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ABSTRACT In such cases, reverse engineering techniques then have to be

A method and a corresponding tool is described which assist desigiPPlied to the existing source code to get a comprehensible,
recovery and program understanding by recognising instances Sfostract representation an_d overview of the _system as the_baS|s_ for
design patterns semi-automatically. The approach taken i_gurther enha_ncement. Typically, however, this reverse engineering
specifically designed to overcome the existing scalability problemdS done partially and by hand, because the enhancements needed
caused by many design and implementation variants of desigAff€ct only part of the system and a complete reverse engineering
pattern instances. Our approach is based on a new recognitid@SK 1S t00 expensive. This approach leads eventually to a
algorithm which works incrementally rather than trying to analysePatchwork of code fragments and hot-fixes, and is more an
a possibly large software system in one pass without any humafgdgravation than an improvement as far as the overall
intervention. The new algorithm exploits domain and contextMaintainability of the system is concerned.

knowledge given by a reverse engineer and by a special underlylngo help avoid this patchwork effect, several reverse engineering

data structure, namely a special form of an annotated abstra(%t . . .
ools for different reverse engineering approaches have been

syntax graph. Finally, the paper gives some results and experiences . . . )

A investigated. For example, tools exist for reverse engineering
about the application of the approach to the Java AWT and JGL o . : ) . .
- S - databases or applications written in various kinds of programming
libraries in comparison to other approaches.

languages.

Categories and Subject Descriptors
D.2 [SOFTWARE ENGINEERING]

1.5 [PATTERN RECOGNITION]

General Terms
Documentation, Design

Keywords

design pattern recovery, UML, graph grammars, semi automati
process

1. INTRODUCTION

Past and current practice in many software producing companie
means that good software engineering principles such a
documentation, prior design and derived tests are less importan
than to be the first on the market with a new system or to producs
quick solutions when problems with an existing system arise.
Maintenance of the resultant systems quickly becomes the mog
difficult part of software development, particularly when the core
developers have left the company.

Design patterns are now seen as a logical basis for reverse
engineering of (object-oriented) software systems - by recognising
occurrences of known design patterns in source code, the implicit
design may be recovered. Design patterns as originally presented
by Gamma et al. [GHJV95] provide a collection of ‘good’ design
principles together with a discussion of their advantages and
disadvantages as well as their relation to other patterns. In the
following, we call those patterridang-of-Four(GoF) patterns.
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Figure 1. GoF composite pattern in UML

Most parts of a GoF-pattern description are deliberately informal,
to make the implementation (instantiation) of a pattern in an
existing system as flexible as possible. The most formal part of a
pattern description is the structure and sometimes the collaboration

1. Jim Welsh was a Guest Professor at the University of Paderborn
in July and August 2001.



part. Gamma et al. used the Object Modelling Technique (OMT)to 2. THE VARIANTS PROBLEM

describe the structural part and interaction diagrams for sample petecting instances of design patterns (such as GoF-patterns) for
collaborations between objects. Figure 1 shows the structure partyesign recovery requires that design patterns be formally defined,
of the Gof patternComposite using the Unified Modelling  gjnce informally described parts of the patterns are not amenable to
Language (UML). In addition to OMT's facilities, UML provides  (semj-Jautomatic recovery. The most formal part of design patterns
the facility to annotate parts of an object-oriented design as aig the structure part, which is typically expressed as a class

pattern, shown as dotted lines from the annotated design parts t0 &jjagram. Thus, Figure 1 shows the structure of the composite
dotted oval containing the name of the pattern. pattern as an UML class diagram.

In forward engineering, design patterns are a useful way 10 However, even class diagrams allow a developer to implement
document certain parts of the design chosen, since theygome aspects of the structure in many different ways. Assuming
encapsulate information about the classes, methods and attributeg,q system is implemented in an object-oriented language, it is
used, and their relation to one another. The informality of their yaasonable to expect that UML classes are implemented as classes
description presents no particular problem in this role. In contrast, 5nq that attributes and methods of a UML class become attributes
reverse engineering tries to automatically generate suchang methods of the corresponding class in the source code.
documentation from the available code, cf. [SS00]. In this context, Likewise, inheritance relations in the UML class diagram should

design patterns are an equally logical way to express the pe girectly mapped to the inheritance mechanism of the target
knowledge discovered, but the flexibility inherent in their informal  |3ngyage.

description becomes a problem for their automated recognition.

Besides others, more difficult parts are the structural relations
In practice, pattern-based approaches to design recovery have ha@lenyeen classes and their implementation in an object-oriented
limited success to date, in that only a small proportion of known language. Typically, object-oriented languages do not have an
design pattern instances are automatically recognised. This iseypjicit language construct to implement such relations, but
mainly due to the facts that design patterns themselves often have &,ssyme the use of reference attributes as in Java or pointers as in

number of “slightly” different variants (cf. [SvG98]) and, moré  ci+ Figure 2 shows three different implementations for a so-
importantly, that many different implementation variants can be

used for a chosen design pattern in the source code which are 5
almost impossible to capture and to define in total. For example, | 5
Figure 2 shows three different implementations in Java that could | 4.
all be used for the same structural relation in instances of the | 5. public void setitems (Item[] newValue)
6
7
8

[N

. I/ Variant 1 (arrays with access methods)
: public class Panel
: { private Item][] items;

composite pattern defined in Figure 1. {

. . . . . this.items = newValue;
This variants problem manifests itself in two ways. Many tools that

successfully detect design pattern instances in source code of
larger systems confine their analysis to a level of granularity, e.g., | 10: }

call graphs and naming conventions for methods, that avoids the| 11: // Variant 2 (using container class library)
implementation variants problem. Typically, these tools produce |12: public class Panel

many false positives which the reengineer then has to eliminate by| 13: { public HashSet items;

performing more detailed analysis by hand, cf. [CFM93]. Other |14:}

tools, which try to identify the behaviour of certain program parts |15:// Variant 3 (std. vector with access methods)
by operating at a finer level of granularity, e.g., data flow and is pUbI.'C CIa\S/S Pan.EI _ v 100):
control flow graphs, fail to detect design pattern instances in larger | 7 . { private Vector items = new Vector (100);

