
Reengineering Patterns

Reengineering patterns

• Software re-engineering is a relatively new
research area

• There is a lack of methodology: How does one
approach the problem of re-engineering a
software system?

• Reengineering patterns attempt to capture best
practices that appear to work well in particular
contexts

Reengineering vs. Design Patterns

• Design patterns choose a particular solution to a
design problem

• Re-engineering patterns have to do with
discovering an existing design, determining what
problems it has, and repairing these problems

• Design structure vs. Process of discovery and
transformation

Re-engineering patterns

• Artifacts produced by re-engineering patterns can
be as concrete as refactored code, or as abstract
as insights

• Describe a process that starts with the detection
of symptoms and ends with
automatic/semi-automatic code refactoring

• Emphasize the context of the symptoms

• Discuss the impact of the changes

Marks of a good RE pattern

• Clarity with which it exposes the advantages, cost,
and consequences of target artifacts, with respect
to the current system state (not how elegant the
result is)

• Description of the re-engineering process: How to
get from one state of the system to another

Reengineering pattern form

• Name (usually an action phrase)

• Intent (the essence of the pattern)

• Problem (what makes this problem difficult)

• Solution (might include a recipe of steps)

• Trade-offs (pros & cons of applying the pattern)

• Rationale (why the solution makes sense)

• Known uses (documented instances)

• Related Patterns - What next



Reverse Engineering Patterns

• Setting Direction

• First Contact

• Initial Understanding

• Detailed Model Capture

Setting direction

• Many different factors might affect a
re-engineering project

• Technical, ergonomic, economic, and political
considerations make it hard to establish and
maintain focus

• Hard to set priorities between the many problems
of the legacy software

• Danger of focusing on interesting parts rather than
what’s good for the system

Setting direction patterns

• Agree on Maxims

• Appoint a Navigator

• Speak to the Round Table

• Most Valuable First

• Fix problems, not symptoms

• If it ain’t broke, don’t fix it

• Keep it simple

First contact

• “Where do I start?”
• Legacy systems are large and complex

• Might need to split it into manageable pieces

• Time is scarce
• Important to identify the opportunities and risks for the project as

soon as possible

• First impressions can be dangerous
• Always double-check your sources

Chat with the maintainers

• Learn the political and historical context

• Documentation usually records solutions not
rationale

• Maintainers will know how the system got to its
current state

• System’s structure usually reflects the team
structure (Conway’s Law)

Read all the code in one hour

• Brief but intensive code review with clearly
identifiable goal

• Learn coding styles and idioms used

• Browse functional and unit tests

• Look at abstract classes or classes high in the
hierarchy

• Singletons represent constant information

• Discover code smells



Skim the Documentation

• Documentation might be outdated or non-existent

• Usually not written with reengineering in mind

• Having a clear goal, you can select the relevant
parts fast

• Things to look out for: table of contents, version
numbers and dates, figures, screen dumps, formal
specs, index

Interview during Demo

• Ask for a demo and interview the person giving it

• This will help find out:
• Typical usage scenarios

• Main features offered by the system

• System components and their responsibilities

• Anecdotes

• Interview a variety of users: end user, manager,
sales person, support personnel, sys-admin,
maintainer/developer

Do a Mock Installation

• Check whether all necessary artifacts are
available

• Log all failures

• Inability to build might indicate high risk for the
reengineering project

• Demands precision about the components
required

• Success will increase your credibility

Initial understanding

• Refine ideas from First Contact into an initial
understanding

• Document this understanding to support further
reengineering efforts

• Allow for iteration and backtracking

• Knowledge must be shared

• Need to communicate, use a language everybody
understands

Analyze the persistent data

• Objects kept in a database must be valuable

• However, they might be outdated or of no use
anymore

• Data structure in a storage device quite different
than when in memory

• Database schema provides a description

• Rough understanding obtained already helps
assess which parts of the database are relevant

