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Abstract

The artifacts constituting a software system are sometimes unnecessarily coupled with one another or may drift over time. As a

result, support of software partitioning, recovery, and restructuring is often necessary. This paper presents studies on applying the

numerical taxonomy clustering technique to software applications. The objective is to facilitate those activities just mentioned and to

improve design, evaluation and evolution. Numerical taxonomy is mathematically simple and yet it is a useful mechanism for

component clustering and software partitioning. The technique can be applied at various levels of abstraction or to different

software life-cycle phases. We have applied the technique to: (1) software partitioning at the software architecture design phase; (2)

grouping of components based on the source code to recover the software architecture in the reverse engineering process; (3)

restructuring of a software to support evolution in the maintenance stage; and (4) improving cohesion and reducing coupling for

source code. In this paper, we provide an introduction to the numerical taxonomy, discuss our experiences in applying the approach

to various areas, and relate the technique to the context of similar work.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Non-functional quality attributes such as maintain-

ability and reliability are essential factors in controlling

software life-cycle costs. It has been widely acknowl-

edged that maintaining existing software accounts for as
much as 60–80% of a software’s total cost. Cohesion and

coupling are two properties that have great impact on

some critical software quality attributes, including

maintainability. Therefore, management of cohesion

and coupling is of critical importance for system design

and cost reduction.

Cohesion refers to a component’s internal strength,

that is, the strength that holds the internal elements in a
component together to perform a certain functionality.

A component used in this paper is generic in that it
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could be a high-level architecture component; a module

consisting of procedures; a procedure; a class; or even a

variable. While cohesion is an intra-component prop-

erty, coupling measures the interdependence among

components. A desirable system partitioning should

achieve high cohesion and low coupling, so that all the
elements in one component are closely related for the

realization of a certain feature, and changes made to

that component will have as little impact as possible on

other components. Alexander (1964) also postulated

that the major design principle which is common to all

engineering disciplines is the relative isolation of one

component from other components.

Software engineering is a relatively new area com-
pared to other well-established disciplines, such as

mechanical engineering and manufacturing. Software

partitioning is usually conducted in an ad hoc manner

and is primarily based on the designer’s experience.

However, software systems may be either ill-designed, or

often drift or erode over time due to changes in
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requirements and technology (Perry and Wolf, 1992). In

other words, software evolves over time and is non-

static, as a result of requirement changes. The resulting

system could be highly coupled, which in turn creates

problems for downstream software phases or evolution.

Thus, effective partitioning or re-partitioning is needed.
Effective partitioning or clustering is also a paramount

goal in other disciplines. Clustering techniques have

been used successfully in many areas to assist grouping

of similar components and support partitioning of a

system. In this research, clustering and partitioning are

viewed as two sides of a coin. Partitioning is similar to a

top–down approach to decomposing a system into

smaller subsystems. Clustering, on the other hand, is a
bottom–up method. With clustering, similar compo-

nents are grouped together to form clusters or subsys-

tems. Those clusters or subsystems are partitions which

constitute a system.

In fact, partitioning or clustering analysis has been of

long-standing interest and is a fundamental method

used in science and engineering. The technique can

facilitate better understanding of the observations and
the subsequent construction of complex knowledge

structures from features and component clusters. For

instance, the technique has been used to classify

botanical species and mechanical parts. The key concept

of clustering is to group similar things together to form a

set of clusters, such that intra-cluster similarity (cohe-

sion) is high and inter-cluster (coupling) similarity is

low. The objective––high cohesion and low coupling––is
similar in software design.

Various clustering techniques have also been studied

in software engineering. In this paper, we borrow some

clustering ideas from established disciplines, and tailor

them to software partitioning, recovery, and restructur-

ing. The clustering techniques adopted in this paper are

based on numerical taxonomy or agglomerative hierar-

chical approaches. Numerical taxonomy uses numerical
methods to classify components. There are several rea-

sons for adopting numerical taxonomy. The first is its

conceptual and mathematical simplicity, as will be

demonstrated in Section 2. Although its concept is sim-

ple, no scientific study has shown that numerical taxon-

omy is inferior to other, more complex multiversity

methods (Romesburg, 1990). Another reason is that

existing clustering techniques used in software engi-
neering are often limited to only the reverse engineering

process, based on source code. The approach presented

in this paper can also easily be applied to various levels of

abstraction and be used in round-trip engineering (e.g.,

both forward engineering and reverse engineering pro-

cesses). Furthermore, the technique can provide more

added value by facilitating software (design or code)

restructuring, rather than simply design recovery. Lastly,
the computation time is fast, which is an important

factor if it is applied interactively or incrementally.
The objective of this paper is to examine existing

numerical clustering techniques used in other well-

established disciplines, tailor those techniques for vari-

ous software applications, and present empirical studies

of the techniques in software engineering. The approach

has been applied to several projects at Nortel Networks
and some of the results are presented in this paper. The

rest of paper is organized as follows: Section 2 presents

an overview of the clustering technique and discusses the

method adopted for this research and the rationale

behind it. Section 3 demonstrates several practical ap-

plications of the clustering technique to software parti-

tioning, recovery, and restructuring. Section 4 discusses

some lessons learned from applying the approach to
various projects. Section 5 highlights some related work

in software engineering. Finally, Section 6 presents the

summary and discusses future directions.
2. Clustering

This section first describes the general concept behind
the numerical taxonomy clustering technique. Following

that, we will discuss the method adopted in this research.

2.1. General clustering concepts

Applications of clustering analysis can be found in

many disciplines. Many clustering methods have been

presented (Anderberg, 1973; Everitt, 1980; Romesburg,
1990; Wiggerts, 1997). In this paper, we focus on

numerical taxonomy or agglomerative hierarchical ap-

proaches. Those approaches comprise the following

three common key steps:

• Obtain the data set.

• Compute the resemblance coefficients for the data set.

• Execute the clustering method.

An input data set is a component–attribute data

matrix. Components are the entities that we want to

group based on their similarities. Attributes are the

properties of the components. For example, the com-

ponents could be people; the attributes, a set of re-

sponses to a medical test. A further example: the

components could be mammals; the attributes, their
dental formulas. Lastly, the components could be fos-

sils; the attributes, their dimensions. The components

and attributes can be many things in various areas, to

which clustering analysis can be applied.

A resemblance coefficient for a given pair of com-

ponents indicates the degree of similarity or dissimilarity

between these two components, depending on the way in

which the data is represented. For instance, the data
may be represented by means of a binary variable. A 1

value may indicate that the component has the property.
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On the other hand, if the data represents a misfit, then a

1 value stands for one possible kind of misfit or dis-

similarity. A resemblance coefficient could be qualitative

or quantitative. A qualitative value is a binary repre-

sentation; e.g., the value is either 0 or 1. A quantitative

coefficient measures the literal distance between two
components when they are viewed as points in a two-

dimensional array formed by the input attributes.

