavior could
be described in terms of an execution instance, such a trace
for example, or at an aggregate level, summarizing multi-
ple execution instances. Such cross-referencing and transla-
tion support would help users to understand the connections
among different views, to formulate complex queries about
the underlying system, and to construct comprehensive ex-
planations about its design.

Unfortunately, current reverse-engineering environments
and the notations they adopt offer limited (if any) support
for the tasks mentioned above. Many adopt single view no-
tations. Others adopt informal notations, such as UML for
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example, which although comprehensive, does not have a
sufficiently strong formal meta-model yet to synchronize its
multiple views. In fact, the degree of formality of the differ-
ent notations employed in reverse-engineering tools ranges
from “fuzzy”, e.g., UML, to formal, e.g., SDL [16] and MSC
[15]. Others, yet, adopt independent notations for their
multiple views with no well-defined interpretations of the
dependencies of the different models. In these cases too,
formalization seems necessary.

This need for increased formalization in support for flexi-
ble view cross-referencing might be in conflict with the need
for comprehensible visualization. Given that one of the ob-
jectives of reverse engineering is to improve the developer’s
understanding of “how the system works”, other, less formal
and possibly more cognitively motivated mechanisms might
be employed. One possibility is to define the semantic re-
lations among the views in a more relaxed way, yet precise
enough to allow the information exchange desired. Another
possibility could be to employ metaphors. Metaphors rely
on the understander’s deep knowledge of a similar base do-
main, and enable her to construct knowledge of the new
and less familiar domain by analogy to the entities and re-
lationships in the base domain. In the context of view con-
struction, a metaphor is a conceptual notion (e.g., a feature)
that is independent from the underlying subject system and
may thus have any kind of implementation. Therefore, with
metaphors the engineer can use intuitive knowledge of one
domain to understand the other domains [34].

4. BEHAVIORAL INFORMATION COL-
LECTION INFRASTRUCTURE

By now, the role of behavior understanding in the context
of reverse engineering and program understanding should
be clear enough. The question then becomes: what is the
infrastructure needed to enable the collection of behavioral
information during the execution of the system? The answer
to this question depends on the nature of the system under
investigation and its implementation.

4.1 Centralized Systems

During the run-time of an object-oriented program, infor-
mation to be collected contains the following:

e events on object construction and destruction,

events for method entry and exit

static type information, such as class structure and
member function declarations, and

dynamic type information to resolve classes of the ob-
jects at run-time.

In addition to the information on member functions, values
of variables are collected in some systems [23]. This is useful
for debugging purposes, for example.

Source code instrumentation is, perhaps, the most common
way to extract run-time information of the subject program.
Instrumentation tools use parsers to find the places where
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the instrumentation code is to be added. If the language to
be analyzed is simple enough (e.g., languages that use LL(k)
or LR(k) grammar), the program can be efficiently parsed.
Complicated languages, such as the hybrid language C++,
are, however, more challenging to be readily parsed.

Traditional instrumentation techniques may need to add
pieces of code in many places to detect both method en-
tries and exits. In object-oriented programs, dynamic bind-
ing introduces another challenge for detecting which meth-
ods have been actually called. On the other hand, object-
oriented languages allow tracking the usage of methods by
simply adding a local variable assigned with a new in-
stance of a specific class as its value in the beginning of the
method [35]. The actual instrumentation code can then be
written in the constructor and the destructor of this class;
when this method is called during execution, the constructor
is called and whenever it is exited the destructor is called.

Alternative ways to generate run-time information is using
debugger-based solutions [27, 28, 43]. One advantage of us-
ing debuggers is that the source code remains untouched.
As a downside, debuggers typically slow down the program
execution, which could be crucial, especially if concurrency
(e.g., it uses several threads) is an issue in the subject pro-
gram. Moreover, run-time virtual machine instrumentation
is yet another approach to generate dynamic information
of interest [14]. As usage of debuggers, virtual machine in-
strumentation leaves the source code of the subject system
unchanged.

