Reverse Engineering of Design Patterns from Java Source Code

Nija Shi and Ronald A. Olsson
Department of Computer Science
University of California, Davis
Davis, California 95616-8562 USA
{shini,olssof@cs.ucdavis.edu

Abstract the intent and design of a software system.
Design patterns are typically used as guidelines during
Recovering design patterns can enhance existing sourcesoftware development. Thus, the GoF book][presents a
code analysis tools by bringing program understanding to pattern catalog for forward engineering, but the same ielass
the design level. This paper presents a new, fully automatedfication can be misleading for reverse engineering. Current
pattern detection approach. The new approach is based onapproaches lack a proper pattern classification for reverse
our reclassification of the GoF patterns by their pattern in- engineering. A pattern classification for reverse engineer
tent. We argue that the GoF pattern catalog classifies de-ing should indicate whether or not each pattern is detegtabl
sign patterns in the forward-engineering sense; our reclas and if there exist traceable concrete pattern definitions to
sification is better suited for reverse engineering. Our ap- categorize detectable patterns. Thus, we reclassified the
proach uses lightweight static program analysis techngque GoF patterns into five categories in the reverse-engingerin
to capture program intent. This paper also describes our sense (see Sectiof). Based on this reclassification, we
tool, PINOT, that implements this new approach. PINOT automated the entire pattern recognition process using onl
detects all the GoF patterns that have concrete definitions static program analysis. This relatively simple approazh h
driven by code structure or system behavior. Our tool is proven effective. We have some promising results — both
faster, more accurate, and targets more patterns than-exist accuracy and speed — from our initial prototype, PINOT
ing pattern detection tools. PINOT has been used success{Pattern INference and recOvery Tool), in recovering de-
fully in detecting patterns in Java AWT, JHotDraw, Swing, sign patterns from the Java AWT package, JHotDraw (a
Apache Ant, and many other programs and packages. GUI framework), Swing, and Apache Ant.
The rest of this paper is organized as follows. Secfion
critiques current pattern detection tools. SecBgoresents
1 Introduction examples that motivated our approach. Secti@xplains
our reclassification of the GoF patterns. Sectioilus-
itrates how we identify structure- and behavior-driven pat-
terns. Sectiord describes our initial prototype of PINOT
Section7 discusses results from using PINOT. Sectibn
concludes the paper and covers our future work.

Program understanding tools today are able to extrac
various source information, such as class structures-inte
class relationships, call graphs, etc. Some may even pro
duce a subset of UML diagrams. However, without proper
documentation, it would still take a lot of effort for a devel
oper to become proficient with the source code. Therefore,2 ~ Critique of Current Approaches
a powerful program understanding tool should be able to
extract the intent and design of the source code. To ful- Approaches to design pattern recognition fall into two
fill this goal, we need some kind of code pattern that bears main categories: those that identify the structural aspect
intent and design as source facts to analyze against. A depatterns and others that take a further step to distingbish t
sign pattern abstracts a reusable object-oriented ddsign t behavioral aspect of patterns.
solves a common recurring design problem in a particular
context [L5]. A design pattern has its own unique intent 2.1 Targeting Structural Aspects
and describes the roles, responsibilities, and collalworat
of participating classes and instances. Thus, by extigqctin @~ These approaches analyze inter-class relationships to
design patterns from source code, we are then able to revealdentify the structural aspect of patterns, regardless@if t

behavioral aspect. The targeted inter-class relatiosship are semi-automatic: user intervention guides patterngreco
clude: class inheritance; interface hierarchies; modifidr nition. Follow-on work of FUJABA P7] associates fuzzy
classes and methods; types and accessibility of attributesvalues to pattern definitions. Pattern recognition is drive
method delegations, parameters and return types. by a semi-automatic iterative process. PTIDEpPrgcog-
Some approaches first extract inter-class relationshipsnizes distorted implementations of patterns, thus dedecte
from source code and then perform pattern recognition pattern instances are associated with a similarity rate-A r
based on the extracted information. For example, DP}+[lated work of PTIDEJ [7] uses program metrics (such as
SPOOL P, Osprey b], and Reference’[] extract inter- size, cohesion, and coupling) and a machine learning algo-
class relationships from C++ source to a database; patternsithm tofingerprintroles of a pattern’s participating classes.
are then recovered through queries to the database. RefThese fingerprints are learnable facts for the pattern con-
erence [3] combines the Columbus reverse-engineering straint solver. Referencé 7] (follow-on to [6, 13]) incorpo-
framework with the MAISA architectural metrics analyzer rates machine learning techniques to train its patterngeco
(which analyzes software at the design level and had re-nition tool. Each pattern is defined with a set of predictors,
ported limited results on recovering anti-patterfis])] to whose values are used in the learning process. They tested
build a pattern recognizer. However, pattern recogniten r their method on the Adapter and Strategy patterns.
quires analyzing program behavior, which can be abstracted Most GoF patterns (including the two above) have con-
away at the design level. Referenc¢# [ise the Columbus crete definitions on their realization in code structure and
schema for the extracted abstract semantics graphs (ASG3¥ystem behavior. Such concrete definitions are traceable
and recover patterns based on graph comparison. Refer(see Sectiod). Thus this category does not seem to solve
ence [] extracts inter-class relationships and then uses soft-the fundamental problem (see further Sectipn
ware metrics to reduce search space. SOUI] s a logic
inference system, which has been used to recognize patterngynamic Analysis
(in Java and SmallTalk) based on inter-class-based code id-
ioms and naming conventions. SPQRJuses denotational ~ These approaches use runtime data to help identify the be-
semantics to find patterns on the ASG obtained by gcc. Thehavioral aspects of patterns. KT(] hard-coded its detec-
accuracy of these approaches depends in part on the capdlon algorithms to search for patterns in programs written
bility of the program facts extractors they use. in SmallTalk. KT uses only dynamic analysis to identify
FUJABA [21] extends the work from45] and uses a the CoR pattern, but the result was unsuccessful, due to
bottom-up-top-down approach to speed up the search andmproper message logging mechanism and insufficient test
to reduce the false positive rate (due to more complicateddata. Follow-on work to FUJABAZY] and Referencel[]
inter-class re|ationship' such as aggregati()n []) It SUggeSt USing dynamic analySiS to analyze behavior. FirSt,
uses a combination of inter-class relationships to indigat they obtain inter-class information from source code. Next
pattern. Thus, when such information is obtained from the for a particular pattern, they compute a list of candidate
bottom_up Search, even partia"y, FUJABA assumes the eX_ClaSSGS. Then, aSSUming how these candidates should be-
istence of a possible pattern and tries to complete the reshave, they verify the behavior during runtime.
of the search — i.e., the top-down search — to confirm that Dynamic analysis relies on a good coverage of test data
such a pattern actually exists. This iterative approacinall ~ to exercise every possible execution path; such test data is
going back to their annotated abstract syntax tree (AST) for hot often available. Even if test data is available in a distr