Speculate about design

• Progressively refine system model by checking
design hypotheses against source

• Develop a class diagram of what to expect in the
code

• Attempt to match classes in your design to ones in
the code

• Adapt class diagram based on mismatches
• Rename, remodel, extend, seek alternatives



Study the Exceptional Entities

• Use a metrics tool (possibly combined with
visualization)

• Study entities with exceptional values

• Interesting issues:
• Which metrics to collect? Simple is better

• How to interpret results? Anomalies are not always problematic

• Important code might have been carefully refactored

• Difficult to assess the severity of discovered problems

Detailed Model Capture

• Build a detailed model of system parts that are
important for reengineering

• Difficulties:
• Details matter (how to filter out?)

• Design remains implicit (need to document design decisions that
are discovered)

• Design evolves (important decisions might be reflected in the way
the code changes)

• Studying dynamic behaviour is inevitable

Tie Code and Questions

• Most fundamental and easiest to apply

• Store questions and answers directly in the
source, either as comments or language
constructs (calls to a global annotator method)

• Difficulties
• Finding the right granularity

• Motivating the programmers to write comments

• Quality of answers

• Eliminating the annotations

Refactor to understand

• Refactoring can be used to improve the design,
but also to help understanding

• Rename attributes to convey roles

• Rename methods to convey intent

• Rename classes to convey purpose

• Remove duplicated code

• Replace condition branches by methods

• Regression testing after each change

• Only modify a copy of the code

Step through the execution

• Understand object collaboration by stepping
through examples in a debugger

• Collaborations are typically spread throughout the
code

• Polymorphism complicates things

• Concrete scenarios cannot be inferred just by
reading the source code

• Need representative scenarios

• Does not work that well for time-sensitive,
concurrent, or distributed systems

Look for the contracts

• Infer the proper use of class interfaces by studying
the way clients use them

• Identify:
• Proper sequence to invoke methods

• Valid parameters

• Export status of methods



Learn from the past

• Study subsequent versions of the system

• Reveals why the system is designed this way

• Configuration management important

• Changes point to important design artifacts

• Repeated growth and refactoring might indicate
unstable design

• Some growth and refactoring followed by a stable
period indicates mature and stable design

Re-engineering patterns

• Tests: Your Life Insurance!

• Migration Strategies

• Detecting Duplicated Code

• Redistribute Responsibilities

• Transform Conditionals to Polymorphism

Tests: Your Life Insurance!

• Legacy systems often do not have test procedures
defined.

• Making changes without introducing bugs is a
challenging task

• Certain aspects are difficult to test (concurrency,
user interfaces)

• Customers don’t pay for tests but for new features

• An unstable or buggy system is unacceptable

• Hard to motivate programmers to write tests

Write tests to enable evolution

• Properties of well-designed tests
• Automation (no human intervention)

• Persistence (document how the system works)

• Repeatability (can be repeated after each change)

• Unit testing (tests refer to particular component)

• Independence (no dependencies between tests)

• An always up-to-date documentation

• Only way to enable software evolution

Grow your test base incrementally

• Balance the costs and benefits of testing by
adding tests on an as-needed basis

• Testing everything is impossible

• Previous analysis has identified fragile parts of the
system

• Add tests for new features and bug fixes

• Write tests for old bugs (assumes bug history
available)

Use a Testing Framework

• Tests are boring to write

• They require considerable test data to be built up
and torn down

• Most tests follow the same basic pattern: Create
some test data, perform some actions, compare to
expected result, clean up data

• Frameworks such as JUnit can be of significant
help



Test the interface, not the implementation

• Also known as black-box testing

• Focus on external behaviour rather than
implementation details

• Tests survive changes this way

• Exercise boundary values

• Use top-down approach if there are many
fine-grained components and not enough time

• Use bottom-up approach if replacing functionality
in a very focused part of the legacy system

Record business rules as tests

• Encode business rules explicitly as tests

• Keeps actual business rules, documentation, and
implementation in sync

• The rules become explicit

• One needs to record the business rules before
reengineering a legacy system

• Enables evolution

• Beware: tests only encode concrete scenarios,
not the actual logic of the rules

Write tests to understand

• Record your understanding of a piece of code in
the form of executable tests

• Helps validate understanding

• Provides precise specification of certain aspects
of the system

• Applies to different levels of understanding
• Black box: Behaviour

• White box: Implementation

Migration Strategies

• How to be sure that the new system will be
accepted?