Irrespective of the information extraction technique used,
monitoring run-time information can become too complex.
For example, for complex systems, full instrumentation usu-
ally results in too much data. In general there are two ap-
proaches to solving this problem: (1) selective instrumen-
tation and (2) filtering of the instrumentation data before
and/or after analysis and visualization. Meta-level object
protocols, such as Aspect Oriented Programming (AOP)
[18] provide an interesting possibility for selectively instru-
menting parts of the software. Such approaches could be
used, e.g., in feature extraction.

Both these approaches to limit the information space as-
sume some understanding of the static structure of the sys-
tem under analysis. In both cases the instrumentor has to
select the specific system components that are of interest. In
the case of selective instrumentation, only these components
will be instrumented and their interactions will be explored.
In the information filtering approach, search-based meth-
ods are used to identify the components that may have an
impact on the components of interest.

In object-oriented systems, due to polymorphism supported
by object-oriented languages, components can be loaded at
run-time and the architecture of the system thus evolves dur-
ing execution. Dynamic reverse engineering techniques are
especially valuable for analyzing such systems. Since compo-
nents need to be adaptable to dynamic changes, component-
based systems cannot be fully understood without recover-
ing the component dynamism.
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The above methods enable a different level of run-time user
control, in terms of starting and stopping the data recording.
For example, when interested in how a particular feature
is implemented, accesses of a particular set of data are of
interest; these accesses may not be of interest when another
feature is under investigation.

Multiple scenarios of a component’s actual behavior can be
collapsed into state machines. Such a state machine depicts
an overall behavior of the component of interest. In general
there are two approaches to discovering a component’s state
machine from its dynamic behavior: (1) analysis of the com-
ponent itself [42, 43] and (2) identification of its clients and
their usage of the component [10, 19, 39, 41]. The difference
is akin to “server” vs. “client” -side instrumentation. In
the first case, the calls of methods of interest (e.g., inter-
face methods of the component) and possibly methods with
which they have dependencies are detected. In the latter
case, in turn, the component itself is treated as a black box
but its behavior is analyzed based on how its clients use its
services. While the former allows more refined information
to be detected (i.e., method calls and their consequences),
the latter provides a light-weight approach that is indepen-
dent of the actual implementation of the component.

4.2 Concurrent Systems

Concurrent systems present special challenges to the collec-
tion of their run-time behavior profile. To understand the
overall system behavior, one has to understand the way the
various processes interact, i.e., how events in the context of
one process affect events in the context of the others. These
interactions manifest themselves only at run time and can-
not be examined statically on the code, since there often is
no commonly accessible code base. The first problem then
is the instrumentation of the execution environment in or-
der to collect traces of the processes’ events. There exist
possible alternative instrumentation techniques, depending
on the implementation platform of the system in question.

If the various processes run on the same machine, instrumen-
tation of the underlying operating system is an option. In
[2, 9] for example, the interactions between several Windows
applications are recorded via hooks that intercept DLL com-
munications between the individual applications and the op-
erating system. This mechanism is in fact used, not simply
for recording the interaction of these applications, but ac-
tually for establishing their integration as off-the-shelf com-
ponents. Even when the interacting applications are dis-
tributed, they may run within the context of a distributed
framework, such as CORBA. In such cases, the component
that plays the role of the object request broker (ORB) can
be instrumented. In such environments, a client process ob-
tains access to the server process through a request to the
ORB; thus, instrumentation at this level provides informa-
tion about two-way client-server relations. In addition, in
cases where all subsequent message exchanges between the
communicating processes are mediated by the ORB, a pre-
cise record of the collaboration can be constructed [12].

If the system is truly distributed, and the various processes

run on different machines with no common run-time infras-
tructure support, the only possible option is to instrument
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each individual process independently and to try to infer
an overall model of their interdependencies by integrating
the independent traces. To that end, a consistent “logical”
clock [26] has to be implemented so that the individual
processes can be “aligned” in time and a consistent global
chronology of events can be constructed. [13] describes a
method for constructing a Layered Queuing Network perfor-
mance model for message passing concurrent systems using
a graph-rewriting method for analyzing the collecting traces.
A corresponding tool is used to visualize the extracted in-
formation.