further analysis on demand. bution, the runtime results may be misleading since the data
was not originally designed for recognizing the behavior of
2.2 Targeting Behavioral Aspects a particular pattern (e.g., a distribution might includeak v

idation or benchmark suite). Moreover, dynamic analysis is
The approaches discussed in Section 2.1 are unable taot able to verify pattern intent that is not observablehsuc
identify patterns that are structurally identical but éiffn as verifyinglazy instantiatiorandsingle instance assurance
behavior, such as State vs. Strategy and Chain of Responfor the Singleton pattern,
sibility (CoR) vs. Decorator. Approaches that target be-
havioral aspects seek to resolve this problem using machinestatic Program Analysis

learning, dynamic analysis, and static program analysis.]))
These approaches apply static program analysis techniques

to the AST in method bodies. FUJABA, in its current
implementation, identifies path-insensitive object doeat
These approaches believe that false positives can bediltere statements for recognizing Abstract Factory and Factory
out by training a pattern recognition tool to identify the-co Method patterns. Referencé][is a design pattern veri-
rect implementation variants of a pattern. Such approachedication tool for Java. The tool consists of the HEDGE-

Machine Learning

HOG proof engine and the Prolog-like SPINE specification the class isbstract) to control the number of objects cre-
language. HEDGEHOG identifies inter-class relationships ated, and the Singleton reference also has tarivete to be
and then applies some inter-procedural but path-inseesiti prevent external modification. Even with these constraints
analysis techniques to verify some weak semantics (e.g.modified, the Singleton class structure only prevents exter
whether a method modifies the value of a field) defined nal instantiation and modification. The real pattern intent
in method bodies. SPINE is not able to capture program embedded in thpublic-static method’s body.
intent, thus patterns that are vaguely defined or lack clear As another example, HEDGEHOG uses limited static se-
realization are not representable in SPINE. HEDGEHOG mantic analysis to verify implementation of lazy instantia
has an accuracy rate of 85.5% for all SPINE-representabletion (illustrated ingetTheSpoon() of Figurel). The lazy-
patterns. Since the analysis for verifying weak semanticsinstantiation analysis is hard-wired in HEDGEHOG. Based
are hard-coded in HEDGEHOG, the false negatives comeson the other semantic analysis techniques discussed in Ref-
from HEDGEHOG's limitation of recognizing implementa- erence §], HEDGEHOG is not able to recognize other
tion variants (see further Sectigi forms of lazy instantiation, such as using boolean (or other
data types) flags to guard the lazy instantiation or using a

3 Motivating Examples different program structure (illustrated in Figute
public static SingleSpoon get TheSpoon() {

if (theSpoon != null) return theSpoon;

t heSpoon = new Si ngl eSpoon();

return theSpoon;

Current pattern recognition approaches fail to properly
verify pattern intent, which is an important aspect of pat-
terns.. For example, the Singleton and the Flyweight pat-
terns are both object-creational patterns, but each has a

unique intent that can be implemented in various ways.

Example: the Singleton Pattern

The Singleton pattern is probably the most commonly used

pattern. Figurel shows a common implementation of the

Figure 2. Lazy Instantiation Variant

Example: the Flyweight Pattern

The Flyweight pattern has various interpretations. Begaus

Singleton pattern. It is generally perceived to be the sim- it is categorized as a structural pattern by GoF, many believ

plest pattern to detec?§, 24], since it does not require an-
alyzing its interaction with other classes. The intent & th

the pattern is based on inter-class relationships. However
the pattern consists of a flyweight factory (that manages a

Singleton pattern is to ensure that a class has only one inP00! of sharable-unique flyweight objects), which makes it

stance [5]. However, to verify this intent is not an easy
task and is typically omitted or limited in current recogni-
tion tools.
public class SingleSpoon {
private SingleSpoon();
private static Singl eSpoon theSpoon;
public static SingleSpoon get TheSpoon() {
if (theSpoon == null) theSpoon = new Singl eSpoon();
return theSpoon;

I

Code based on http://www.fluffycat.com/Java-Design-Patterns/Singleton

Figure 1. An Example of a Singleton Class

For example, FUJABA's recognition is solely based on
inter-class relationships, which identifies a Singletaass|
with the following criteria: (1) has class constructors re-
gardless of accessibility, (2) has static reference, re-

gardless of accessibility, to the Singleton class, and (3)

has apublic-static method that returns the Singleton class
type. Thus, without further static behavioral analysidhie t

method bodies, FUJABA identifies a Singleton class as long
as it matches these constraints. In fact, (1) and (2) are in-

correct. The constructors have to be declamédte (unless

more of a creational pattern and thus requires verifying pat
ternintent. The GoF book specifies that a flyweight object is
created upon request. Each created flyweight object stored
in a flyweight pool is associated with a unique key for later
retrieval. Figure3 shows an implementation of the GoF in-
terpretation. The real pattern intent resides in the method
body ofgetFlyweight(...).