There are various methods of calculating the resem-

blance coefficients. This paper does not discuss those in

detail. Instead, we will briefly illustrate an algorithm

adopted in this paper and discuss some related ap-

proaches. In general, there are two types of algorithms

for calculating resemblance coefficients, based on the
scales of measurement used for the attributes. One type

of resemblance coefficient can be computed based on

qualitative input data or nominal scales for attributes;

the other is based on quantitative input data or the

attributes that are measured on ordinal, interval, or

ratio scales.

An explanation follows of how one algorithm based

on binary relations or nominal scales works. Table 1
shows three components with eight attributes. A 1 entry

indicates that the attribute is present in the corre-

sponding component. For instance, a 1 entry may mean

a symptom is present in a person and 0 may mean it is

absent. Component x in Table 1, then, consists of

attributes 1, 3, 4, and 8; component y is positive to

attributes 1, 2, 3, and 7. Components x and y share two
common attributes 1 and 3, or these two components
have two 1–1 matches. In other words, a 1–1 match

means that the same attribute is coded 1 for both

components. Similarly, there are 1–0, 0–1, and 0–0

attribute matches between two components. Let a, b, c,
and d represent the number of 1–1, 1–0, 0–1, and 0–0

matches between two components.

Therefore, based on the definition, we obtain for

components x and y that a ¼ 2, b ¼ 2, c ¼ 2, and d ¼ 2.
Similarly, for components x and z, we obtain that a ¼ 1,

b ¼ 3, c ¼ 3, and d ¼ 1; components y and z, a ¼ 3,

b ¼ 1, c ¼ 1, and d ¼ 3.

To ascertain the similarity between two components,

we calculate the proportion of relevant matches between

the two components. In other words, the more relevant

matches there are between two components, the more

similar the two components are. There are different
methods of counting relevant matches and there exist

many algorithms to calculate the similarity or resem-
Table 1

Input data matrix: an illustration

Component Attribute

1 2 3 4

x 1 0 1 1

y 1 1 1 0

z 0 1 1 0
blance coefficient (Romesburg, 1990). Let cxy be the

resemblance coefficient for components x and y. Some

examples are

• Jaccard coefficient: cxy ¼ a=ðaþ bþ cÞ
• Russel and Rao coeffient: cxy ¼ a=ðaþ bþ cþ dÞ
• Simple matching coefficient: cxy ¼ ðaþ dÞ=ðaþ bþ

cþ dÞ
• Sokal and Sneath: cxy ¼ 2a=½2ðaþ dÞ þ bþ c�
• Sorenson coefficient: cxy ¼ 2a=ð2aþ bþ cÞ
• Yule coefficient: cxy ¼ ðad � bcÞ=ðad þ bcÞ

The Jaccard, simple matching, and Sorenson coeffi-

cients are much used primarily because of their clear

conceptual bases. The Jaccard coefficient is the ratio of
1–1 matches in a set of comparisons, without consider-

ing 0–0 matches. The simple matching coefficient counts

both 1–1 and 0–0 matches as relevant. The Sorenson

coefficient is similar to the Jaccard coefficient, but the

number of 1–1 matches, a, is given twice the weight.

By applying the Sorenson matching coefficient to the

example in Table 1, we get cxy ¼ ð2� 2Þ=ð2� 2þ 2þ
2Þ ¼ 1=2. Likewise, cxz ¼ ð2� 1Þ=ð2� 1þ 3þ 3Þ ¼ 1=4
and cyz ¼ ð2� 3Þ=ð2� 3þ 1þ 1Þ ¼ 3=4. This procedure
is repeated for each component pair in order to obtain

the resemblance matrix. For this particular data repre-

sentation, the higher a coefficient, the more similar the

two corresponding components represent. Hence, com-

ponents y and z in this example are the most similar pair,
since the resemblance coefficient cyz is the largest.

Clustering can also be performed on quantitative
rather than qualitative data. Quantitative attributes may

be measured on ratio scales, interval scales, ordinal

scales, or a mixture of all three. Ordinal scales are widely

used. For instance, x ¼ ð3; 5; 10; 2Þ indicates that com-
ponent x contains four attributes with values of 3, 5, 10,

and 2, respectively. To calculate the resemblance coef-

ficients based on the quantitative input data, an ap-

proach called the Euclidean distance coefficient is
commonly used. Euclidean distance measures the literal

distance between two components which are viewed as

points in the space formed by their attributes. Stating

this differently, the Euclidean distance exy between two

components x and y is defined as

exy ¼
Xn
i

ðxi

 
� yiÞ2

!1=2
5 6 7 8

0 0 0 1

0 0 1 0

1 0 1 0
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Fig. 1. N -square chart representation: an illustration (adapted from (Heyliger, 1994)).
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where xi and yi are the values of attribute i for compo-
nents x and y, respectively, and n is the number of

attributes. Similar to the above example, we work on

each component pair to calculate a Euclidean distance

between these two components and populate the

resemblance matrix. However, in this case, in general,

the smaller the distance or the coefficient, the more

similar two components are.

Given a resemblance matrix, calculated from either
quantitative or qualitative data, a clustering method, the

third step, is then used to group similar components. In

essence, a clustering method is a sequence of operations

that incrementally groups similar components into

clusters. The sequence begins with each component in a

separate cluster. At each step, the two clusters that are

closest to each other (either the largest or the smallest

coefficient, depending on your viewpoint) are merged
and the number of clusters is reduced by one. Once these

two clusters have been merged, the resemblance coeffi-

cients between the newly formed cluster and the rest of

the clusters are updated to reflect their closeness to the

new cluster. An algorithm called UPGMA (unweighted

pair-group method using arithmetic averages; Romes-

burg, 1990) is commonly used to find the average of the

resemblance coefficients when two clusters are merged.
With regard to the above example, component y and

component z are first formed as a new cluster ðy; zÞ, since
cyz is the largest resemblance value. Recall that cxy and
cxz are 1/2 and 1/4, respectively. The resemblance coef-

ficient between the new cluster ðy; zÞ and component or

cluster x is then the average of cxy and cxz, which is (1/2 +
1/4)/2¼ 3/8. The process repeats until all clusters are

exhausted or a pre-defined threshold value has been
reached.

Of further relevance is the representation of clusters.

Three common methods are used to show the groupings
of the components: matrix, graphical representation,
and dendrogram. Using a matrix representation, the

similarity between individual pairs is represented clearly.

For instance, Fig. 1 shows an N -square chart presented
in Heyliger (1994). The diagram depicts three subsys-

tems (S1, S2, and S3) and their components. The tra-

ditional graphical representation easily identifies a

group of related components. Take Fig. 2 as an exam-

ple. The diagram shows three subsystems, S1, S2, S3,
their components and the interrelationships among com-

ponents. A dendrogram is a further example of a rep-

resentation method. Dendrograms are widely used in

clustering to demonstrate the process and the proximity

between components. Fig. 3 illustrates the concept. In

this example, the clustering steps are (a,c), (b,d), ((a,c),

e), and finally ((a,c,e), (b,d)). The dendrogram grasps the

relative degree of similarity among components or
clusters. Fig. 3 also shows the resemblance coefficients

between clusters. In general, the lower the level, the

more similar the components or clusters.