. 18:
systems because of the problems of scale that arise. 19:

.}
public Item[] getitems() { ... }

public void addToltems (ltem value)

Our goal is to assist design recovery and code understanding by 205 {“bl}' " |

recognising instances of design patterns semi-automatically in |21 Public void removeFromitems (item value)
) . . 22: {..}

source code and by annotating the code with the design parts that 23 public void draw()

contribute to the pattern, as in Figure 1. The approach taken is 24; {.

specifically designed to overcome the problems of design and|,s. Enumeration enum = items.elements():
implementation variants outlined above. Section 2 further |26: while (enum.hasMoreElements())
illustrates the problem of implementation variants by means of |27: { (tem) enum.nextElement()).draw() }
sample code. Section 3 then introduces our approach to|28: o}

formalizing patterns based on the abstract syntax graph of the|29:}
source code and composing higher level patterns out of subpatterng Figure 2. Different 1toN relation implementations in Java

to span the range of granularity required. Our execution algorithm called 'one to v’ (LtoN) structural relation between cl@aseland

and how it addresses the performance problems of fine-grained . L . .
o . . . Itemin Java. Such an 1toN-relation is the basis for an aggregation,
pattern recognition is presented in Section 4. Section 5 presents a : . .
. . : as required by the composite pattern. Usually structural relations
comparison of our analysis results to date with those reported for

. - . are mapped to reference attributes with appropriate access
alternative approaches. Section 6 summarises other related work’ PP pprop

. . methods, but the access control and the container library used
not covered by the evaluation. Finally, current and future work are depend highly on the developer's experience, and/or on resource
presented in Section 7. '




restrictions of the overall system. Variant 1 of the 1toN-relation [~T:7/Variant 1 (array with access method)
implementation in Figure 2, for example, uses an array of type | 2: public class Panel
Item(line 3) to store all the item objects in a panel object and gives | 3: { private Iltem[] items;

the developer full access to the array via access methods (line 5[ 4: ..
and 9). Thereby, the developer has to deal with all array handling | 5:  public void setitems (Item[] newValue)
problems directly. Variant 2 is an implementation where the 6 {.. o
reference attribute is a container taken from a locally made ; this.items = newValue;
container library with full access resulting from its public : ) )

- . . 9:  public Item[] getitems() { ... }
visibility. In contrast, variant 3 encapsulates the reference attribute 10: } —— -
(line 17) as a standard containde¢to) and provides appropriate .Attrlbu}_e _ type :Class _ _
access methods (lines 19 and 21). In addition, Variant 3's \r/]iiTngvg?ems \r/]iasTg:bII}gm[]
implementation of thedraw method (line 23) indicates that the
1toN-relation is also an aggregation. This can be inferred from the @ o
implementation of the draw method, where a draw method call on g field g
a panel object is delegated to its contained item objects by the loop I
at lines 26 and 27. :Class -Param

__name="Panel’ name="newValug

These three example implementations of the structural relation vis=public )
between two classes are all consistent with the class diagram given method %
for the composite pattern in Figure 1, which is the most formal part o methods g
of a design pattern description. In addition, many more 0 -
) . . ) : :Operation
implementation variants for an overall design pattern may arise, :DataType returnType name="setltems"
either from its less formally defined aspects or from a more liberal name="void” vis=pu_b|ic

interpretation of the class diagram. For example, a developer may »
use a bi-directional (qualified) association according to good -
design principles, the inheritance relation may not exist or the Leaf :PTBlock

class in Figure 1 may be omitttdWhether these are viewed as
implementation variants or ‘slightly different’ design variants
depends on the rigour with which the design pattern description is
interpreted. In either case, they contribute to the overall challenge
of achieving effective recognition of pattern instances.

declaration

type

It should also be noted that many of the GoF-patterns are left
structurally identical and vary only |n_the|r pehawour, eg., _the -PTVariable | PTClassAftrib |
strategy patternand state pattern To distinguish between their

:PTVariable

; o ) - . name="this”

instances it is obviously necessary to analyse behaviour, but this Joclarali _ i

also increases the potential for more implementation variants and eclaration links _ objects

the need to deal with these effectively. — direct| |:Xyz | node
- - - indirect .@ anno

3. PATTERN DEFINITION
In our approach to pattern-based design recovery, patterns (an
subpatterns) are defined with respect to the abstract syntax grapheadability reasons. Figure 3 (without the oval-shaped nodes)

(ASG) representation of a program. Subpatterns define ASG shows an ASG as an UML-like object diagram, and its
structures that are constituent parts of other patterns or subpatternsgorresponding source code.

Figure 3. Annotated abstract syntax graph instance

As an example we apply our technique to the reverse engineeringUsing an ASG representation has several advantages over using the
of Java programs. The approach presented is, however, not boundextual source code representation. It avoids whitespace and
to any particular program language or any particular programming formatting problems. It automatically normalizes the code for
paradigm, such as the object-oriented paradigm, as will be simple syntactic variants such as i=i+1 vs. i++. ASGs also provide
explained later in this section. additional information, such as identifier application and

The actual ASG used in our system is that produced by the JavaCCdem"jlratlon links, that is useful in further analysis.

source code parser [JCC]. However, the ASG model presented inRecognising an instance of a pattern or subpattern in the ASG
this paper is simplified compared to that produced by JavaCC for under analysis results in the addition of a corresponding
annotation. The oval-shaped nodes shown in Figure 3 are

1. The collaboration description says: “If the recipient is a Leaf, annotations which identify certain subgraphs of the ASG as
then the request is handled directly.”. This does not require the matching the named subpatterns. In the examples shown, attribute
existence of an expliclteaf class inheriting fronr€Component. itemsis marked as a reference of the corresponding class, while
For example, such a design is used in the Java Swing API methodsetltens is marked as a write operation for attrikiteens
[ELW98].




