
Design Pattern Detection

Design Patterns

• A design pattern systematically names, explains
and evaluates an important and recurring design
problem and its solution

• Good designers know not to solve every problem
from first principles

• They reuse solutions

• This is very different from code reuse

Design Patterns - Definition
From the Gang of Four textbook

Design patterns are
descriptions of
communicating
objects and classes
that are customized
to solve a general
design problem in a
particular context

Essential Elements of a Design Pattern

• Name
• Naming a pattern increases our design vocabulary

• Problem
• When to apply the pattern

• Solution
• Elements that make up the design, their relationships,

responsibilities, and collaborations

• Consequences
• Results and trade-offs of applying the pattern

How Design Patterns Solve Design Problems

• Finding appropriate objects

• Determining object granularity

• Specifying object interfaces

• Specifying object implementations

• Putting reuse mechanisms to work
• Inheritance vs. Composition

• Delegation

• Designing for change

Pattern Benefits

• Enable large scale reuse of software architectures

• Explicitly capture expert knowledge and design
trade-offs

• Help improve developer communication

• Help ease the transition to OO methods



Pattern Drawbacks

• Patterns do not lead to direct code reuse

• Patterns are often deceptively simple

• You may suffer from pattern overload

• Patterns must be validated by experience and
debate rather than automated testing

• Integrating patterns into a process is human
intensive rather than a technical activity

Pattern Description Template

• Name
• Intent

• What does the pattern do? What problems does it address?

• Motivation
• A scenario of pattern applicability

• Applicability
• In which situations can this pattern be applied

• Participants
• Describe participating classes/objects

Pattern Description Template (cont.)

• Collaborations
• How do the participants carry out their responsibilities?

• Diagram
• Graphical representation of the pattern

• Consequences
• How does the pattern support its objectives?

• Implementation
• Pitfalls, language specific issues

• Examples

Classification

• Structural
• Deal with decoupling interface and implementation of classes and

objects

• Behavioural
• Deal with dynamic interaction among collections of classes and

objects

• Creational
• Deal with initializing and configuring collections of classes and

objects

Detecting design patterns

• A difficult task

• Patterns are primarily a literary form

• No rigorous mathematical definitions

• Automatic detection beyond the state of the art of
Artificial Intelligence

• Instead, detect the artifacts of implementing the
solution of the design pattern

• Purely structural patterns are easier to detect

• Purely behavioural patterns are much harder

• Most patterns are somewhere in the middle

Template solution

• A template solution needs to be both

Distinctive
• The static structure is not likely to be represented in a design that

does not use the pattern

Unambiguous
• Can only be done in one way (or in a small number of variants)

• An object adapter is unambiguous but not
distinctive



Object Adapter Static Structure

 

Adapter
 

request()
 

 

Adaptee
 

specificRequest()
 

 

Target
 

request()
 

Client

adaptee

adaptee.specificRequest()

Composite vs. Decorator

• A Decorator is sometimes referred to as a
degenerate Composite.

• The static structure of the two patterns is very
similar

• The dynamic behaviour is also the same

• Static difference: A Composite contains a
collection of Components, while a Decorator
contains only one

• Intent difference: The Composite pattern groups
components into a whole. The Decorator patterns
enhances the responsibility of a component.

State vs. Strategy

• Both patterns allow flexible choice from a set of
alternatives

• In their simple variants, the static structure and the
dynamic behaviour are exactly the same

• The difference: Choosing a particular behaviour
(State) vs. choosing a particular algorithm
(Strategy)

Analysis synergy

• Both static and dynamic analysis are necessary in
order to detect patterns

• Static analysis
• The static structure of the pattern has to match a subgraph of the

static structure of the software system

• Dynamic analysis
• Message passing during run-time has to match the message flow

that implements the behaviour of the pattern

Design Pattern Instances

• Each design pattern has a fixed set of roles, e.g.
in the Adapter pattern, there is a Client, a Target,
an Adapter, and an Adaptee

• Every detection technique attempts to discover
instances of the design pattern in the software
system being examined

• A design pattern instance is a set of classes that
match the roles

Design Pattern Detection Research Issues

• False positive elimination
• The precision of most published approaches is quite poor, often

below 50%

• Dealing with Variants
• Patterns are conceptual. Their implementation may vary

considerably depending on the specific context

• Counting instances
• Different detection approaches do it differently



Detecting Design Patterns in Java software with PDE

• PDE is a tool that collects static and dynamic facts
from a system written in Java and detects design
patterns in it

• It will be installed on indigo by the end of the
month

• A possible course project is to apply PDE to an
open source system and evaluate the results

PDE - Static analysis

• Every pattern has a static definition, e.g.
uses client target
inherits adapter target
uses adapter adaptee

• Javex and grok are used to extract static facts
such as
uses ClassA ClassB
inherits ClassC ClassB
uses ClassC ClassD

• QL matches the static definition to the static facts

PDE - Dynamic analysis

• Every pattern has a dynamic definition in XML
<entry className="adapter"

calledByClass="client"
thisObject="object1"
nextCallInSubtree="yes">

<entry className="adaptee"
calledByClass="adapter"
calledByObject="object1"
thisObject="object2">

</entry>
</entry>

PDE - Dynamic analysis

• Probekit is used to collect dynamic facts such as
<entry

calledByClass="ContactAdapter"
calledByMethod="setTitle"
calledByObject="ContactAdapter@145"
className="ChovnatlhImpl"
methodName="cherPatlh"
thisObject="ChovnatlhImpl@110">

• If the dynamic facts do not match the dynamic
definition the candidate instance is deemed a
false positive

Results with sample pattern implementations

• PDE detects 22/23 patterns
• Except Facade, all patterns are detected

• Facade is more an architectural design
pattern

• PINOT detects 17/23
• Pattern definitions are hard coded

• FUJABA detects 14/23
• Behavioral patterns hard to detect

PDE Full Results