2.2. Selection of a clustering method for software appli-

cations

This paper adopts the Sorenson coefficient, as de-
scribed above, and tailors it to various software appli-

cations. Whether qualitative or quantitative data should

be chosen depends on the applications and attributes.

We have selected the qualitative values over quantitative

primarily for the following reason: the information ob-

tained from software that is reliable and applicable is

static and often depends on specific scenarios. In other

words, if component A is related to component B, a 1
value will represent the relationship; otherwise, a 0 value

will be used. The relationship could be a function call,

the inheritance in OO programming, or a shared feature.
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On the other hand, the number of function calls is an

example of quantitative data.

The number of function calls based on syntax anal-

ysis, however, does not reflect the actual number of

invocations of those functions. Dynamic information

may be more insightful, but it is difficult to get and is

highly dependent on run time behavior. Even if the

number of invocations of a function could be accurately
obtained dynamically, the number could distort the re-

sult due to the nature and complexity of the software.

The point is further illustrated below.

Consider the following code fragment. Syntactically,

functionB appears only once and functionC is called by

functionA three times. That gives functionC a 3 value

and functionB a 1 value in the input matrix, if quanti-

tative data are selected as input. However, the value of
MAX may only be determined at run time and the value

could be huge in practical software design. Moreover,

there may be complicated if–else statements inside

functionA. The outcome of those logical statements can

only be evaluated dynamically. Therefore, the quanti-

tative values based on syntactic data can be misleading.

functionA () {
for (i ¼ 0; i < MAX, i++)

functionB ();

if (condition1)

functionC ();

else

. . .
. . .
functionC ();

. . .
functionC ();

. . .
}

Why have we chosen the Sorenson coefficient over

other qualitative approaches? Both the Jaccard and

Sorenson approaches ignore 0–0 matches. The argument

of leaving d out of the formulation is that the joint lack

of attributes or features between two components

should not be counted toward their similarity. 0–0

matches may be relevant in some applications (Romes-
burg, 1990). From the software perspective, however,

the argument that d should be ignored is favored be-

cause there may be a huge number of components

(functions or methods), many of which usually do not

share commonalities and have no relations. Counting 0–

0 matches, d, in some methods, will generate a great deal

of distortion, and the result will be skewed toward dis-

similarity. The Sorenson coefficient also gives more
weight to the 1–1 matches, because the attributes are

present in both components at the same time. The idea

of assigning heavier weights to more important factors is

intuitive and has been used in many areas, including

software engineering. In the area of software metrics,

assigning twice the weight to certain metrics or attri-

butes has also been used (Dhama, 1995). The Sorenson

method was also successfully used to classify a number
of simulation software models into a set of generic

models, from which specific models can be instantiated

(Mackulak and Cochran, 1990; Lung et al., 1994).
3. Applications of clustering to software

This section presents applications of the Sorenson
method and demonstrates different ways to define and

obtain the contents of the input matrix. By defining the

matrix differently, we show the various uses of the

clustering method. Specifically, examples include soft-

ware partitioning, recovery, restructuring, and decou-

pling. A generic example is given first as an illustration

of the technique. Some measures have also been adopted

which can be used to quantitatively evaluate clustering
techniques. The example is generic in the sense that the

components in this example could be at different levels

of detail.

We use the clustering technique in two different ways,

depending on the available input data. The first ap-

proach is similar to that illustrated in Section 2.1, i.e., a

set of component–attribute pairs are identified and used

to calculate the resemblance coefficients. Section 3.1
presents a case study for software partitioning, based on

the concept. However, for some software applications,
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there is no obvious component–attribute information.

For instance, many existing software reverse engineering

tools can extract coupling or dependency information. A

typical example would be function–function or method–

method call relationships. To make use of the clustering

approach, we need to tailor the technique based on
component–component independencies. In this case, the

data set represents the interdependencies or intercon-

nections among components instead of component–

attribute relationships. Section 3.2 demonstrates a study

in which the Sorenson coefficient was applied, based on

component interconnections. Section 3.3 presents how

the approach can be used to support software restruc-

turing when used together with a scenario-based evalu-
ation method. Finally, Section 3.4 demonstrates that the

approach can be adopted to source code analysis with

the aim of increasing cohesion and reducing coupling.

3.1. Software architecture partitioning based on compo-

nents and features

This section presents an application where the map-
ping of components and functions/features information

is available. The information can be derived by walking

through the architecture with a number of scenarios or

use cases. The input data set reveals a regular compo-

nent–attribute matrix. An X entry in the matrix reveals

that the component is involved in the particular feature.

For instance, the function Provide Prompt has to do

with components C1, C2, C3, and C6. Data like these
can also be obtained from UML (Unified Modeling

Language) diagrams, e.g., message sequence charts.

Based on the data, the clustering approach can be

directly applied to support software architecture parti-

tioning in the forward engineering process. Table 2

presents a mapping of functions to components for a

telecommunications software architecture for illustra-

tion. Mapping of functions to components may affect
software architectural quality attributes (Kazman et al.,

1994). Section 3.3 presents an example that also echoes

this point.
Table 2

Mapping of components and functions/features: a partial illustration

Function/feature Component

C1 C2 C3 C4 C5

Provide prompt X X X

Collect digits X X X X

Translate digits X X

Select a route X

Verify authority X X

Set-up logical connection X

Set-up physical connection X

Generate ring X X

Handle answer X X X

Handle release X X X
We evaluate the application of the clustering tech-

nique by comparing the result to the partitions per-

formed by a group of architects through several

iterations. The result of the clustering reveals a high

degree of similarity. Out of 29 components depicted in

the software architecture diagram, 21 components are
clustered exactly the same. Six components are close to

the architects’ grouping, which is explained as follows.

The original design has multiple levels of logical

groupings in some areas. For example, Fig. 4 shows part

of the design. There are two logical groups: Service

Framework and Command Interface. The Service

Framework consists of two clusters: Protocol Handler

and Service Handler, which in turn consists of some
components. The result of the clustering method indi-

cates the following clustering steps: ((Service Model,

Service Policy), ((Facility, Party), Dialog))). In other

words, Facility and Party have a higher resemblance

than that of Facility and Dialog in the actual design, as

represented in Fig. 4. In addition, Protocol Handler,

according to the clustering result, reveals a closer rela-

tionship with Party compared with Service Handler.
Hence, three components, Facility, Party, and Dialog,

are grouped slightly differently from the actual design. A

similar result occurs with another three components, but

this will not be discussed further here. Another two

components, based on the clustering technique, how-

ever, reflect further discrepancies than those six com-

ponents. The following paragraph explains the

reasoning behind it.
There are two observations with regard to the dis-

crepancies. The first is that two components, e.g., Party,

serving as interfaces to a cluster or subsystem, are

grouped together with the subsystem by the clustering

method. However, the designers separated these two

components as two stand-alone clusters. With regard to

the two components that differ from the designers’

partitioning, they act as factories or facilities. Hence, the
‘‘noise’’ level is high (high b and c values) for these two
components, since these two components are involved in

many features. As a result, the gap between the clus-
C6 C7 C8 C9 C10 C11 C12 C13

X

X X

X X

X

X X X X X X

X X

X X X X X

X X X X X
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Fig. 4. A comparison of software architecture design and clustering results: an illustration.
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tering output and the original design is wider for these

two components.