public class FlyweightFactory {
Hasht abl e hash = new Hasht abl e();
public Ball Fl ywei ght getFl ywei ght (
int r, Color col, Container c, AStrategy a) {
Bal | Fl ywei ght tenpFl ywei ght =
new Bal | Fl ywei ght(r, col,c, a),
hashFl ywei ght =
((Bal | Fl ywei ght) hash. get (t enpFl ywei ght));
i f (hashFl ywei ght !'= null) return hashFl ywei ght;
el se {
hash. put (t enpFl ywei ght, t enpFl ywei ght) ;
return tenpFl ywei ght;
P}

Code based on
http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/FhiRettern.htm

Figure 3. Implementation of getFlyweight()

FUJABA interprets a flyweight class of having a con-
tainer and a method that keeps and creates flyweight ob-

jects, respectively. This strategy fails to capture thégpat ~ boxed texts indicate the searching criteria along the ealge t
intent and significantly increases the false positive rate. another design pattern.
HEDGEHOG, on the other hand, interprets an im-

mutable class as a flyweight class and atic-final vari- 4.1 Language-provided Patterns

ables as sharable flyweight objects. However, such interpre

tations tend to be overly restrictive and fail to recognize t Design patterns are so widely used today that many

GoF interpretation of the Flyweight pattern. languages (e.g., Java, Python) and packages (e.g, JDK,
STL) implement some common design patterns to fa-

4 GoF Patterns Reclassified cilitate programming. Java provides the lterator (as

in java.util.Enumeration, java.util.lterator, and the for-
R . each loop) and Prototype (as thgone() method in
e e o0 O pltems” n pracice, Gevelopes end 1
ational structugral or behavioral) and sco eps (&ataheei use such built-in facilities to efficiently and effectively
class- ’Or ob'ect-b’ase d). Based on the GpoF cate orizationbu”d software systems. Such pattern instances can be rec-
) ' 9 bgnized by matching specific names for methods or check-

some researchers,[29)] believe structural patterns can be . it 2 cl imol ific J interf hich i
identified based on only inter-class relationships andirequ Ing 1t & class 1mp ements a specific Java interface, which Is
used in HEDGEHOG¢].

the least effort to analyze. Creational patterns come next,
since §tatements of object creatlon can be easl!y detected4.2 Structure-driven Patterns
Behavioral patterns are considered the most difficult to de-

tect, since analysis on the behavior in the method body is

required. However, that view is not entirely accurate. As)
q y relationships. Such relationships establish the oveyal s

discussed in Sectio: the Singleton pattern (a creational ; .
pattern) requires not only detecting the existence of abjec _tem architecture but do not specify the actual system behav-

. . g o : ior. Inter-class relationships are used to separate céass r
creation, but it also requires verifying the behavior of the sponsibilities that contain declarations. generalizatias-
method body that creates and returns the Singleton instance P ' 9 m

the Flyweight pattern (a structural pattern) requires kieha Sgﬁ:rt:?sninzﬂj%ed?}iggtr'%n ;elgg?nnsgs'ﬁz A%t;uf:r?:?g de
ioral analysis to verify whether all flyweight objects in the P g¢, P ’ per, '

flyweight pool are singletons and are created on demand.PrOXy’ Template Method, and Visitor patterns. The Bridge

The Template Method and Visitor pattern (both behavioral aggecr:glri;zg(s)'r:ea?]"gtzrslsoigt)iiftfegasi:r:?rz_rctwgsp\%asig on
patterns) define their behavior in the class definitionscivhi 9 PS; ap

can be identified based on static structural analysis (see Se Facade, and Proxy patterns separate class roles based on

tions4.2). While this categorization is useful for program- S/Iiiistzrajr?g?'gtln?nlaatlnggtitggd ;:?ggté%?e"reé?;fsnf:;pz;ng;_
mers, it is not helpful for pattern detection. P P P

; bilities through method declarations and delegation.

Instead of using purposes and scopes, patterns should be
categorized, in the reverse-engineering sense, by thkeir de
initions from the structural and behavioral aspects. Some
patterns are driven by code structure and are designed to

structurally decouple classes and objects; but, othesestt . ts. Such a desi " . bedded with
are driven by system behavior and require specific actions' €aUIreMents. such a design patiern Is embedded with a
program intent that is carried in inter-class relationship

implemented in the method bodies. Thus, we divide the 4 method bodi Behavior-dri it include th
GoF patterns based on their structural and behavioral re-2NA MENOA bodies. benhavior-driven patlemns include the
Factory Method, Flyweight,

. : . ingleton, Abstract Factory,
semblances into five categories: patterns that are aIread)ﬁmg_ ’ . '
provided in the language (Sectighl); patterns that are Chain of Respon3|pll|ty (CoR), Decorator, Strategy, State

Observer, and Mediator patterns.

driven by structural design and can be detected using static The GoF tional patt dri b

structural analysis (Sectiof.?); patterns that are driven he ©oF creational patterns are driven by some con-

by behavioral design and can be detected using static be_stralnts on object creation, such as the number and type of
objects to be created. For example, the Singleton pattern en

havioral analysis (Sectiod.3); patterns that are domain- that a cl h i ¢ inst during th "
specific (Sectiom.4); patterns that are only generic con- sures that a class has at most one nstance during the entire

cepts (Sectiod.5). Figure4 illustrates this reclassification 1 java.util.Observable implements the Observer pattern; it implements a
and highlights our search strategies. The squares arethe ddixed subject-listeners communication mechanism, and the oraefich
sign patterns, and ovals are structural sub-patterns twhic notifications will be delivered is unspecified (see the JaA®D. In prac-
oy .] tice, the Observer pattern is applied to various contexts eifferent inter-
are the building blocks of the design patterns; some of the) gata structures and communication mechanisms. Thus, welentie

sub-patterns here are used in Referenzes{c]). The un- Observer pattern in the Behavior-driven Patterns categReytion4.3).