Each pattern is formally defined by a graph transformation rule. of that reference is given by the annotati@ontainerReference
The corresponding graph transformation annotates the ASG with In addition, a method body of that class (tballer class) must
additional nodes and edges (the oval-shaped nodes andcontain a call of an operation provided by the interface of the
corresponding edges in Figure 3) to indicate which subgraphs of ancallee class. That call must appear within the body of a loop
ASG correspond to the pattern. Such subgraphs can then be usedtatement in order to support the assumption that the call is made
by rules defining other patterns that contain the defined pattern as a&o a particular item in a collection of items. Finally, the names of
constituent part. the called and provided operation must be the same. Each edge
labelledPath in the definition indicates that an arbitrarily defined
path in the tree part of the ASG must exist between the source and
target node of that edge, i.e., the call can appear in an arbitrarily
'Eieep nesting of statements within a method body. This is a typical
'?example of how many false positives can be avoided by checking
method bodies in addition to type definitions in class headers.
field :Attribute Furthermore, our definition of theN_Delegatiordoes not require
application and declaration links between classes and objects,
because this leads to very complex rules. In practice it is usually
references attrs sufficient to identify a delegation only based on naming

As a first example of such a subpattern definition, Figure 4 shows
the transformation rule defining a subpattern which is an

association relationship between two classes that each have a
attribute annotated as a reference to the other class. In the notatio

:Reference

conventions and their corresponding appearance within method
:Class i

bodies.

Figure 6 then shows one possible definition of @emposite

pattern. The definition requires that a generalisation and an

-Attribute field ‘Reference association between the same two classes exist and that a
* delegation pattern occurs between two operations of these classes.
In effect, this definition describes theompositevariant without

the existence of a leaf class (cf. Figure 1). Other variants require a

used, the subgraph to be matched in the host graph is defined byslightly different definition.

the black nodes and edges. The subgraph to be added is defined by
the grey node(s) and edges annotated with the keyword “create".
This simple notation can be used because the rules only add
information to the host graph and never delete any. (The formal

definition and theory underlying such graph transformation rules is

given in [SWZ95].)

Figure 4. Association pattern specification

:Generalization
super

The definition of a so-calletiN_Delegatiorsubpattern is shown in
Figure 5. An 1N_Delegation requires the existence of a reference
between two classes which involves a container class, i.e. an|| :Class :Class

attribute definition in one class must be defined as a collection

which contains objects of the type of the other class. The existence

class class
:1N_Delegation
callee caller
caller:Operatior callee:Operation i i
hame — callername :Operation :Operation
ast ethods methods Figure 6. Composite pattern specification
- a :Class
:PTNode :Class The notation used here for pattern definitions is supported by the
Path attrs FUJABA! environment [FNTZ98, KNNZ99]. FUJABA supports
: § (among others) the definition of UML class and collaboration
‘PTLoopNode :Attribute = diagrams and the definiion of method behaviours as
© corresponding graph transformation rules which use the definitions
field el of the class and object diagrams. The environment generates
Path LY
) executable and complete Java code from these definitions. The
:ContainerReferenc
:PTNodeld
name == callee.name 1. The Fujaba (From UML to Java And Back Again) environment
is developed by the Software Engineering Group at the Univer-
Figure 5. 1N_Delegation pattern specification sity of Paderborn (www.fujaba.de).




graph transformation rules can be viewed as a subset of UML-like constructive (as well as a consistency-checking) role in the overall
collaboration diagrams. They are drawn somewhat differently but definition of patterns. Inheritance relationships between patterns,
can easily be translated into the UML syntax [KNNZO00]. as illustrated by the patternReference SingleReferenceand
ContainerReferencen Figure 7, are defined solely by their

In UML terms, the domain model for our pattern definitions is a representation in the class diagram.

class diagram defining the types of nodes and edges of an
(annotated) ASG. The set of graph transformation rules are In the domain model definition, classes representing patterns and
collaboration diagrams that define the annotations created tosubpatterns in the diagram are distinguished with stereotype
identify particular ASG patterns. As an example, Figure 7 gives an ‘Pattern’ represented as an icon. Those without this icon represent
excerpt of the domain model (i.e., the class diagram) for our ASG structures created directly by the parser from the Java source
definition of patterns in Java source code. It identifies several code. For these, there is obviously no need to create an annotation
subpatterns commonly used when constructing patterns.to express exactly the same information. This convenience reflects
Associations in this diagram (not to be confused with the the fact that we are recovering an object-oriented model from an
subpatterrAssociationwhich is shown as a corresponding node in  object-oriented language. To recover an object-oriented model
the diagram) are bidirectional, but with a defined read direction, from other languages, identifying a class may require a complex
which indicates for example that tli@ompositepattern annotates  graph transformation rule as proposed e.g. in Rigi [MOTU93]. In
an Associationand Generalizationas well as twoClassnodes of principle, however, our approach is applicable to recovery of any
the abstract syntax graph (ASG). The default cardinality is exactly kind of design model from any kind of programming language.

‘1’ in the read direction and ‘n’ in the reverse direction. . . . .
Using this approach, we have specified the GoF-patterns in a style

n callee p Operation similar to that shown for theCompositepattern. Doing so has
shown first of all that GoF-patterns can have a precise definition,
1) albeit with a judicious use of alternative variant definitions to
accommodate the design flexibility intended. The definitions
n utilise a set of subpatterns similar to those shown in Figure 7 and
- \(/QerA class |II_ustrated by theAssociatiorand ll\!_DeIegatlorpattern_s given in

S%A 2o Flg_ures 4 and 5. The problem of implementation variants impacts
m n class b 2 mainly on the definition of these subpatterns.

IN_Delegation |[n— caller .