3.2. Clustering based on component interdependencies

This section first presents a general example to dem-

onstrate how the clustering method is used for system
partitioning based on component interdependencies.

The term ‘‘component’’ used here for software

applications is generic and does not necessarily represent

a specific level of abstraction or an artifact. In other

words, a component could represent a subsystem, a

directory, a file, a class, a function, a data structure, a

variable, and so on. In addition, the analysis could be

applied to a mixture of various types of components,
such as function and data structures. With regard to the

software area, the input data represent interdependen-

cies among components. For example, in Table 3, the 1

entries show that the corresponding components are

interdependent. For components at the file or function

level, the table represents the calling relationships

among files or functions. For example, if the compo-

nents in Table 3 represent functions, then function E1
calls E3, E6, and E9.
Table 3

Matrix representation for component interdependency

E1 E2 E3 E4 E

E1 1 0 1 0 0

E2 0 1 1 1 1

E3 1 1 1 0 0

E4 0 1 0 1 1

E5 0 1 0 1 1

E6 1 0 1 1 1

E7 0 0 0 0 1

E8 0 1 0 1 0

E9 1 0 0 0 1
Note that the matrix is symmetrical and 1 entries are

used in the main diagonal. This means that we do not

distinguish between A calls B and B calls A, because A

and B are coupled in either situation. The 1 entries in the

main diagonal indicate that components are ‘‘coupled to

itself’’ or closely related to itself. The rationale behind it

is to obtain 1–1 matches with other components.
Otherwise, a 1–0 match and a 0–1 match will be gener-

ated instead for each two components, which contrib-

utes to dissimilarity. Take Table 3 as an example.

Component E1, shown in Table 3, is coupled with E3.

Hence, there are 1 entries in (E1, E3) and (E3, E1).

These two 1 entries, together with the 1 entries in (E1,

E1) and (E3, E3), will constitute two 1–1 matches, which

count for similarity for E1 and E3. Without the two 1
entries in the main diagonal, 1–0 and 0–1 matches will

be used for the calculation of the Sorenson coefficients.

The value of 1–1 match may even be 0 if there are no

other common 1 entries. As a result, the similarity or

interdependency between these two components will

become much lower, even if they are related.

The approach involves only simple numerical com-

putations and the overall computational complexity
of the algorithm is Oðn3Þ for an n� n matrix. The
5 E6 E7 E8 E9

1 0 0 1

0 0 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 0 0 0

0 1 0 1

0 0 1 0

0 1 0 1
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algorithm can also easily be modified to improve per-

formance through the use of more efficient calculations,

such as integer operations. This means that it requires

only small computational effort.

Heyliger (1994) presents an example of coupling

analysis. Figs. 5 and 6 show the component intercon-
nections and an arbitrary grouping, respectively. To

apply the clustering technique, the graph is converted to

a matrix representation, as shown in Table 3. Given the

input, we can calculate resemblance coefficients and

apply the clustering method. The result for this example

is shown in Fig. 7.
E9
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Fig. 5. An example of component interconnections.
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Fig. 6. Arbitrary grouping of components.
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Fig. 7. Grouping based on clustering.
It is obvious that the inter-subsystem connection or

coupling is significantly reduced between Figs. 6 and 7.

To obtain some quantitative comparisons, two metrics

are used and calculated. One metric is structural com-

plexity (Card and Glass, 1990) and the other is system

strength (Andreu and Madnick, 1977; Heyliger, 1994).
The values shown in Table 4 reflect the significant

improvement in terms of coupling. A negative value for

system strength implies that the subsystem cohesion is

less than the corresponding subsystem couplings to

other subsystems.

3.2.1. Architecture recovery based on component inter-

connections

Clustering based on the component interconnections

for design recovery is similar to the example just pre-

sented. This area has been discussed intensively in the

literature. This section illustrates an application of the

technique used together with open source or commer-

cially available reverse engineering tools on a Nortel

Networks product. Fig. 8 demonstrates the framework

used for capturing software architecture. This approach
is useful in better understanding software that has

evolved over time or for joint venture programs. The

approach may provide a different view and supports

architecture recovery in the absence of documentation,

or in cases where the document is outdated.

In order to apply the clustering technique, we first

need to capture the coupling information or component

interconnections. There are different types of coupling
measures for object oriented software. For example,

Briand et al. (1997) postulated three object oriented

coupling metrics, i.e., class–attribute, class–method, and

method–method. The coupling information or other

coupling information may be captured using a reverse

engineering tool.

This section presents a case study performed on a

subsystem of object-oriented real-time software. The
subsystem is written in C++ and consists of 213 classes,

or about 75,000 lines of code. Two types of coupling

information, namely method–method coupling (MMC)

and method–parameter coupling (MPC), are gathered

using a commercial reverse engineering tool. The cou-

pling information represents component interconnec-

tions. The coupling measures are defined as follows:

• Method–method coupling (MMC)––If a method mx

of class ci calls a method or is called by a method
Table 4

Quantitative comparison between two system partitions

Structural

complexity

System

strength

Arbitrary grouping 23.3 )0.148
Grouping based on clustering 4 0.778
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my of class cj, ci is considered to be coupled with class
cj by method–method coupling.

• Method–parameter coupling (MPC)––If the signa-
ture of a method mx of class ci has a reference to class
cj, ci is considered to be coupled with class cj by

method parameter coupling. Note that ci and cj
may be the same class.

Three different analyses are conducted based on each

type of coupling. The clustering technique is applied

separately to both data sets and a combination of the
two data sets.

Again, we evaluate the results against the original

design. In both cases, two main subsystems can be easily

identified from the clustered output. The results are

compared to the existing directory structure. Overall,

there are 20 functional units or subsystems, including

some non-critical units like library functions, error

tracing, user interfaces, APIs, and some utility classes.
Out of 213 classes, more than 70% of the classes are

grouped similarly to the directory structure if we also

apply MPC or MMC.