Patterns in this category can be identified by inter-class

4.3 Behavior-driven Patterns

Some patterns are designed to realize certain behavioral

; i 1
Singleton factory : virtual Template Method ca Language
class interface Composite delegation dependepce ~N I:l provided
structure . 1:1 analysis .\
N
. | q check Aggregation unconditﬁonal conditional A \ i:iry:r:ure
. otrwfellr object ereation delegation delegation Proxy Adapter Facade
ata-flow
analysis 22:};_‘;{222 context -interface Sﬁceaxlor
analysis [Decorator_| | Chain of Responsibility | association Visitor .
! Do
check Bridge specific
Factory Method push centralized yerify implementation vl/)r; zoarfg(sts Generic
delegation delegation of flyweight pool concepts
grouping \
fam(iily of | Observerl | Mediator | |Flyweight | | State | | Strategy |
i products
Abstract FaCtOry | Command | | Interpreter | Memento Builder I Prototypel I Iterator I

Figure 4. A Reclassification for Reverse Engineering of the 2 3 GoF Patterns

program execution. The Flyweight pattern, although clas- Command pattern also suggests incorporating the Compos-
sified as a GoF structural pattern, is designed to effegtivel ite pattern to support multi-commands and undoable oper-
manage a pool of sharable objects. ations and using the Memento pattern to store the history
The CoR and Decorator patterns define different behav-of executed commands. Such patterns are possible to de-
ior based on how a request is passed along a list of handlerstect, but their detection requires analysis that incorgsra
The Decorator pattern lets every handler process the same&omain-specific knowledge.
request, while the CoR pattern passes a request along the
list until the right handler processes it. 4.5 Generic Concepts
The Strategy and State patterns share identical intes-clas
structures but differ in behavior. Each pattern involves a While useful in practice, the Builder and Memento pat-
context class that has an attribute that takes a role ofreithe terns are only generic concepts lacking traceable implemen
a strategy or a state. The two patterns differ in how the at-tation patterns. The Builder pattern is a creational patter
tribute gets modified. In the State pattern, the attribute is that separates the building logic from the actual object cre
passively modified by other state objects. In the Strategyation, so that the building logic is reusabiéel]. In practice,
pattern, the attribute is actively modified by other class en this pattern is often used for system bootstrapping, of whic
tity through the context class. object creation may not be involved with initial configura-
The Observer (subject vs. observers) and Mediator (me-tion. The Builder pattern was detected in Refererigavjth
diator vs. colleagues) patterns share the same 1:N aggrea 86% false positive rate. The Memento pattern “captures
gation relationship but differ in communication styles.eTh and externalizes an object’s internal state so that thecobje
subject class of the Observer pattern broadcasts messagesn be restored to this state laters]. However, the pattern
to its observers, while the mediator of the Mediator pattern neither defines the representation for a state nor the equir
serves as a communication hub for its colleagues. ment of a data structure for the memo pool. This pattern
has not been addressed in any pattern detection tools dis-
cussed in Sectiof, because similar to the Builder pattern,
these patterns are generic concepts that lack definite- struc
tural and behavioral aspects for pattern detection.

4.4 Domain-specific Patterns

The Interpreter and Command patterns combine other
GoF patterns and are specialized to suit a particular damain
The Interpreter pattern uses the structure of the Composited Approach to Pattern Detection
pattern and the behavior of the Visitor pattern. Based on
this formation and a grammar of a language, the Interpreter A design pattern is an abstraction of source code design
pattern interprets the language. We consider this pattern aand can be realized in many ways, which makes it non-
a special case of realizing the Composite and the Visitor trivial to detect. However, a pattern can be effectively de-
patterns. The Command pattern is basically a realizationtected using various program analysis techniques if it has a
of the Bridge pattern that separates the user interface fromconcrete definition of how it realizes its structural and be-
the actual implementation for command execution. The havioral aspects. Thus in our current scope, we exclude de-

tection for domain-specific patterns and generic concepts.lazy instantiation. Then, static behavioral analysis is ap
We also exclude language-provided patterns, since they arglied to each candidate method’s body to verify whether for
included in the language and require only trivial keyword (1) it simply returns the instance or for (2) it correctly im-
analysis. In this paper, we focus on detecting the structure plements lazy instantiation.

and behavior-driven patterns. There are several ways to understand program behavior.
A common technique is template matching, which is often
5.1 Detecting Structure-driven Patterns used in detecting malicious or buggy code (e.f]). If ap-

plied to pattern detection, we can perhaps characterize cer

Sectiond 2 di dh h patt be detect dtain pattern behavior into a sequence of states, then make
ections.2discussed how such patlerns can be detected; template to match a target method. However, design

by their inter-class relationships. Information on vagou patterns are not defined for detection or verification. In-

inter-class relationships can be obtained through parsing stead, they serve as guidance for various reification. Such

Then, spegﬁc analysis ',S‘ applied to different patterns. sequence matching techniques can be limited in recognizing
The Bridge, Composite, and Template Method patterns ,qre common implementation variants.