• How to migrate while the old system is being
used?

• How to evaluate the new system before it is
finished?

• Big-bang migration carries a high risk of failure

• Too many changes alienate users

• Constant feedback would be nice but hard to
achieve (users are busy)

• Legacy data must survive the migration

Involve the users

• Difficulties:
• Users can get their job done with the old system

• People don’t want to learn something new unless it really makes a
big difference

• Difficult to evaluate a paper design

• Hard to get excited about something not ready

• However
• Users will try new things if their needs are being seriously

addressed

• Users will give you feedback if you give them something useful to
use

Build Confidence

• Overcome customer skepticism by demonstrating
results at regular intervals

• Both users and developers can measure real
progress

• Easier to estimate the cost of smaller steps

• Careful not to alienate original developers

• Management might require bigger demos



Migrate systems incrementally

• Deploy functionality in frequent increments

• Steps:
• Decompose the legacy system into parts

• Tackle one part at a time

• Put tests in place for that part

• Wrap, reengineer, or replace the legacy component

• Deploy and obtain feedback

• Iterate

Prototype the target solutions

• Evaluate the risk of migration by building a
prototype

• Identify the biggest technical risks for the
reengineering project

• New system architecture

• Legacy data migration

• Performance gains

• Decide on an exploratory (will be thrown away) or
an evolutionary (will evolve into the new system)
prototype

Always have a running version

• Rebuild the system regularly
• Have configuration management in place

• Regression tests must be available

• Integrate changes as often as possible

• A component does not have to be finished to be
integrated

• Some systems might have very large build times.
Some re-architecting might be needed

Regression test after every change

• Important for building confidence

• Ensures you always have a running version

Present the right interface

• Wrap a legacy system to export the right
abstractions even if they don’t exist in the current
implementation

Make a Bridge to the New Town

• Migrate data from a legacy system by running the
new system in parallel, with a bridge

• Allows to start using the system without migrating
all the data

• The bridge redirects read requests from the new
component to the legacy system if the data is not
already migrated

• The new component is not aware of the bridge

• The legacy component is adapted to redirect write
requests to the new component



Distinguish Public from Published Interfaces

• Published interfaces are interfaces of new
components that are not frozen yet

• They are usually available only within a particular
subsystem

• Programming languages do not support published
interfaces

• Declare as protected (or package-scope)

Deprecate Obsolete Interfaces

• Give clients time to react to changes to public
interfaces by flagging them as obsolete

• Monitor the extent of the use of the deprecated
interface, consider removal in a future release

• Language feature in Java
• @deprecated in Javadoc

• The compiler issues warnings as well

• Can modify implementation to produce warnings
as well

Conserve Familiarity

• Avoid radical changes that may alienate users

• Can be hard (e.g. command-line to GUI)

Use Profiler before Optimizing

• Resist temptation to optimize clearly inefficient
code

• A profiler can identify whether there really is a
bottleneck

• Optimized code might be unnecessarily complex
hindering further reengineering efforts

Detecting duplicated code

• Duplicated code is one of the top code smells

• Good in the short-run, but might have a significant
impact in the long run

• 8-12% of industrial software consists of duplicated
code

• Hampers the introduction of changes

• Bug fixes have to be applied to all variants

• Scatters the logic of the system

Compare Code Mechanically

• Manual browsing of the code is impractical

• Duplicated code might have modified variable
names or slightly different shape

• Steps
• Normalize by removing comments, tabs, blanks

• Delete all variables or map them to a common symbol

• Compare each line with all other lines (hashing might help)