This study resulted in a number of interesting find-

ings. First of all, it was observed that clusters based on

method–parameter coupling measures give more accu-

rate results than those based on method–method cou-

pling measures. One reason for this could be the
encapsulation feature of object-oriented programming.
Table 5

Cluster metrics for three analyses

Subsystem Number

of classes

Method–method coupling

(MMC)

Met

(MP

IC EC SS IC

Protocol 15 27 0 0.12 69

Access 14 14 1 0.071 16

Resource 10 10 1 0.1 28
In other words, there are more intra-connections within

a module than interconnections among modules. An-

other reason could be product-specific, as the system has
self-defined data types as well as many data structures.

The observation is also supported by real numbers.

There are 399 MPC interactions and 142 MMC inter-

actions.

After investigating the clustering results based on

both coupling measures, a new data set was prepared

using a linear combination of both measures. MPC was

given twice the weight of MMC, based on the reason
stated above. Clustering analysis was then performed on

the combined data set. The clustering result using the

combined data in some cases gave more insight than

the others. The result revealed that more than 80% of

the 213 classes correlate strongly with the existing design

in terms of class grouping. The number is higher than

those using MPC or MMC individually.

Table 5 shows some quantitative methods applied to
three important subsystems, identified using the clus-

tering technique. The table includes the following met-

rics for the three analyses, using MMC, MPC and

combined data, respectively.

• the number of modules;

• number of intra-cluster or internal couplings (IC), de-

fined as the number of links to other components
within a subsystem;
hod–parameter coupling

C)

Combined

EC SS IC EC SS

12 0.3026 71 12 0.3115

29 0.0712 16 30 0.0708

2 0.279 28 2 0.279
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• inter-cluster or external couplings (EC), defined as

the number of links to other subsystem components;

and finally

• system strength (SS) (Heyliger, 1994), defined as the

difference between the subsystem cohesion or internal

coupling and the corresponding subsystem external
couplings to all other subsystems.

Note that MMC and MPC are not totally disjointed

from the coupling perspective. In other words, a method

within a class may contribute to both MMC and MPC.

In this case, only one is counted toward the combined

data set.

Table 5 also reveals that the Access subsystem has
more external couplings (30) than its intra-cluster cou-

plings (16) shown in the combined column. The system

strength metric is also low for Access. Further investi-

gation confirmed that the design of this particular sub-

system is highly coupled with many other subsystems

and it also provides some utility-type of functionalities

to other classes. This explanation conforms with the

resulting outputs obtained from the clustering tech-
nique.

The clustering does not only show the clusters, but

also indicates the closeness of the clusters. This point is

explained below and is demonstrated in Fig. 9. A partial
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Fig. 10. Dendrogram base
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p1 p2 p3 m1 m2 m3

Fig. 9. Dendrogram based on m
dendrogram which shows three subsystems, based on

MPC, is presented in Fig. 9. For simplicity, the actual

class names have been replaced with numbers. It has

been verified from the original design that the modules

p1, p2, and p3 represent the protocol modules; m1, m2,

and m3 represent the mapping modules; and t1 and t2
represent the transaction modules. The outcome mat-

ches the design: p1, p2, and p3 are only variations of the

same type of protocol, but used for a different market-

place. Therefore, p1, p2, and p3 share common inheri-

tance properties. Similarly, m1, m2, and m3 are in the

same group, and t1 and t2 are in the other group.

The results obtained from the combination of MMC

and MPC convey a slightly different view. Visually, Fig.
10 shows the relationships. Some parts of Protocol and

Mapper are grouped together (p1, m1) and (p2, m2), and

parts of the Mapper (m3) show more closeness with

some classes in the Transaction (t1). Fig. 9 is mainly

dominated by inheritance properties, whereas Fig. 10

includes method–method relations between classes.

Therefore, the groupings are evident, such as (p1, m1)

and (p2, m2).
We compared the observations with the actual design.

The Protocol module performs decoding and encoding

of a message. This module contains two main portions,

p1 and p2, each having a corresponding portion in the
202 107 114 108 152 153 141 142 146 147 150 155 156 157 158 161 164 143 144 151145 148 149 159 163 162

t1 t2

d on combined data.

1 202 107 114 108 152 153 141 142 146 147 150 155 156 157 158 161 164 143 144 151 145 148 149 159 163 162

t1 t2

ethod–parameter coupling.
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Mapper (m1 and m2) that translates the format to the

Transaction-specific representations. There is also a set

of classes in the Protocol (p3) and the Mapper (m3) that

provides generic methods and translations. Three classes

(t1) in Transaction are highly coupled with the Mapper

(m3). The explanation for this is that they are used for
some special types of data structure and data conversion

for internal data representations within the application.

The rest of the classes (t3) in Transaction are more

general purpose components.

The difference between Figs. 9 and 10 is mainly due to

different types of interconnection data. Different input

can provide different viewpoints which can be useful for

practical object-oriented applications. The reason for
this is that object-oriented designs are sometimes doc-

umented separately for each subsystem, using class

diagrams. Interactions between classes in different sub-

systems or teams are usually not well-documented or

understood. Fig. 10 reveals the close relationships for

(p1, m1), (p2, m2), and (m3, t1). It also shows the actual

classes based on the class interdependencies. This type of

information is usually hidden in the design document.
The difference between the clustering output and the

existing partitions helps the designer in comparing var-

ious artifacts and evaluating the architectural design.

The idea is similar to the software reflexion model

technique (Murphy et al., 2001). This process may also

lead to the effort of software architecture restructuring,

which is discussed in the next section.

3.3. Software architecture restructuring in support of

evolution

This section presents a study of architecture restruc-

turing for a real-time telecommunications system with

the support of the clustering technique. The problem

with the system was that the time required to introduce

new services was often longer than expected. Whenever
a service group wanted to add a new service or make
prot_sl
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protocol_support

a

transaction
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Fig. 11. Initialization and registration of
minor modifications to the existing services, the service

designers had to spend extra effort dealing with another

design group, working on unanticipated details. The

server group did not think the effort was necessary. The

goal was then to reduce the maintenance effort by

evaluating the software architecture through a decou-
pling task.

We applied the Objective/Scenario/Metric paradigm

outlined by Lung and Kalaichelvan (2000) to this

problem. The objective was to decouple two subsystems

in order to reduce the evolution time. A few critical use

cases or scenarios were then identified to evaluate the

software architecture, based on the objective. Those

scenarios dealt primarily with service and protocol
handler registration during the initialization phase and

service execution during the execution stage. We used

the clustering technique together with those scenarios

and worked with some designers. However, this ap-

proach distinguishes from others in that we apply the

clustering to scenarios individually. In other words, for

each scenario we identified the components and inter-

connections that were involved for that particular sce-
nario only and then performed the evaluations,

including clustering analysis. Fig. 11 shows only relevant

components and connections for one particular sce-

nario, service and protocol handler registration of the

original design. It contains a global table and two sub-

systems, ServiceLogic (sl) and Protocol (prot). The

clustering analysis for this study was based on compo-

nent interconnectivity.
This specific scenario analysis indicated that some

components between these two subsystems were highly

coupled, due to the many interactions between compo-

nents and data copying among components in these two

subsystems during the initialization stage. The outcome

of the clustering showed two clusters (5, 7, 2, 1, 3) and

(9, 10, 6, 8, 4), as presented in Fig. 12. This figure also

indicates that components 5 (prot_sl_protocol_support)
and 7 (prot_transaction_mapper) are more closely
Tex

otocol_support 

prot_
dministrator

prot_
message

ocol

8

9 10

Data Complexity: 9
Strength: 0.16
# of Operations: 12

protocol handlers––original design.
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related to the subsystem ServiceLogic than Protocol,

which is different from the conceptual design.