have been successfully identified in previous work (that tar

get structural aspects) based oninter-class relatiosse ¢ the method body. However, each behavior-driven pattern

use the same approach in this case. _ has a unique behavior that defines a target variable or state-
The Visitor pattern provides a way to define a new op- ment for detection. To determine if an implementation is

eration to be performed on an already-built object Str&tur 5 correct pattern instance, we only need to verify whether
without changing the classes of the elements on which itihe target does the right thing under the right condition. Fo
operates [5]. Thg inter-class relationships involved are: a example, if thegetinstance() method of the Singleton pat-
method declarationccept (€.9.,void Accept(Visitor v)), d&- tem implements lazy instantiation, then it guarantees tha
fined in the element class to invite a visitor; and a method ;¢ singleton instance gets created only once upon izitiali
invocationvisit (€.g.,v.visit(this)), where an element exposes tion. Thus, using traditional data-flow analysis on therenti
itself to the visitor. AST is not necessary when only a portion of the method
The Object Adapter (adapter vs. adaptee), Facade (fahody is sufficient to determine correctness.
cade vs. subparts), and Proxy (proxy vs. real) pattern@shar Therefore, our approach uses data-flow analysis on ASTs
acommon goal: to define a new class to hide other class(esjn terms of basic blocks. As it processes each method body,
for system integration or simplification. We will refer teeth it jgentifies the basic blocks, each of which contains state-
Object Adapter pattern as the Adapter pattern. The Adapterments that are executed under the same condition(s). Our
and Proxy patterns each hides one class, whereas the Facad@proach links together the basic blocks based on execution
pattern hides multiple classes (to be distinguished fran th fow to form a control-flow graph (CFG) for the method

Adapter pattern). By “hiding”, we mean the hidden classes pody. To illustrate, we present two examples: the Singleton
are not directly accessed (by reference or delegation) fromgnq Flyweight patterns.

others except for the one that is hiding.
Some other basic inter-class structures also need to be _)
identified for detecting behavior-driven patterns (see fur EX@mple: the Singleton Pattern

ther Section5.2). The Singleton class structure is based consider our static behavioral analysis to determine lazy
on the structural features described in SeciorThe sub- ;stantiation in a method body afetTheSpoon() in Fig-

patterns (as the ovals in Figurg are also identified for o1 First, we build the CFG shown in Figuge (Control
further behavioral analysis. These inter-class sub-ette

Traditional data-flow analysis analyzes the entire AST

can be identified by analyzing class inheritance, class and

method declarations, and method delegations. The next sec- thespoon == null

tion further discusses these structures. theSpoon = new SingleSpoon ()

5.2 Detecting Behavior-driven Patterns theSpoon 1= null Y

return theSpoon

The inter-class analysis (defined in Sectmn) identi-
fies the structural aspect of a pattern, and most importantly ~ Figure 5. CFG of getTheSpoon() from Figure 1
narrows down our search space to particular methods for
further static behavioral analysis. For example, idemdy flow is indicated through directed edges.) Then, the CFG
the Singleton class structure determines whether theesingl is scanned to determine which basic block instantiates and
ton instance is created (1) once upon declaration or (2) bywhich returns the singleton instance. The main actor here is

the singleton variable that has the roles of being instttia verify that the implementation either returns an existing o
and returned. Based on the pre-determined actor and rolesa new flyweight object.

our algorithm tells uBasicBlock0 creates the singleton in-))
stance an@asicBlockl returns the singleton variable. Transforming to basic blocks not only flattens an AST of a

Then, we examine the conditions guardBgicBlocko. method body, but also facilitates the detection of whether

Since only the last program state before return matters, her & target statement is executed in all paths. For example,
we use backward data-flow analysis on the flag variables in-the similarity between the CoR (with chained handlers) and
volved in the conditions to verify if the contained sequence the Decorator (with linked decorators) patterns is thaheac
of statements guarantee single entrance to this basic.blockiVokes the same polymorphic method of the adjacent node,
Next, we check for the rest of the basic blocks if the flag but the difference is that this call is conditional for CoRlan
variables can be modified, using backward data-flow analy-mandatory for Decorator. The same technique also applies
sis. elsewhere besidessicBlocko. to detection of loops to distinguish between the Observer

Lazy instantiation can take many different forms. For &nd Mediator patterns.

example, one may use boolean types as flags, or use a dif-

ferent program structure, such as reversing the create-andg PINOT
then-return order (shown in Figug. Such realistic vari-
ants of code map to (structurally) the same CFG as that in
Figure5, so we can use the same algorithm to track vari-
able activities. Other behavior-driven patterns can akso b
detected using similar approaches.

Based on our methodology (Secti); we implemented
a fully automated pattern detection tool, called PINOT {Pat
tern INference recOvery Tool). The currentimplementation
of PINOT recognizes all the GoF patterns in the structure-
and behavior-driven categories.
Example: the Flyweight Pattern PINQOT is built from Jikes (an opensource Java compiler
. . . written in C++) with an embedded pattern analysis engine.
Our approach to Qetectlng the Flyweight pattern is basEdThere are number of advantages of using a compiler as the
ona similar technique, \.Nh'Ch a_malyzes the method tha_t PO hasis ofa pattern detection tool. A compiler constructs-sym
tentially returns a flyweight object. For example, consider bol tables and AST that facilitate the inter-class and tati
behavioral analyses. Compilers also perform some seman-
tic checks that help pattern analysis. For example, Jikes

—> . - .
tempFlyweight (created) prints out warnings when a local variable shadows (has the
hashfiyweight (retrieved) same name as) a global variable, which helps disambiguate
: delegation relationships. Most importantly, compilatern
hashFlyweight != null < .