Inheritance

spoyaw P

o

Association More significantly, our approach enables a reverse engineer to
A A b‘ specify new design patterns or design variants in a flexible way,
assoc super| su using a familiar UML-like notation. If he or she uses only
n n compositg 0 n subpatterns which have already been given a direct correspondence
m n componenp m to code (such aReferenceAssociation Generalisation etc.), the
Composite |n iSAp Generalization engineer does not even need to worry about source code
representations, but thinks only in terms of UML-like class, object
n reference® and collaboration  diagrams. Implementation  variants
m ) - accommodated by the existing subpatterns are automatically
fieldp Attribute .
Reference shared by each new pattern created. In effect, our construction of
patterns from subpatterns exploits inheritance and use-
4 ________ relationships as in typical object-oriented specification languages.
| | In general, using FUJABA, a reverse engineer can either adapt or
m m extend an existing set of patterns such as those illustrated here, or
build a complete new domain model for a programming language
other than Java and for a target domain other than GoF patterns. In
R R the latter case, of course, he or she has to start from scratch by
pteepe- gttty defining implementation variants and corresponding annotations as
Figure 7. Domain model (excerpt) well as new design patterns.

< attrs

=

SingleReference ContainerReference

As an example, the definition of @ompositeas in Figure 6 can Despite these benefits, our approach does.yet no@ overcome the
now be seen with respect to the domain model given in Figure 7. Problem that each design or implementation variant, however
Following the UML syntax and style of definition, each object in Slight, has to be defined explicitly at some level, if it is to be
this diagram must be an instance of a certain class in the domaintcognised. We revisit that problem in the final section of this
model and each link between two objects must be an instance of anPaper to describe some current work designed to address it.
association in the domain model. In addition to the UML syntax,

we require that the type names of the objects and the link names ind. THE REVERSE ENGINEERING TOOL

the collaboration diagram must be the same as the correspondingsection 3 has described an effective formalism for defining a
class and association names. All these constraints arecatalogue of patterns as the basis for design recovery from source
automatically checked by the FUJABA environment. code. The design recovery process for unknown systems is
inevitably an iterative one. Typically, the reverse engineer first

Asi lin UML-like definitions, the cl iagram itself pl . .
sis usualin U e definitions, the class diagram itself plays a applies an initial set of patterns, then repeatedly examines the



results, adjusts the patterns to address perceived deficiencies anthe method body check shown in Figure 5. The resulting false
reapplies them until a satisfactory outcome is achieved. To supportpositives manifest themselves early in the analysis, but the reverse
this process the engineer needs a tool that applies the patterns t@ngineer has to wait until analysis is complete to recognise them.
the source code involved and displays the results obtained. For reverse engineering, therefore, a semi-automatic process is
likely to be more effective, in which useful intermediate results are
produced and the engineer is allowed to interact with them, either
to add information and request that analysis continues or to revise
the rule definitions and restart analysis.

To devise a tool that meets this requirement we adopt a threefold
strategy. Firstly, we minimise the scalability problems mentioned
in Section 1 by adopting the best available analysis algorithm.
Secondly, we adapt this algorithm to deliver useful results
incrementally rather than on completion. Thirdly, we involve the To support such a process, the analysis algorithm itself must
reverse engineer in the analysis process, to avoid unnecessarproduce intermediate results useful to the engineer as early as

computation of unwanted analysis results. possible, and be amenable to interruption and resumption without
loss of results to date. Since the results most useful to the engineer
4.1 The basic analysis algorithm are those produced by rules at the highest levels in the rule

Pattern-based design recovery is a deductive analysis problemfierarchy, we adopt an analysis algorithm which combines a
where patterns, or rules, are repeatedly applied to a representatiofOttom-up strategy and a top-down strategy. Note that the
of the source code to arrive at the most complete characterisation2/gorithm affects only the execution sequence of patterns and does
of the code permitted by the rules. Pure deductive analysis NOt Violate their formalization as graph transformation rules.

algorithms typically apply the rules involved level by level, g gefine the algorithm, the dependency hierarchy of the rules is
bottom-ug, according to their natural hierarchy, and produce levelled, such that each rule has a level number. A rule depending
useful results only when analysis is complete. Results from other only on objects in the initial ASG gets number 1. A rule depending

researchers, such as [Wil96] and [Qui94], suggest that a reverseon other rules, i.e., whose definition includes annotations created
engineering tool providing fully automatic analysis based on this by other rules, gets a higher number consistent with the natural
approach cannot scale for larger software systems. topological order of the rules. Rules included in cycles concerning

) . . heir ndenci h me level number and are mark
Where patterns are defined as graph transformation rules, as in ouF eir dependencies get the same level number and are marked as

; ; recursive.
case, graph transformation systems are the natural choice for
implementing the tool. However, the scalability problem also Figure 8 shows a snapshot of our analysis algorithm. The grey
applies to graph transformation systems such as Progres [Zun96}ectangle at the bottom represents all objects in the ASG. The
or AGG [AGG], which apply the rules in an arbitrary sequence black oval identifies an annotation already created by bottom-up
usually determined by the internal data structures used. analysis (with links to the objects annotated) while grey ovals
represent a top-down analysis in progress. Directed arcs indicate
the scheduling sequence of the rules. Variables at the arcs represent
objects passed to the scheduled rule as context.

FUJABA, in contrast to other graph transformation systems, only
applies rules given a context, normally one object in the graph.
While this is a restriction to the original theory of graph grammars,
it has been shown not to be a problem in practical application. Its

advantage is that it reduces the runtime complexity of the rule i?tttom-up strr;:tegy q he ASG. th vsi
matching algorithm to polynomial size, whereas the original sub- er parsing the source code to create t e » the analysis starts
in bottom-up mode. Initially, all ASG objects schedule level 1

rules, i.e., those depending on ASG objects only. Scheduling only
level 1 rules initially is sufficient to ensure that all necessary rule
By adopting FUJABA as the platform for our tool, we therefore applications are eventually considered. It avoids many top-down
reduce the problem of scalability compared to systems using failures that would otherwise occur, because the information
standard approaches to deductive analysis. For the revers
engineer, however, this does not necessarily solve the performance cl, c2 cl,c2

C it
problems involved. '/— ompost e_'\‘ Strategy

1N_Delegation

graph matching problem is NP-complete [Meh84]. For more
details we refer to [ZUin96] and [FNTZ98].