The gap between the actual design and the conceptual

model triggered us to conduct further reasoning of the

design. The result of the clustering helped us focus on

components 5 and 7, and their interconnections with

other components. The concept is similar to the reflex-

ion model presented by Murphy et al. (2001). Clustering
is used in our study to help in the reasoning process. By

examining the design and implementation, we identified

the areas in which these two components are highly

coupled. Those two components were involved with

duplicated data copying operations and methods

inconsistent with other designs in other components.

Specially, the initialization method for class 7 should be

implemented in class 6, similar to those used for classes 9
and 10. Instead, the initialization method for class 7 was

actually in class 2 in the original design. After carrying

out the validation and restructuring analysis, we moved

certain methods from one class to another. Fig. 13

demonstrates the new design. For this example, the

changes included moving an initialization method from

class 2 to class 6, which helped eliminate the interaction

between classes 2 and 7; moving data copy operations
from class 2 to class 6; and a method with some modi-
proto

prot_sl_
protocol_support

adm
prot_transaction_

mapper

ServiceLogic

API

Initialization
prot_main

Protoc

prot_sl

sl_
context

Fig. 13. Initialization and registration o
fications from class 8 to class 7, which supported the

removal of classes 3 and 4 (with regard to this specific

use case).

Both the original design and the new design perform

the same functions, but their structures are significantly

different. The coupling is significantly improved. The
unnecessary coupling between ServiceLogic and Proto-

col is removed. Two metrics were used as measurements:

structure complexity (Card and Glass, 1990) is reduced

from 9 to 1, while the strength (Heyliger, 1994) is im-

proved from 0.16 to 0.4. In addition, the number of

operations is also reduced from 12 to 10. The new design

also supports the dynamic link of new protocol han-

dlers. By moving the method from class 2 to class 6, the
registration of class 7 is consistent with classes 9 and 10,

which facilitates future maintenance. More importantly,

the main objective of this effort has been achieved after

those modifications were carried out, i.e., changes can be

handled by one designer in the Protocol subsystem in-

stead of two designers in two subsystems working to-

gether.

The ideas presented in this section are not completely
new. A similar approach has been discussed in the liter-

ature (Murphy et al., 2001). This example, however,

demonstrates that the clustering analysis can be used to

select areas to focus, which could be useful in comparing

the actual design and the conceptual model. This example

also illustrates that evaluation can be more effective if

scenarios are analyzed individually rather than collec-

tively. Again, the connections shown in Figs. 12 and 13
are based on one scenario. Separating the scenarios could

provide more insights as to why components are con-

nected. There are still other connections or dependencies

between these two subsystems, but they are irrelevant to

this scenario. If, on the other hand, we construct the

structure based on all the scenarios, the chance of iden-

tifying specific problem areas for improvement will gen-

erally become lower. This is because, in many cases, a
Tex

col_support
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Table 7

Input data for a procedure (0 entries are not shown)

Statement number sum prod n arr avg

1 1

2 1

4 1 1

5 1 1

7 1 1 1

Table 6

Interdependencies between input and output variables

v w x y z

a 1 1 0 0 0

b 0 1 1 0 0

c 0 0 0 1 1
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system may contain far too many connections that are

not necessary for specific analysis. Take this problem as

an example: if we also consider scenarios for service

execution at the same time, classes 5 and 7 in Fig. 12

exhibit stronger relations with components in the Proto-

col subsystem, which is consistent with the conceptual
model. In this case, it does not reveal a potential point for

high coupling or dependency. From the clustering point

of view, those extra connections produce ‘‘noise’’ in the

calculations of resemblance coefficients.

3.4. Source code decoupling

This section presents an application of clustering to
source code decoupling at the procedure level. We

demonstrate how to define the input matrix that can be

used for the clustering purpose.

There are metrics proposed for measuring cohesion

and coupling at the code level (Bieman and Ott, 1994;

Bieman and Kang, 1998; Dhama, 1995). Dromey (1996)

presented a conceptually simple approach based on a

graphical representation to increase cohesion for a
procedure by identifying the relationship among input

and output variables. Two output variables are cohesive

if they depend on at least one common input variable.

Bieman and Kang (1998) presented a similar concept,

but they used it mainly for measuring program cohe-

sion.

The identification of closely related variables is sim-

ilar to a classification of variables into separate cohesive
clusters. The main issue with Dromey’s graphical rep-

resentation is scalability. As the number of variables

increases, the manual task becomes more difficult. The

clustering method can remedy this problem. In this type

of application, each variable can be treated as a com-

ponent. The relationships between input and output

variables are their interdependencies. For instance, the

example given in Dromey’s (1996) paper is illustrated as
follows.

a; b; c :¼ Nameðv;w; x; y; zÞ
. . .
a :¼ vþ w;
b :¼ w 	 x;
c :¼ y=z
end_Name

An input data set for clustering can be derived by

identifying the interdependencies between input vari-

ables and output variables, as depicted in Table 6. By

applying the clustering method, variables a and b are

grouped in one cluster, while variable c has nothing to

do with a and b. This suggests that the procedure should
be split into two more cohesive procedures, one con-
taining the first two statements, and the other, the third

statement.
The motivation of this application is to help reduce

the complexity of complex modules or functions based

on metrics extracted from the source code. Software

metrics are used for diagnosing module complexity, but

they often fall short of providing a guideline to improve

the code or reduce the complexity.

The input data for clustering can also be simplified by

treating each statement as a component (Lung and Za-
man, in preparation). That way, statements do not need

to be divided. An example from Bieman and Kang

(1998) is described below. The example demonstrates a

feature called communicational cohesion.

Procedure Sum_and_Prod (n: integer; arr: int_array;
var sum, prod: integer; var avg: float)

var i:integer;
begin

1. sum¼ 0;

2. prod¼ 0;

3. for i¼ 1 to n do begin

4. sum ¼ sumþ arr½i�;
5. prod ¼ prod 	 arr½i�;
6. end;

7. avg ¼ sum=n;
end;

The input data for this procedure is shown in Table 7.