< rors reflect the incompleteness of symbol tables and AST,

hashFLyweight (returned) which result in incorrect pattern detection results. How-
ever, some tools, such as FUJABA and PTIDEJ, are able to

hashFlyweight == null . partially (with a fuzzy number) detect patterns from incom-
tempFlyweight (put to hash) plete source. Such tools can be desirable if pattern detec-
tempFlyweight (returned) tion is used as part of software forward-engineering, such

as building and incorporating patterns on the run. In our

Figure 6. CFG of getFlyweight() from Figure 3 case, pattern detection is reserved for reverse-engntgeri

where accuracy is vital.

the code in Figur&. Our inter-class analysis pinpoints that The completeness of a pattern detection tool is deter-
getFlyweight(...) is a candidate method that returns a fly- mined by the ability of recognizing pattern implementa-
weight object; then our static behavioral analysis is @upli tion variants. For practical reasons, PINOT focuses on de-
to this method. We build the CFG shown in Figérévhich tecting common implementation variants used in practice.
shows roles, described later). Similar to detecting the Sin Thus, some behavioral analysis techniques are not fully
gleton pattern, the actors, which are the flyweight instanceapplied to each behavior-driven pattern. As an example,
and flyweight pool, and their roles must then be determined.data-flow analysis is applied to analyzing the activities of
In this case, a flyweight instance is determined at a returnthe flag variable that guards the lazy instantiation in the
statement. A flyweight pool is indicated by its data type, Singleton pattern. The flag can have any data type, but
which is often a container class (such as a hashtable in thigava.lang.Object (when the reference for the Singleton in-
case). Based on the actors and their use and interaction in atance also acts as the flag) dandlean are more common.
statement, our algorithm assigns a role to each flyweight in- Although a flag may be an integer, it is not as common in
stance. Using backward analysis on this CFG, we can easilythis case and would require much more computation. Thus,

PINOT only analyzes lazy instantiation that uses boolean or Tools
java.lang.Object types. Inter-procedural data-flow and alias _ PINOT | HEDGEHOG | FUJABA
analyses are only used for detecting patterns that often in- igi?:;i??acto 5 7 7 ”
volve method delegations in practice, such as Abstract Fac- Builder Z Z _
tory, Factory Method, Strategy and State patterns. Factory Method Vv Vv X
Some patterns, such as Decorator, CoR, Observer, and Prototype - X -
Mediator patterns, require only identifying the conditioin 2';35?; v v v
which the target method delegation statement takes place. —zqapier 7 7 <
In particular, the Observer pattern involves a subject no- Bridge* v Vv Vv
tifying a list of listeners. In Java, the listeners are usu- Composite v v X
ally stored in an array or gva.util.Collection class. If the Eaeggész \V/ _/ \X/
latter, the iteration is often handled usijaya.util.lterator. Flyweight V V N
PINOT identifies arrays and array indexing, as well as Proxy* Vv Vi -
classes that implemenjava.util.Collection and their use Behavioral
of java.util.lterator. PINOT does not recognize any user- ggfﬁmand v - x
defined or user-extended data structures. Interpreter _ B B
Iterator ; - Vv X
Mediato - X
7 Results Mediator v - "
Observef Vv V X
We compared PINOT with two other similar tools: Staté v X -
HEDGEHOG [] and FUJABA 4.3.1 (with Inference En- %ﬁﬁg{eMethoa j \\; y
gine version 2.1). Visitor* v Vi Z
HEDGEHOG (see Sectiof.2) reads pattern specifica- *: a Structure-driven Patter; a Behavior-driven Pattern
tions from SPINE, which allows users to specify inter-class ./ the tool claims to recognize this pattern and is able to ctiyraten-
relationships and other path-insensitive semantic aisalys tify it in the AJP example.
(e.g., for Factory Method pattern, the predicate “instanti x tool claims to recognize this pattern but fails to identifinitAJP.
ates(M, T)” checks whether a method M creates and re- -~ the tool excludes recognition for this pattern.
turns an instance of type T.), but other more complicated se-
mantic analysis is hard-wired to its built-in predicates (e Table 1. Pattern Recovery Results on AJP

“lazylnstantiates(...)”). Thus, SPINE is bounded by the ca
pability of semantic analysis provided by HEDGEHOG. To
use the tool, the user specifies a target class and a targghe Flyweight pattern. The AJP Flyweight example does
pattern to verify against (i.e., attempt to recognize). not define a flyweight pool; instead, the flyweight objects
FUJABA has a rich GUI for software re-engineering. Its are statically instantiated and aseatic-final fields of the
pattern inference engine provides a UML-like visual lan- flyweight factory class. Tablé shows that PINOT is able
guage for user-defined patterns. The language allows specto recognize all the structure- and behavior-driven paster
ifying inter-class relationships and a “creates” relasioip in AJP. Because PINOT is a pattern detection tool, it as-
(which is the same as the “instantiates” predicate defined insSumes a class can participate in any pattern. Thus, PINOT
SPINE). FUJABA is easy to use: the user simply specifies tests a class against all pattern definitions. FUJABA was
the location of the source code and then runs the pattern in2lso tested in the same fashion. HEDGEHOG, however, is
ference engine. FUJABA displays the results graphically. not an automated verification tool and users are responsi-
FUJABA can run entirely automatically or incorporate in- ble of picking the patterns to verify against the target<las
teractive user guidance to reduce its search space. Thus, HEDGEHOG's results shown in Talilevere based
PINOT is fully automated: it takes a source package andon prior knowledge of the source and only likely patterns
detects the pattern instances. All detection algorithres ar were verified against a clasg|[
currently hard-coded to prove the correctness of our tech- Patterns can have various reification, and it is impossible
nigues on the structure- and behavior-driven patterns. for a pattern recognition tool to be complete. Thus, a tool’'s
Although these three tools were built for different uses, pattern-recognition ability depends on its interpretatid
they all involve pattern recognition. Thus, we compare pattern implementation. As an example, the Observer pat-
these tools in terms of accuracy. Talilehows the results tern defines how 8ubject class notifies it&istener classes.
of testing each tool against the demo source from “Applied FUJABA recognizes a variant of this pattern and calls it the
Java Patterns”(AJPY[]. Each AJP pattern example is sim- “Broadcast Mediator” pattern. It specifies tt&atbject has
ilar to the one illustrated in the GoF bookX], except for a container class for théasteners, and there exists a method