• Rather lightweight approach, easy to compute
simple statistics



Visualize Code as Dotplots

• A picture is worth a thousand words

• Visualize the code as a matrix in which the two
axes represent two source code files (possibly the
same file)

• Dots in the matrix indicate duplication

• Need to normalize beforehand

• Patterns in the dot plot reveal duplication practices

Dotplot examples

1 Exact copies
2 Copies with variations
3 A portion of code has been inserted/deleted
4 Repetitive code elements (e.g. break)

Redistribute responsibilities

• Legacy object-oriented systems may be OO only
in name

• Common symptoms:
• Data containers: Classes containing only data (almost no

responsibility)

• God classes: Classes that implement entire subsystems,
commonly just static attributes and methods

Move Behaviour Closer to Data

• Eliminate data containers by moving methods
defined in clients to the class that contains the
data they operate on

• Need to identify data containers and duplicated
client code

• Refactorings such as Extract Method and Move
Method can be applied

• Benefits:
• Data containers become more useful

• Clients are less sensitive to changes in the data container

• Code duplication decreases

Eliminate Navigation Code

• Navigation code (a.b.c.d or m1().m2().m3())
is a sign of misplaced responsibilities and violation
of encapsulation

• Such chains of dependency result in changes that
have large impact

• Need to push the code from the clients to the
suppliers

• Might result in larger interfaces

Split up God Class

• A god class monopolizes control of the application

• Difficult to understand since it contains many
abstractions

• Evolution is difficult because most changes affect
the god class

• Extract methods and classes out of the god class

• If the god class does not need to be maintained,
might be safer to just wrap it



Transform Conditionals to Polymorphism

• Switch statements frequently “smell”

• As a system evolves to handle more cases,
conditionals will emerge (quickest way to handle a
new case is to add an if statement)

• Makes the code fragile

• Transforming conditionals to polymorphism might
be tricky if the inheritance hierarchy is not well
developed

Transform Self Type Checks

• Method m switches on a private attribute (typically
called type)

• Move the switch statement to a new method hook

• Create a subclass of the current class for each
case in the switch statement and move hook to all
subclasses with the corresponding code

• Make hook abstract/deferred in the current class

• No need for type anymore

Transform Client Type Checks

• A client switches on the type of the supplier

• Similar problems and solution with Self Type
Checks

• Decouples clients from suppliers

• Use of instanceof or getClass in Java
indicates this problem

• If the client switches only on some of the supplier
subclasses, a new abstract class might have to be
introduced

Factor out State

• Use the State design pattern to eliminate complex
conditional code on an object’s state

• An object’s attributes typically model different
abstract states, each with its own behaviour

• Factor the state and the behaviour out into a set of
simpler, related classes

Factor out State

 

StateA
 

handleRequest()
nextState()
 

 

State
 

handleRequest()
nextState()
 

state

state.handleRequest();
state = state.nextState();

…
case a: …; state = c
case b: …
case c: …; state = b

 

A
 

request()
 

 

A
 

request()
 

 

StateA
 

handleRequest()
nextState()
 

 

StateA
 

handleRequest()
nextState()
 

return new StateB();

Factor out Strategy

• Similar pattern

• Concerned with interchangeable algorithms that
are independent of object state

• Improves configurability (new strategies can be
plugged in without affecting clients)



Introduce Null Object

• Eliminate conditional code that tests for null

• Create a subclass to act as a null version of the
class

• Define default methods in the Null class

• Initialize instances of the class to at least an
instance of the Null class

• Remove conditional code

Introduce Null Object

 

RealObject
 

doit()
 

 

NullObject
 

doit()
 

 

AbstractObject
 

doit()
 

Client a

a.doit();

Empty

 

RealObject
 

doit()
 

Client a

if (a != null) a.doit();