Statements 3 and 6 are not considered, since they are

used as utilities. The input data can be fed into the

clustering method. As a result, statements 1, 4, and 7 are

grouped together, and statements 2 and 5 are in another

group. More importantly, these two groups share a low
resemblance coefficient. Therefore, the procedure can be

divided into two high cohesive procedures: one calcu-

lating the sum and the average; the other computing the

product.
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4. Lessons learned

As discussed earlier in this paper, the approach has

been applied to various software applications. Specifi-

cally, we have applied the approach to software archi-

tecture partitioning at the design stage, design recovery
in the reverse engineering process, software restructur-

ing to support evolution, and source code decoupling.

The approach provides a useful method for revealing the

degree of similarity or coupling among components.

When applied to partitioning, as discussed in Section

3.1, there is a pre-condition for obtaining a more accu-

rate outcome, i.e. that the scenario coverage used to

walk through the architecture and components should
be high. The particular architecture presented in Section

3.1 has been studied and evaluated with a large number

of scenarios. That high scenario coverage makes the

clustering result useful and reliable.

Scenarios are also useful in dividing the system

complexity if they are used individually. Evaluation of

the software based on many scenarios at one time may

overlook some problematic areas. Scenarios, however, if
evaluated separately, may give further insight. The study

of restructuring, as discussed in Section 3.3, is a good

example. If many other scenarios were analyzed at the

same time, the result may not reflect much difference due

to the many other interactions or connections.

We have also applied the approach to other projects

in telecommunications and network, in cases where we

had no prior knowledge of the systems. For one project,
we first extracted the function calls relationships. The

information was then collected and abstracted up one

level higher to reveal the coupling between files. The

clustering method was used to recover the software

structure based on the file coupling data. The recovered

architecture resembled the system to a high degree.

There was an interesting observation. Two files did not

appear relevant based on their names, but showed a
strong relationship as a result of using the clustering

method. A designer later confirmed after going through

the code that these two files had actually been one file

before a split because the size of the file had become too

large.

For another project, however, the results were not as

successful when the clustering method was applied at the

function level. This was because the system was ex-
tremely coupled. The resemblance coefficients, therefore,

were very low for most component-pairs, which means

that the internal cohesion or degree of similarity is low.

For cases like this, it would be difficult to map the

clustering hierarchy to a partition.

When used for architecture recovery, it is likely that

discrepancies will exist between the clustering results

and the existing partitions performed by the designer.
We have identified some possibilities based on the

experience.
• The reverse engineering tool may not generate com-

plete and correct information, especially for object-

oriented applications. We have used various tools.

Some tools are based strictly on the syntactic infor-

mation, while some need to be compiled with the

code in order to generate various types of dependency
relations. Different tools usually generate different

information.

• The problem scope may cause some issues. If only a

subsystem is examined, then it is likely that not all

dependency relations will be included. For instance,

Table 5 indicates that the value of the inter-cluster

for MMC of the subsystem Protocol is zero. This is

because Protocol is invoked by another subsystem,
which is not included in the analysis.

• Some components may have far more connections

than most of the other components. Typical exam-

ples are shared utility functions, APIs, and factory-

type classes. The grouping of those components

may be unpredictable. The reason is that there are

many 1–0 and 0–1 matches (higher b and c values)

in this case. According to the Sorenson coefficient,
large b and c values will result in a small resem-

blance number.

• Some modules may perform a specific task and the

number of files in this module may be much smaller

than those in many other modules. In a system that

we studied, for instance, three modules had a very

small number of files or classes. Specifically, one

module had only one file; another, two files; and
the other, four files. This may result in some distor-

tions. The reason is similar to that described in the

previous point (some components may have far more

connections than most of the other components).

• The design may not be well partitioned. In this case,

the gap could actually help the designer better under-

stand or restructure the software.

• There may be a specific rationale for the design. A
typical example is that some critical parts are hard-

coded and/or highly coupled for the purpose of per-

formance.

• Limitations of the clustering techniques. No matter

what clustering technique is adopted, there is always

a chance that the method may generate unexpected

results or will not generate expected results. Expert

involvement is recommended for postmortem analy-
ses.

We also have observed some liabilities specific to the

numerical taxonomy-based clustering technique for

software applications:

• There is no clear-cut value in determining clusters.

Simply stated, there is no clear rule for mapping a
dendagram to a partition. The resemblance coeffi-

cients differ from application to application. For
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cases where many coefficients are small and close, it is

difficult to decide where to make the cut.

• The technique is sensitive to input data. This is also

common to many numerical taxonomy approaches.

The point has also been addressed in the previous sec-

tions. Various methods of coping with this problem
have been discussed in the discipline.
5. Related work

Applications of the clustering concept specific to the

software partitioning have been studied. Andreu and

Madnick (1977) applied the partitioning concept to a
database management system in order to minimize

coupling. The requirements and their interdependencies

were first identified and were converted to a graph

problem. Various alternatives for partitioning were

examined and a quantitative metric was calculated for

each alternative. The alternative with the lowest value of

coupling was chosen as the optimal partitioning.

Heyliger (1994), on the other hand, has proposed
using N square charts to partition a large system into

subsystems. For an N square chart, the rectangles along

the main diagonal represent the system partition. Fig. 1

shows an example of an N square chart with three

subsystems, S1, S2, and S3. The 1s within a subsystem

indicate internal strength or cohesion. The 1s outside the

partitions or clusters represent coupling among subsys-

tems.
The objective of Heyliger’s approach was to incre-

mentally refine the design to maximize cohesion and

minimize coupling. Heyliger has identified a set of pat-

terns that characterize specific interfaces among system

elements. These patterns provide mechanisms for system

structural reorganization and refinement for low inter-

subsystem couplings. This process, as depicted by the

author, is labor intensive and the rearrangement of the
elements is a major problem even for small or modest

systems.

Both of these papers share a common goal, which is

to minimize the interconnectivity among components.

Selby and Reimer (1995) presented an analysis on the

interconnections of components and software and sys-

tem errors. They also discussed various approaches to

clustering software, based on component interconnec-
tions. Lakhotia (1997) has also conducted a survey on

different subsystem classification techniques that have

been proposed for classifying software into a particular

subsystem. The main objective of this paper is to

present a unified framework for expressing subsystem

classification techniques. Hutchens and Basili (1985)

specifically applied clustering methods with data bind-

ings to represent system modularization. However, this
technique and other approaches (Anquetil and Leth-

bridge, 2000) centered around the code level and/or
were only used in reverse engineering process. Here, we

demonstrate various methods of applying the cluster-

ing technique to system partitioning, recovery, and

restructuring.