delegations fronsubject to Listener. HEDGEHOG, on the to analyze JHotDraw. FUJABA was tested on a Pentium
other hand, first checks for a container (as does FUJABA) Ill 933MHz processor with 1G of memory. The reported
and then checks iBubject defines the following methods: time excludes parsing’l], but we are not certain if this
a method that starts with prefix name “add”, another that time includes displaying the results graphically. PTIDEJ
starts with “remove”, and finally one method delegation that was tested on an AMD Athlon 2GHz 64b processor. PINOT
invokes some method instener. HEDGEHOG checks if is faster because the recognition algorithms are hardecode
the first two methods actuallgdd andremovean object of and compute common sub-patterns patterns once.
Listener type from the containerd]. However, FUJABA's The PINOT website4] comprehensively discusses the
and HEDGEHOG's approaches do not capture the real in-recovered pattern instances. Our test results were ver
tent of the pattern, which is the “broadcasting of notifica- ified against an authoritative discussion pattern discus-
tions” as in a push-model communication. PINOT recog- sion board [], documentation written by original devel-
nizes this intent by first identifying a container inSab- opers [L4], and manual verification. We found some false
ject class (based on inter-class relationships) and then usingositives in PINOT'’s results: 23.75% of Factory Method
static behavioral analysis (using techniques similar ts¢h instances are considered Prototype instances, of which the
illustrated in Sectiord.2) to identify a loop control (e.g, in classes implemeiuva.util.Cloneable and override thelone
a notify method) that iterates through the container and in- method. Such Prototype instances are trivial to identify us
vokes the same method (e.g., in an update method) of eacling keyword matching. However, user-defined variants that
containedListener object. do not implement the Java built-in types may require heuris-
We also tested PINOT on several real Java applications.tics to verify the “cloning” intent within method bodies.
Figure 7 shows only the results for Java AWT 1.3, JHot- Due to the impreciseness of some GoF definitions,
Draw 6.0, Java Swing 1.4, and Apache Ant 1.6; sde [PINOT recognizes other common implementation variants
for results on other applications, such as javac, java.io,of the Flyweight and Mediator patterns. In particular,
and java.net packages. PINOT analyzes all classes, inPINOT recognizemmutableclasses as a common imple-
mentation variant of the Flyweight patterd[We found

600- No. of Time 13.69% of Flyweight instances asmutableclasses. More-
classes KLOC _(sec) over, PINOT detects a Mediator variant (in AJP and GoF
5007 mAnt 526 724 1252 sample code) that allows colleagues to be individual in-
WAWT 485 1428 1068 stances in a Mediator class (i.e., a variant 1:N relation). |
400 JHotDraw | 464 717 8.98

this case, the Mediator class serves as a facade that shields
direct communication from one colleague to another. We
found 24.93% of the Mediator classes as Facade classes.
200 Unfortunately, we are not able to compare our results
with other pattern recognition tools. HEDGEHOG verified
100+ 5 correct pattern instanced [that have also been identified
I‘I‘ % Jh' J"“I by PINOT, seef]) within the AWT, but the tool is not pub-
0— - > . . .

licly available (unlike PTIDEJ and FUJABA). PTIDEJ{]

mSwing 1028 2635 66.79
300

No. of Pattern Instances

$ < % b
@a‘; &5 o @?‘Z‘\: ‘»o‘f@ao:: QQ@"' 0}‘: 62@‘ & 4@@ analyzes patterns at the bytecode-level and was tested on
\@O‘(}od ¥ ST ~ @ ,‘,@‘“ AWT and JHotDraw, but the results were not comprehen-
< ,@“Q sive and only presented recall results for the Composite

pattern. FUJABA D1, 22, 25] was tested on the entire
AWT 1.3, but only 3 pattern instances were reported (also
identified by PINOT) and it is not clear whether the pub-
lished results of pattern instances were comprehensive. Ou
experimentation with PTIDEJ and FUJABA indicates that
*PTIDEJ is not stable and lacks user documentation, while
"FUJABA works on small programs but has limited pattern
recognition capability on larger programs.

Figure 7. Pattern Instances Recovered

cluding anonymous and inner classes. A pattern in-

may participate in several other patterns. For example
in AWT, java.awt.Component andjava.awt.ComponentPeer
form one Bridge pattern instangaya.awt.Component and
java.awt.Container together form one Composite and one)
CoR pattern instances. 8 Conclusion and Future Work

We ran PINOT on each of these packages on a Linux ma-
chine running on a 3GHz Intel processor with 1G of RAM. This paper discussed the state-of-the-art pattern detec-
Compared to times for PINOT (Figurg, FUJABA took 22 tion tools. Our contributions include: reclassifying thefs
minutes to analyze the AWT and PTIDEJ took 2-3 hours patterns to facilitate pattern recognition; claiming that-

tern definitions are either driven by code structure or sys- [13]
tem behavior; using our lightweight static program analysi
techniques to efficiently recognize complicated program be
havior; and implementing PINOT, a fully automated pattern
detection tool that is faster, more accurate, and more com-
prehensive than existing tools. Our future work with PINOT

will: expand its pattern recognition capability to recagmi [15
more complicated user-defined data structures; explore its
use to detect design patterns in specific application dosnain
such as concurrent and real-time patterns; experiment with[16]
its use in tracking software evolution by design; and ex-
tend its overall usability by providing a visual specificati
language for defining patterns and exporting our analysis

Lo 17
results as XMl for external viewing. [17]

Acknowledgments (18]

Todd Williamson helped greatly with testing PINOT. [19]

References

[1] Pattern Stories: JavaAWTht t p://wi ki . cs. ui uc. [20]
edu/ PatternSt ori es/ JavaAW .