Association

cl.attrs, Nttrs, c]

Reference Reference

4.2 Adapting the analysis algorithm

Although FUJABA reduces the computational complexity of
analysis, a fully-automatic tool based on FUJABA is still
undesirable, as the results are made available only when analysis ig
complete. Given that reverse engineering is an iterative process,
such tool behaviour does not lead to an efficient overall process.
Suppose, for example, oN_Delegatiorpattern does not include

g:Generalizatio

supe sub
1. In comparison, pure top-down approaches starting with top-lev- c1:ClasdSUPEli-Inheritance [SUB c2:Class
el rules in the topology hierarchy are only of theoretical interest, __
because of the search-space implied. Even when a specific rule ASG [ |
is identified for application, without an adequate starting context

its top-down application is impractical. Figure 8. Sample analysis execution




available is not enough to establish a high level rule. Consider, for When the rule at the front of the top-down queue can be applied, a
example, aCompositerule scheduled by a single class. The corresponding annotation is created, all dependent rules are
inherent search space is too large to justify its top-down scheduled for bottom-up consideration, the front entry of the top-

investigation.

An objecto scheduling a ruleR creates a rule/context pai(0)
which is added to &ottom-up priority queudield in descending
order of rule level number. The use of rule level numbers to order
the rule/context pairs in the bottom-up queue is not critical. Any
ordering that promotes higher-level rules will do. This fact can be
exploited to further tune the algorithm, as discussed in Section 7.

The algorithm continues in bottom-up mode by dequeueing the
first rule/context pair, in our exampl&eneralization(i) cf.
Figure 8. This rule is immediately applicable, so a generalization
annotationg is created, annotating the superclass and subclass
and c2, which are accessible via the inheritance object i, cf. the
domain model in Figure 7. In contrast to ASG objects, which
schedule level 1 rules only, creation gf schedules all rules
depending on th&eneralizatiorrule, e.g., the top-leveLomposite
rule.

SinceCompositds a top-level rule, the paitomposite(g)s taken
next from the bottom-up queue. At this point, however,
Compositég) cannot be applied successfully, since annotations
have yet to be created by the other rules on whdmposite
dependsiN_DelegatiorandAssociatioi.

Top-down strategy

When a rule that depends on other rules cannot be applied in
bottom-up mode, the algorithm switches to top-down mode, which
uses a separat®p-down priority queueThe top-down strategy

. o . 0
tries to make the other rules create the missing annotations base(i
on currently available information. In this case, the search space is

quite strictly delimited by the information available, e.g., that
inherent in the generalizatian

Consideration ofComposite(gjn top-down mode thus schedules
the 1N_Delegatiorand theAssociatiorrules, cf. Figure 6. Where

down queue is dequeued and the next element of the top-down
gueue is considered. The newly scheduled rules join the bottom-up
gueue since they represent analysis results that would have been
created later in bottom-up mode anyway and need further
investigation.

The algorithm runs in top-down mode until the top-down queue is
empty or a rule in the queue fails with no alternative contexts left
to explore. The first case means that the rule that started this top-
down phase has been successfully applied, in our example the
Compositerule. In the second case the starting rule cannot be
applied in the given context. In either case the algorithm switches
back to bottom-up mode.

Intermediate results

With the algorithm as described, each annotation once created
represents an intermediate result that is not affected by subsequent
analysis. In principle, therefore, the execution can be interrupted
for inspection of results by the engineer at any stage. In practice,
however, it is illogical to allow interruption during a top-down
interlude, when some but not all of a closely related set of
annotations may have been created.

Since the algorithm tries to establish high level rules using the top-
down strategy, the intermediate results are likely to be useful
information for the reverse engineer, e.g. GoF patterns. The
engineer can look at such patterns to determine if the analysis
should continue on the current basis. The algorithm is also robust
certain changes by the engineer prior to resumption. Addition of
nnotations by the engineer is valid at this stage, provided these
add all corresponding rule/context pair for dependent rules to the
bottom-up queue. Marking a rule as ‘to-be-deleted’ is also
acceptable, as the consequences of deletion can be systematically
propagated to both the results to date and the resumed analysis.
Such actions may be useful to the engineer as ‘proofing actions’

such rules depend on other rules, rule scheduling continuesprior to permanent change to the rules themselves. Any addition or

recursively. In our case, for example, tesociationrule now
schedules thReferenceule twice, as Figure 8 implies.

To establish aCompositeconsistent withg, the unique relevant
context for both thd N_Delegatiorrule and theAssociatiorrule is

the superclasgl and subclas€2 obtained fromg. In general,
however, we note that alternative contexts may be implied for
some rules, all of which have to be considered.

The rule/context pair at the front of the top-down mode queue is
not dequeued if the rule involved schedules other lower-level rules.

Instead, pairs added to the top-down queue are queued in

ascendingorder of their level number. This means that the higher-

modification to the rules, however, invalidates the analysis to date
and requires restart of the overall analysis.

The overall analysis finishes when the bottom-up queue is empty.
In this case the algorithm has analysed all ASG objects and created
annotations on the objects for all rules that could be applied.

4.3 Integration of the reverse engineer

Integrating the analysis algorithm described in section 4.2 into a
semi-automatic reverse engineering process is easy because it is
interruptible. Figure 9 shows our reverse engineering process as a
statechart. The process starts by parsing the source code to create

the ASG representation, followed by loading a particular pattern

level rule will be reconsidered after the lower-level rules on which . L e
it depends (if these succeed). Using a priority queue rather than gcatalogue. The engineer can then make initial modifications before

stack means that the top-down algorithm goes as far down the ASGStarting the analysis algorithm by sendingiat event.

as quickly as possible. This encourages earliest possible failure inThe complex state on the left-hand side with its two internal states
top-down mode, while maintaining an appropriate sequence of rule ‘pottom-up stratedy and ‘top-down strategy represents the
applications for top-down success. If a rule marked as recursive is analysis algorithm described above. The algorithm halts, and the
added to the top-down queue, however, stack behaviour is adoptedeverse engineer can look at the results, if the algorithm has
until all rules so marked have been removed from the stack/queue finished or the reverse engineer interrupts the execution by sending
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a stop event. As mentioned above, it is logical to confine such ] )
interruptions to bottom-up mode purely for pragmatic reasons. Figure 10. Results with JPC1 patterns

The reverse engineer then has the opportunity to look at the resultsheaoler files.) This means for example that our 1IN_Delegation

. . . . attern (cf. Figure 5) finds a delegation between two methods
to see if the patterns selected still seem appropriate. By sending a - .