Another interesting class of distributed systems is client-
server systems with thin clients acting mostly as user inter-
faces for the services provided by the server. Such systems
include legacy systems running on mainframe hosts with
user-interface clients running on terminal emulators and
web-based applications with browser-accessible thin clients.
There are two alternative instrumentation options for such
systems: client-side or server-side instrumentation. Client-
side instrumentation is, in principle, preferable because it
provides traces of coherent behavior, on the basis of which
models of coherent user tasks and user-behavior profile and
be extracted. This is, for example, the technology underly-
ing the CELLEST project that aims at constructing models
of the system uses for migrating these uses to modern plat-
forms.

Similar technologies are also used in web-based applications,
where client-side proxies are used to simplify the user’s task,
invoking services on behalf of the user. However, client-side
instrumentation may not be possible, when the clients are
not “controlled” by the service provider, which raises issues
of client privacy. This is the case for web sites and web-based
applications for examples, where the server may attempt to
record the behavior of individual clients (e.g., using cookies)
but the clients may prevent this from happening by rejecting
them. In this case, server-side instrumentation becomes the
sole alternative and the problem of modeling client behavior
is exacerbated by the problem of simply recognizing which
of the events received by the server belong to which client.

5. FUTURE RESEARCH PROBLEMS

As the complexity of the software systems being developed
increases, the complexity of the systems that need to be
understood also increases. And as software researchers and
practitioners have been working on designing and reasoning
about high-level structural concepts from multiple points of
view, reverse-engineering research and practice focuses in-
creasingly on extracting a more comprehensive understand-
ing of software, at a higher-level of abstraction. The diver-
sity and complexity of the systems to be analyzed creates a
demand to construct models supporting the engineer in com-
prehending different aspects of the system. In that effort,
analyzing the system’s dynamic behavior will play an in-
creasingly important role. There are several open problems
that need to be addressed to better exploit the “information
potential” of behavioral analysis.

The multiple models represent alternative views to the sub-
ject system. For enabling slicing and abstractions mecha-
nisms cross the models, the semantic relations among them
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should be well defined. It would be useful (at least in some
cases) to reflect modifications in one view directly in the
other views. Moreover, for program comprehension pur-
poses, the reverse engineering environment should allow the
user to easily navigate between static and dynamic views
as well as between low and high level views. For instance,
the user might want to select a component in one view and
explore its role in the other views. The current UML tools,
for instance, exploit a rather superficial layer of the UML
semantics. Taking advantage of the existing logical depen-
dencies and semantic contents, much stronger support can
be achieved, allowing the construction of a coherent set of
operations to manipulate UML models [24]. Such a “UML
model calculus” would also be useful for reverse engineering
purposes.

The application of reverse engineering techniques is not lim-
ited to understanding old legacy systems. They can and
should be applied to support forward engineering as well. In
software development, reverse engineering the current static
structure of the software helps the engineer to ensure that
the architectural guidelines are followed, to get an overall
picture of the software, to document the implementation
steps, and so on. Reverse engineering the run-time behav-
ior during the software development phase is essential for
profiling, debugging, understanding and ensuring the cur-
rent behavior of the software system and its components,
etc. Applying reverse engineering techniques during the
software development phase also supports documentation,
hence avoiding ending up in the similar situation with our
current systems, as we now face with legacy COBOL and
C code. Ideally, reverse engineering tools should be able to
produce standard OOAD models (i.e., UML models) from
the subject software. Since such models are familiar to the
user, this would unburden her from learning yet another di-
agram notation. Moreover, if the models used in forward
and reverse engineering are the same, the tools would be
able to give more support for re-engineering, round-trip-
engineering, maintenance, and reuse. The fact that current
reverse engineering tools typically use their own notation (in
most cases, directed graphs) is one of the major obstacles in
their integration with the mainstream tools. At least, there
should be tools for converting the used models to UML mod-
els understandable and usable for the software developers.

Finally, as the need for application integration increases, the
problem of specifying and adapting interfaces becomes more
crucial. WebServices, the new stack of standards for inte-
gration of the web, offers a new specification language and
inevitably creates a challenge to produce extractors of Web-
Services specifications from systems developed in different
languages and platforms. In general, the granularity of soft-
ware building blocks has increased from functions and vari-
ables to software components and application frameworks.
Understanding the usage and protocols of the interfaces of-
fered by the components becomes increasingly important,
since the components themselves are often used as black
boxes.
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