[2] The PINOT Website. http://ww. cs. ucdavi s.
edu/ ~shi ni / resear ch/ pi not .

[3] H. Albin-Amiot, P. Cointe, Y.-G. Guebneuc, and [21]
N. Jussien. Instantiating and detecting design patterns:
putting bits and pieces together. PRroceedings of the
16th Annual International Conference on Automated Soft- [22]
ware Engineeringpages 166—173. IEEE Computer Society
Press, Nov. 2001.

[4] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pat-
tern recovery in object-oriented software.Rroc. of the 6th
International Workshop on Program Comprehensipages [23]
153-160. IEEE Computer Society Press, June 1998.

[5] A. Asencio, S. Cardman, D. Harris, and E. Laderman. Relat-
ing expectations to automatically recovered design patterns.

In WCRE pages 87-96, 2002.

[6] Z.Balanyiand R. Ferenc. Mining design patterns from C++ [24]
source code. IProc. of the International Conference on
Software Maintenanc@ages 305-314. IEEE Computer So-
ciety Press, September 2003. [25]

[7] J. Bansiya. Automating design-pattern identification —
DP++ is a tool for C++ program®r. Dobbs Journal1998.

[8] A. Blewitt. HEDGEHOG: Automatic Verification of Design
Patterns in JavaPhD thesis, University of Edinburgh, 2005. [26]

[9] A. Blewitt, A. Bundy, and I. Stark. Automatic verification
of design patterns in Java. ASE pages 224-232, 2005.

[10] K. Brown. Design Reverse Engineering and Automated De- [27]
sign Pattern Detection in SmallTalk. Master’s thesis, North
Carolina State University, 1998. [28]

[11] J. Fabry and T. Mens. Language Independent Detection
of Object-Oriented Design Pattern€omputer Languages,
Systems and Structuregebruary 2004. [29]

[12] R. FerencA. Bes&des, L. Fulop, and J. Lele. Design pat-
tern mining enhanced by machine learningl@$M, pages
295-304, 2005.

R. Ferenc, J. Gustafsson, L.tMer, and J. Paakki. Rec-
ognizing design patterns in C++ programs with the integra-
tion of Columbus and MaisaActa Cybern.15(4):669-682,
2002.

] E. Gamma. Becoming a Programming Picasso with JHot-

Draw. htt p: // www. j avawor | d. cont j avawor | d/
j W 02-2001/j w 0216-j hotdraw. htni .

] E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign

Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, Reading, Massachusetts, 1995.

Y.-G. Gueléneuc and N. Jussien. Using explanations for de-
sign patterns identification. IRroceedings of the 1st IJCAI
Workshop on Modelling and Solving Problems with Con-
straints pages 57—64, August 2001.

Y.-G. Gueleéneuc, H. Shraoui, and F. Zaidi. Fingerprinting
design patterns. IRroceedings of the 11th Working Confer-
ence on Reverse Engineerjmages 172-181, Nov 2004.

S. Hallem, B. Chelf, Y. Xie, and D. R. Engler. A system
and language for building system-specific, static analyses.
In PLDI, pages 69-82, 2002.

D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe. Auto-
matic design pattern detection. Rroc. of the 11th IEEE
International Workshop on Program Comprehensipages
94-103. IEEE Computer Society Press, May 2003.

R. Keller, R. Shauer, S. Robitaille, and P. BagPattern-
based reverse-engineering of design componenida of

the 21st International Conference on Software Engineering
pages 226-235. IEEE Computer Society Press, May 1999.
J. Niere, W. Shafer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recoveryC8E
pages 338-348. IEEE Computer Society Press, May 2002.
J. Niere, J. P. Wadsack, and L. Wendehals. Handling large
search space in pattern-based reverse engineeririgrom

of the 11th IEEE International Workshop on Program Com-
prehensionpages 274-279. IEEE Computer Society Press,
May 2003.

J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. I.
Verkamo. Software metrics by architectural pattern mining.
In Proceedings of the International Conference on Software:
Theory and Practicgpages 325-332. 16th IFIP World Com-
puter Congress, August 2000.

I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann.
An approach for reverse engineering of design patt&ofi-
ware Systems Modelingages 55-70, 2005.

J. Seemann and J. W. von Gudenberg. Pattern-based design
recovery of Java software. Rroceedings of the 6th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineeringpages 10-16. ACM Press, 1998.

J. M. Smith and D. Stotts. SPQR: flexible automated design
pattern extraction from source code ABE pages 215-224.
IEEE Computer Society Press, October 2003.

S. Stelting and O. MaasseApplied Java PatternsPrentice
Hall, Palo Alto, California, 2002.

M. Vokat. An efficient tool for recovering design patterns
from C++ codeJournal of Object Technolog$(2), March-
April 2006.

L. Wendehals. Improving design pattern instance recogni-
tion by dynamic analysis. IRroc. of the ICSE Workshop on
Dynamic Analysis (WODApages 29-32. IEEE Computer
Society Press, May 2003.

http://wiki.cs.uiuc.edu/PatternStories/JavaAWT
http://wiki.cs.uiuc.edu/PatternStories/JavaAWT
http://www.cs.ucdavis.edu/~shini/research/pinot
http://www.cs.ucdavis.edu/~shini/research/pinot
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jhotdraw.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-jhotdraw.html

	Introduction
	Critique of Current Approaches
	Targeting Structural Aspects
	Targeting Behavioral Aspects

	Motivating Examples
	GoF Patterns Reclassified
	Language-provided Patterns
	Structure-driven Patterns
	Behavior-driven Patterns
	Domain-specific Patterns
	Generic Concepts

	Approach to Pattern Detection
	Detecting Structure-driven Patterns
	Detecting Behavior-driven Patterns

	PINOT
	Results
	Conclusion and Future Work

