
Software Clustering
Decomposing a large software system into meaningful subsystems

Understanding the Structure of Programs is Difficult

• Developers create sophisticated applications that
are complex and involve a large number of
interconnected components.

• Result: Program understanding is difficult

• Goal: Use automated techniques to help
developers understand the structure of software
systems.

Common Problems

• Creating a good mental model of the structure of a
complex system.

• Keeping a mental model consistent with changes
that occur as the system evolves.

• These problems are exacerbated by:
• Non-existent or inconsistent design documentation

• High rate of turnover among IT professionals

• Assumption: Understanding the structure of a
software system is valuable for maintainers.

Solutions

• Automatic: Use software clustering techniques to
decompose the structure of software systems into
meaningful subsystems.

• Subsystems help developers navigate through the numerous
software components and their interconnections.

• Manual: Use notations such as UML to specify
the software structure.

Why is clustering useful?

• Helps new developers create a mental model of
the software structure.

• Especially useful in the absence of experts or
accurate design documentation.

• Helps developers understand the structure of
legacy software.

• Enables developers to compare the documented
structure with the automatically created (actual)
structure.

Example (before)



Example (after) Software Clustering Challenges

• There are many ways to partition a set of entities
into clusters.

• How do we create efficient algorithms to find
partitions that are representative of a system’s
structure?

• How do we distinguish between good and bad
partitions?

How Hard is this Problem?

• The number of partitions of n objects into k
clusters is:

Sn,k =
1
k !

k∑
j=0

(−1)k−j
(

k
j

)
jn

• The number of ways to partition a set of n objects
is: Bn =

∑n
k=1 Sn,k

• This function grows exponentially with respect to
n. Some values:

1 5 10 15 20
1 52 115,975 1,382,958,545 51,724,158,235,372

Some solutions

• Enumerating every possible partition of the
software structure graph is not practical.

• Heuristics can be used to reduce the number of
partitions:

• Searching algorithms

• Knowledge about the source code
• Names, directory structure, designer input

• Remove entities that provide little structural value
• Libraries, omnipresent nodes

• Result is sub-optimal, but often adequate.

Software Clustering Research

• Clustering Procedures/Functions into Modules

• Clustering Modules/Classes into Subsystems

• Evaluating clustering algorithms
• Measuring distance between partitions

• Algorithm stability

Clustering Techniques

• There are many different clustering techniques,
but they all need to consider:

• Representation: The entities and relationships to be clustered

• Similarity: What determines the degree of similarity between the
software entities

• Algorithms: Algorithms that use the similarity measurement to
make clustering decisions



Representation

• There are many choices based on the desired
granularity of recovered system design

• Entities may be variables/procedures or modules/classes.

• What types of relationships will be considered?

• Will the relationships be weighted?

Similarity

• Similarity measurements are used to determine
the degree of similarity between a pair of entities

• Different types:
• Association coefficients: Based on common features that exist

(or do not exist) between a pair of entities
• Most common type of similarity measurement

• Distance measures: Measure of the degree of dissimilarity
between entities.

Similarity Measurements

• Assume that every entity is expressed in terms of
binary features, TRUE denoting the existence of a
feature.

• We can then define:
• a: Number of common features in entity i and entity j

• b: Number of features unique to entity i

• c: Number of features unique to entity j

• d: Number of features absent in both entity i and entity j

Association Coefficients

• Association co-efficients can be defined based on
these values:

Simple Matching coefficient a+d
a+b+c+d

Jaccard coefficient a
a+b+c

Sorensen coefficient 2a
2a+b+c

Agglomerative hierarchical algorithm

• Start by creating one cluster for each object

• Join the two most similar objects into one cluster

• Continue joining the two most similar
objects/clusters until everything is in one cluster

• What you get is a dendrogram...

Dendrogram example



Cut height

• By choosing to “cut” the dendrogram at a
particular height, we can create a partition of the
set of objects, e.g. a cut height of 0.45 in the
previous example would give us 3 clusters

• Finding an appropriate cut height is a tough
problem

• Heuristics, such as the number of clusters, are
usually employed

Update rule

• How to determine the similarity between two
already formed clusters (or an object and a
cluster)

• Many possibilities
• Minimum of all pair-wise similarities

• Maximum of all pair-wise similarities

• Weighted or unweighted averages

Assignment tool: aa

• The aa tool allows to run any version of the
agglomerative algorithms described before

• Example: aa input.mbd contain.rsf
-c0.4 -s1 -a2

• Cluster the objects in input.mbd using a cut-height of 0.4, the
Simple Matching Coefficient, and the Weighted Average Algorithm

• The .mbd stands for “market basket data”. You
can transform from RSF to MBD with:
unitrans input.rsf output.mbd

Pattern-based software clustering

• Manual decompositions of large pieces of
software often contain certain types of
subsystems

• A software clustering algorithm that creates
clusters based on these patterns would have a
better chance of creating a decomposition that
can help system comprehension

• These clusters can also have better names
(based on the pattern they were derived from) as
well as a more manageable number of contents

The ACDC algorithm

• A skeleton of the decomposition is created based
on the identified patterns

• Entities not clustered this way are assigned to the
cluster that they exhibit the largest connectivity to

• Experiments with large systems have shown that
the skeleton usually contains at least half the
system entities

Example pattern: Subgraph Dominator



Assignment tool: acdc

• The acdc tool is an implementation of this
algorithm

• Example:
acdc input.rsf output.rsf -l25

• Cluster the objects in input.rsf with a maximum size of 25 for
the Subgraph Dominator pattern

Optimization-based Clustering

• If one can express the desired properties of a
clustering as a formula, then the problem of
clustering is reduced to that of finding the
decomposition that optimizes the value of the
formula

• A typical goal is to maximize cohesion and
minimize coupling

Bunch

• Bunch attempts to maximize the value of the MQ
function

MQ =

{ ∑k
i=1 Ai

k −
∑k

i,j=1 Ei,j
k(k−1)

2
k > 1

A1 k = 1

where Ai = µi
N2

i
and Ei ,j =

{
0 i = j

εi,j

2NiNj
i 6= j

Ni : the number of entities in cluster i
µi : the number of intra-edges in cluster i
εi ,j : the number of inter-edges between clusters i
and j

Bunch

• Finding the optimal clustering based on this
formula is impractical

• Exhaustive search is not recommended for more than 15 entities

• Bunch employs hill climbing and genetic
algorithms to find approximate solutions

Assignment tool: bunch

• Bunch is an interactive tool written in Java

• Input is in a format that is exactly like RSF except
that the first token is missing, i.e. only one type of
relationship is assumed

• Output is in a format called SIL that can be
translated to RSF (see webpage)

Other ideas

• The literature contains many more ideas for
clustering algorithms

• Data mining techniques as well as mathematical
tools such as concept analysis have been used for
clustering purposes

• Using naming or ownership information has also
been shown to improve clustering results