) whenever two methods in two different classes have the same
adapt event, he/she can mark patterns for deletion or create

annotations that will steer the algorithm to a part of the source code name. This is our first Java pattern catalogue JPC1.

that he/she wants to have analysed. Resuming rather than restartingfigure 10 shows a screenshot of our reverse engineering tool after
the algorithm systematically propagates the consequences of suchunning this first complete analysis on the part of the AWT library
changes to both the prior and subsequent analysis. If the analysis tqconsidered also by Seeman and von Gudenberg). The part is the
date fails to meet the engineer’s needs in other ways, the patternsentral part of the library consisting of th€omponentand

can be modified, but in this case the whole analysis must restartContainerclass and its connecting classes, comprising about 8700

from the beginning. lines of code. The annotations corresponding to the 14 GoF
patterns found are highlighted. Checking the source code manually
5. EVALUATION shows, that 4 patterns found are real design pattern instances and

The tool outlined in section 4 has been implemented within the other 10 are false positives.

FUJABA. To date, it has been evaluated on two major Java seeman and von Gudenberg [SvG98] found 3 out of our 4 found
libraries, the Abstract Window Toolkit (AWT) [AWT] and the Java  design patterns namely, a composite pattern consisting of the

Generic Library (JGL) [JGL]. Componentand Containerclass, a strategy pattern consisting of

The AWT library is used to develop graphical user interfaces and the Container and LayoutManagerclass and a bridge pattern
provides graphical components such as buttons or text entry fields.consisting of theComponenand ComponentPeeclass but do not
Each graphical component is represented by a class in the libraryProvide any information about false positives or performance
plus additional auxiliary classes. Overall, the library consists of iSSues they encountered neither an additional Strategy pattern
429 classes contained in 313 files totalling 114.431 lines of code. PetweenComponenandComponentPeer

The AWT library is a good test-bed for pattern-based design The |ast design pattern we found is not part of the results of
recovery, because the developers have utilised GoF patterns ateeman and von Gudenberg because their precise notion of GoF
many points in the source code. While this makes the analysis patterns does not identify a strategy pattern as a part of a bridge
easier than a software system grown over several years ofpattern as we do in our object-oriented precise pattern definition

development, it makes the identification of false positives and the taken from the informal description given by Gamma et al.
influence of the method body analysis easier to show. In addition,

the results are comparable to those of other researchers who havé addition to the false positive GoF patterns, many false positive
used the same library, e.g. [SVG98]. instances of subpatterns were also found. These are shown only

) ) ) partly in the screenshot, because of the lack of space. (Hiding
As suggested earlier, a reverse engineer may start the analysis of agg|ected annotations is a basic functionality of the tool which

unknown system with a complete analysis using an existing pattern offers the reverse engineer the opportunity to browse through the
catalogue. For our first run we used a GoF pattern catalogue thatyhole annotation structure more easily. For example, the engineer
did not include any analysis of method bodies but only structural may initially be interested only in top-level patterns like GoF
information. (In C++ terms, this equates to considering only patterns, but later wants to see subpatterns as well.)
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feyesiasi] Liva s Hinrais interrupt analysis at certain times to look at the annotations
; 4 o produced so far. Our tool also allows the engineer to request
I:l 2l automatic interruption when certain patterns have been found, e.g.,
|n . - | bt a composite pattern. Using this facility, the time taken to find the
| first GoF pattern was easily measured for each of the analyses
described. As results in Table 1 show, the time to obtain the first
GoF pattern was often a small fraction of the overall analysis time
Figure 11. Results with JPC2 patterns in each case. This suggests that our top-down/bottom-up approach

is well suited to supporting an iterative reverse engineering
Similar results are presented from Kramer and Prechelt [KP96]. process.

They only analyse the structural parts of a program, i.e. the header ) ) )
files in C++, which results in many false positives. The particularly early delivery of GoF patterns with JPC1 reflects
the detection of false positives, but is valuable, for example, in

To improve on our initial analysis, we modify those patterns that ypgrading JPC1 to JPC2. It is such false positives that show up the
could exploit analysis of method bodies. For example, we use the inadequacy of JPC1's structure-only approach.

1N_Delegation pattern definition as shown in Figure 5 and add or

modify three other patterns that also analyse method bodies. ThisIn Section 1 we identified scalability and false positives as the key
is our second Java pattern catalogue JPC2. problems to be overcome. On the evidence above, our adoption of
. . FUJABAs graph transformation scheme has significantly
Flgure_ll Sh(_)WS the_ analysis resuIFs of a complete run of the addressed the scalability problem. Where previous researchers
analysis algorithm using JPC2, focusing on the same constellatlonhave been unable to analyse much more than a few thousand lines
of classes as Figure 10. The false positive GoF patterns have NOWot code, our system deals comfortably with 100.000 lines of code.
disappeared and only real pattern instances are left, as in the resultfh additi’on, overall analysis times become less significant with the

of See_man and von G_udenberg. This result sh_ows cle_arly thatinteractive analysis process that is enabled by early delivery of
analysis of method bodies has a key role o play in reducing false high-level annotations through our top-down matching algorithm.
positives.