Schwanke (1991) and Mancoridis et al. (1998) also

presented clustering-based methods to generate high-
level designs from source code. They adopted neigh-

boring algorithms and genetic algorithms to perform the

clustering task. The computation time for these algo-

rithms is very high, even for moderate numbers. Man-

coridis et al. (1998) show that for 153 modules which

have 103 module level relationships, the execution time

is over 1 h. In contrast, the example that will be pre-

sented in Section 3.3 has a much larger number of
entities (213 classes) and relationships (541 interactions),

and the execution time is almost instantaneous on a

similar machine. We have also tested our method on

their example. The result shows that 13 out of the 16

modules are grouped in the same cluster as theirs. In

fact, their algorithms may produce different results for

different runs, because the algorithms depend on the

probability of randomly selecting the initial partition.
Sartipi and Kontogiannis (2001) presented clustering

based on maximal association. Conceptually, their ap-

proach is similar to our work in that both methods con-

sider a number of common features for components and

determine the cohesion as the degree of sharing different

features between components. The property is also re-

ferred to as the association coefficient. Davey and Burd

(2000) consider the association coefficient as the most
suitable property for detecting similar entities. One dif-

ference between our work and their research is that ours

is based on mathematically simple numerical hierarchical

taxonomy, whereas Sartipi and Kontogiannis adopt a

complicated optimization search algorithm based on the

data mining technique, apriori. During the clustering

phase of their approach, the user may also need to

interact to reduce the search complexity. However, the
numerical taxonomy usually generates similar results.

If the clustering method is only used once, as in the

case of many reverse engineering practices, efficiency is

less important. If, however, as Wiggerts (1997) pointed

out, software systems will continue to evolve after the

system has been modularized or remodularized, incre-

mentally updating a modularization due to evolution is

often needed. In addition, the results from the clustering
analysis may provide a method for supporting the

evaluation of various design alternatives. In applications

like these, the clustering algorithm will be applied

interactively and incrementally, and response time plays

a vital role in supporting this process.

As Selby and Reimer (1995) pointed out, intercon-

nectivity-related approaches provide a useful means for

analyzing software. In our experiments, we also agree
that clustering based on interconnectivity of entities is

practical and useful.
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Another approach to architecture recovery is to

group files or procedures based on their names. Ap-

proaches based on file names work to some extent and

may be successful for some specific systems (Anquetil

and Lethbridge, 1998; Neighbors, 1996). However, these

approaches are highly dependent on naming conven-
tions, which may not reflect real software structures, and

the application of these approaches is limited to reverse

engineering process only. Some practical problems with

file name-based approaches we have encountered in-

clude:

• Inconsistent file names. A subsystem of a project

that we dealt with had various method of naming
a file as a result of evolutions. Here are some exam-

ples. The name of a subsystem is rh, which stands

for request handler. There are some examples for

the prefix of the file names: rh, RH, Crh, CRH,

o_rh, s_rh, t_rh, and DF_rh. However, the prefixes

represent different concepts. Some show releases,

some subsystems, some objects, and some other

information. We simply could not recover the over-
all design or architecture based on the file names for

this project.

• Joint venture projects or projects across teams. Joint

venture projects between or among companies are

common nowadays. Different projects may have dif-

ferent naming mechanisms. Another problem is that

different projects may also consist of some legacy

software which may not follow the same naming con-
vention as the more recent releases.

• Limited applications. For some applications, group-

ing of files based on names could show a higher level

of abstraction, which is consistent with the architec-

ture. However, the result may be misleading, because

the design may not be well partitioned or some

file names may not convey semantic information

in the first place (Lung, 1998). In addition, the
results usually show similarity with the existing direc-

tory structure. There is not much added value in gen-

eral to support restructuring, as presented in Section

3.4.

Another school of thought is known as concept lat-

tice analysis (Snelting, 2000). Concept analysis uses a

maximal association property based on functions and
their attributes to build a concept lattice. The clustering

algorithm is then applied to analyze the properties of the

structure to partition them into clusters. Concept anal-

ysis conveys rich information, including not only what

components are similar, as depicted in the dendrogram,

but also how components are similar by showing their

shared attributes. Concept analysis, however, in general

may have a scalability problem and it may be difficult to
partition the overlapped concepts between different

clusters (Snelting, 2000).
There are many other papers that discuss software

architecture recovery (Arnold, 1993; Kazman and Car-

riere, 1998). A comprehensive survey of these techniques

is beyond the scope of this paper. A general observation

of these approaches is that the applications often are

restricted to either reverse engineering of source code or
are based on the number of shared features. This paper

presents several methods of making use of different

types of data for various applications.
6. Summary and future work

This paper presented a clustering method and dem-
onstrated how it can be applied to software partitioning,

recovery, restructuring, and decoupling. The key value of

this approach is that it can support a rapid and effective

evaluation of a system based on the relationships between

components and features, or component interdependen-

cies at various levels of abstraction. System partitioning is

usually performed by designers based on their experi-

ences. The proposed method can help designers quickly
obtain an outline of the architecture or design and pro-

vide an alternative view. More evaluations could then be

conducted to identify potential problems early in the

development process. The architecture recovered from

the approach, if different from the current or existing

design, could also force the designers to reason and

compare the differences, and potentially restructure

the system. We also advocated that scenarios be used
individually as well as collectively, even for the cluster-

ing analysis. That way, the result may reveal more in-

sights.

In short, clustering is a technique that can be used in

a variety of ways in both forward and reverse engi-

neering and different levels of abstraction. The clustering

technique presented in this paper is simple, fast, and yet

it produces similar results to that of other clustering
methods. In this paper, we also demonstrated different

ways of defining and populating the input matrix to feed

into the clustering technique.

The result of the clustering has provided useful

feedback. However, there are other practical constraints

that may need to be considered for specific products.

These constraints may include development responsi-

bilities, geographical issues, personal/political concerns,
physical resources, or reusable components. Neverthe-

less, the approach has merit if consistently applied for

refinement (Heyliger, 1994), since the allocation of

functionality to components is crucial in architecture

design (Kazman et al., 1994; Monroe et al., 1997). The

approach presented in this paper is also easy to apply

if the components and their interconnections are modi-

fied.
Some other areas are still in progress. In this research,

coupling and dependency are treated the same way. In
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reality, they are different. One area which still requires

research is identifying different types of interconnections

and evaluating their impacts on the clustering. Another

area is to develop more effective metrics to facilitate

comparisons among design alternatives. The metric

system strength, adopted from Heyliger (1994), does not
scale well. When the approach is applied to the class or

function level, or if the number of components is large,

the metric values will become very small, as shown in

Table 5. The integration of the clustering method with

other tools will provide valuable information. The

clustering method has been integrated with a visualiza-

tion tool, which can display the architecture at various

levels. We are also working on tools integration to
support other aspects. Tools that allow the user to select

a view and generate it accordingly will have a great deal

of value. Another area which would benefit from further

research is comparing various clustering techniques,

including normalization of data. The numeric values,

which show the number of interconnections among

components, are obtained from a static analysis of the

source code. With normalization, dynamic data may
provide other useful information.

To apply the clustering method to reduce program

code complexity, a tool is needed to automatically parse

the source code to identify the relationship between in-

put and output variables. In addition, experiments are

required in order to clearly determine the relation-

ship between input and output variables. Examples of

more complex situations include logical statements
and loops, parameter types identification, pointers, data

structures like arrays, and records or structures. For

object-oriented programs, more factors need to be

considered.
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