This combination of fast and interactive analysis appears to
In that sense our approach is similar to the approach of Seemanrprovide the basis for an efficient iterative reverse engineering
and von Gutenberg, i.e. they also analyse method bodies. Theirprocess from the engineer’s viewpoint.

approach, however, doe_s not i_nvolve the rever_se engineer af‘d alscbur system’s capacity to analyse method bodies significantly
do_es not supp_ort the object-oriented constru_c_tlon and evolutlo_n by reduces the false positives problem observed by other researchers
using a UML'“k?. language as Wg_do' In adqmon, no repor_t e_X|sts who used only structural analysis. There is of course an additional
about_false positives and scalability analysis as we explain in the analysis cost, since some pattern definitions are more complex and
following. additional method-specific patterns are needed. As Table 1 shows,
In order to investigate residual scalability problems with our analysis of the central part of the AWT library takes 150% longer
approach we then ran a complete analysis of the entire AWT with JPC2 (which analyses method bodies) than with JPC1 (which
library using the JPC2 catalogue. The complete analysis took does structural analysis only). The corresponding increase for the
approximately 22 minutes. analysis of the JGL is 70%, but our experiences show that the

] ) ) effort of taking method bodies into account is more than doubled
To verify the adequacy of our approach in other coding contexts, i, comparison to a structural analysis only.

we also applied both catalogues JPC1 and JPC2 to a completely
different source, the JGL. Because the JGL is more a collection of
algorithms than a class library, the runtimes are faster than for
AWT. Nevertheless, we obtained similar results than for the AWT,
i.e., many false positives if we do not analyse method bodies.

1. The times were taken while running on a Pentium 11l 933 MHz
processor with 1 Gbyte of memory (with JDK 1.3 on Linux
2.4.5). All times include the runtime of the analysis algorithm

As noted in Section 4, it is desirable that the reverse engineer can only. Parsing times are not considered.
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6. RELATED WORK for tuning and improving the tool.

Comparable work on reverse engineering of source code has beefne jdea is to enable the engineer to introduce a priority definition
reported overthg past decade. In [HN90] Harandi and Ning present;y; the bottom-up queue. For example the priority could be the
program analysis based on an Event Base and a Plan Basereyerse order of the current one, which means that the jump from a
Rudimentary events are constructed from source code. Plans argq, |evel rule to a higher level rule is bigger but the consequent

used to define the correlation between one or more (incoming) yop-down analysis might fail more often. A second idea is that the
events and they fire a new event which corresponds to the intentiongngineer can tune the algorithm by renumeration of rules. This

of the plan. Plans using events fired from other events is similar to 5)jows the engineer to emphasis on certain patterns, which results
defining patterns in terms of sub-pattems as presented in thisiy an earlier analysis of the patterns. Those adoptions should be
paper. Each plan definition corresponds to exactly oOne cpangeable during runtime, because the interests of the engineer
implementation variant, which leads to a high number of changes during the analysis phase. For example he/she wants to
definitions. This applies also to the approach of Paul and Prakashtqcys on certain patterns or to find out why a certain rule produces
[PP94], where a matching algorithm for syntactic patterns based many false positives before continuing. Consequently, we are
on a non-deterministic finite automaton is introduced. currently integrating a kind of analyse profiles, which contain a
An approach to recognize clichés, ie., commonly used bundle of configuration parameters for the algorithm and can be

computational structures, is presented in [Wil96], within the Switched during the analysis phase by the reengineer.

GRASPR system. Legacy code to be examined is represented ags mentioned above, the reengineering tool comprises a set of
flow graphs by GRASPR, clichés are encoded as an attributedpasic subpatterns and patterns. We state that we have defined a
graph grammar. The recognition of clichés is formulated as the \yhole bunch of subpatterns to recover (nearly) every instance of a
sub-graph parsing problem which is NP-complete [Meh84]. GoF pattern in our analysed software. However, the problem of

Radermacher [Rad99] uses the graph rewrite system ProgredMplémentation variants remains because we can not ensure that
[Ziin96] to match patterns on the program. Patterns are defined agVeé have defined all variants of subpatterns. To solve this by
graph transformation rules and thus similar to ours. RadermachereXploiting inheritance and use-relationships is not really a solution
uses the execution mechanism of the Progres environment,bécause the different variants still have to be defined explicitly.

whereas the execution is not incremental. To overcome the problem of numerous definitions of slightly
Analysing behaviour as well as structure using patterns is different variants of subpatterns we are curren_tly working on an
presented by Keller et al. in [KSRP99]. They use a common approach where we replace several slightly different subpattern

abstract syntax graph model for UML to represent the source codeUles by one (more) general rule. Such a general rule, in principal,
as well as the patterns. Matching the pattern’s syntax graph on theCoNSIsts of the common parts of the different subpattern rules. In

program’s syntax graph is done by scripts. These scripts are notorder to express the resulting impreciseness, we assign a fuzzy
generated automatically out of the patterns but have to be Value to the resulting general rule.

implemented by the reverse engineer manually. Very quickly, The yse of many general rules reduces their overall number in
descriptions in such a script language become large, awkward Ocomparison with defining each implementation variant by a
read and difficult to maintain and reuse. separate rule. This reduces analysis time, but usually increases the
Besides no support for the user-friendly object-oriented number of false positives found during the analysis process. This
construction of patterns, none of these approaches integrate§eSU|ts from the fact that general rules cover more instances than
human reverse engineers and employ their domain context @l individual original subpattern rules together. Therefore a
knowledge. This causes the approaches not to sale. [Wil96] for balance between the number of general rules and the number of
example reports that her approach is only able to analyse a ferEt§Ct9d false positives has to be determined by the reverse
thousand lines of code. engineer.

Tonella and Antoniol [TA99] present an approach to recover OUr approach supports the reverse engineer in finding a balance by
‘coherent structures’. Their pattern definitions contain only USing fuzzy weights in a rule’s_deflnltlon as thre_sholds in order tq
quantitative statements, e.g. the number of classes, the number of2ke only those subpatterns into account which have a certain
inheritances, or the number of references. Hence, only structuralPreciseness. Consequently, finding a balance between the number
information from the source code is used to identify patterns which Of rules and false positives mostly depends on tuning the fuzzy
are enriched with method call links afterwards. The approach doesValues and thresholds. This can be done manually which is part of
deliver metrics that indicate code quality. For the recovery of OUr current work or could be automatically done supported by a
design patterns, however, it results in many false positives becausd®armning component which is future work.

of the quantitative definition of patterns. Future work is also to recover the architecture and not only design
(fragments). Such, we can transfer the composition aspect to
7. CURRENT AND FUTURE WORK recover GoF patterns presented in this paper, to pattern language

Although the evaluation section has shown that our approach andbased architectural recovery. Furthermore, a resulting pattern
the corresponding tool allows us to analyse large software systemsalgebra would also provide structural and behavioural inheritance
and produces reasonable results, the algorithm offers several point®f patterns.



11

REFERENCES

[AGG] Technical University of BerlinAGG, the Attributed Graph
Grammar system. Online at http://www.tfs.cs.tu-berlin/agg

[AWT] SUN MicrosystemsAWT, the SUN Java Abstract Window
Toolkit. Online at http://java.sun.com/products/jdk/awt

[CFM93] A. Cimitile, A.R. Fasolino, and P. Marasc&euse

Reengindeering and Validation via Concept Assigniarferoc.
of the 3 International Conference on Software Maintenance

neering, Los Angeles, USA, pages 226-235. IEEE Computer
Society Press, May 1999.

[Meh84] K. Mehlhornt.Graph Algorithms and NP-Completeness
Springer Verlag, bk edition, 1984.

[MOTU93] H.A. Miller, M.A. Orgun, S.R. Tilley, and J.S. UhA
Reverse Engineering Approach To Subsystem Structure Identifi-
cation Journal of Software Maintenance, 5(4):181-204, John
Wiley and Sons, Inc., December 1993.

(ICSM), pages 216—225. IEEE Computer Society Press, Septem-[PP94] S. Paul and A. Prakagh Framework for Source Code

ber 1993.

[ELW98] R. Eckstein, M. Loy, and D. Wood, editorkava Swing
O'Reilly, 1998.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, and A. Zind®tory
Diagrams: A new Graph Rewrite Language based on the Unified
Modeling Languageln G. Engels and G.Rozenberg, editors,
Proc. of the éh International Workshop on Theory and Applica-
tion of Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764. Springer Verlag, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. VlissiDes.
sign Patterns: Elements of Reusable Object Oriented Software
Addison-Wesley, Reading, MA, 1995.

[HN90] M. T. Hanrandi and J. Q. Nin¢gnowledge Based Pro-
gram AnalysislEEE Transactions on Software Engineering,
7(1):74-81, IEEE Computer Society Press, 1990.

[JCC] SUN MicrosystemslavaCC, the SUN Java Compiler Com-
piler. Online at http://www.suntest.com/JavaCC

[JGL] ObjectSpace, IndGL, the ObjectSpace (Voyager) Java Ge-
neric Library. Online at http://www.objectspace.com/products/
voyager/libraries.asp

[KNNZ99] H.J. Kéhler, U. Nickel, J. Niere, and A. ZiindoWdsing
UML as a visual programming languag€echnical Report tr-ri-
99-205, University of Paderborn, Paderborn, Germany, August
1999.

[KNNZ00] H.J. Kohler, U. Nickel, J. Niere, and A. Ziindohfite-
grating UML Diagrams for Production Control Systerirs
Proc. of the 22" International Conference on Software Engi-
neering (ICSE), Limerick, Irland, pages 241-251. ACM Press,
2000.

[KP96] C. Kréamer and L. PrechelResign recovery by automated
search for structural design patterns in object-oriented software
In Proc. of the 3" Working Conference on Reverse Engineering
(WCRE), Monterey, CA, pages 208-215. IEEE Computer Soci-
ety Press, November 1996.

[KSRP99] R.K. Keller, R. Schauer, S. Robitaille, and P. P&gé-
tern-Based Reverse-Engineering of Design Componkents
Proc. of the 21" International Conference on Software Engi-

Search Using Program Pattern€EE Transactions on Soft-
ware Engineering, 20(6):463-475, IEEE Computer Society
Press, June 1994.

[Qui94] A. Quilici. A Memory-Based Approach to Recognizing
Programming PlansCommunications of the ACM, 37(5):84—
93, ACM Press, May 1994.

[Rad99] A. Radermache&upport for Design Patterns through
Graph Transformation Tool$n Proc. of International Work-
shop and Symposium on Applications Of Graph Transforma-
tions With Industrial Relevance (AGTIVE), Kerkrade, The
Netherlands, LNCS 1779. Springer Verlag, 1999.

[SS00] P. Selonen and T. Sys&tenario-Based Syntesis of Anno-
tated Class Diagrams in UMLn Proc. of the Conference on Ob-
ject-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Minneapolis, Minnesota USA. IEEE
Computer Society Press, October 2000.

[SvG98] J. Seemann and J.W. von Gudenhiagtern-Based De-
sign Recovery of Java SoftwaeCM SIGSOFT Software En-
gineering Notes, 23(6), ACM Press, November 1998.

[SWZ95] A. Schiirr, A.J. Winter, and A. Ziindofraph Grammar
Engineering with PROGRES® W. Schéfer, editor, Proc. of Eu-
ropean Software Engineering Conference (ESEC/FSE), LNCS
989. Springer Verlag, 1995.

[TA99] P. Tonella and G. AntonjoDbject Oriented Design Pat-
tern Inferenceln Proc. of the 5 Symposium on Software De-
velopment Environments (SDE5S), pages 230-238. IEEE
Computer Society Press, September 1999.

[Wil96] L.M. Wills. Using Attributed Flow Graph Parsing to Rec-
ognize Programsln Proc. of International Workshop on Graph
Grammars and Their Application to Computer Science, LNCS
1073, Williamsburg, Virginia, 1994, November 1996. Springer
Verlag.

[ZzUn96] A. Zluindorf.Graph Pattern Matching in PROGRE®
Proc. of the 5" International Workshop on Graph-Grammars
and their Application to Computer Science, LNCS 1073. Spring-
er Verlag, 1996.



	Towards Pattern-Based Design Recovery
	Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals1
	Software Engineering Group Department of Mathematics and Computer Science University of Paderborn...

	[nierej,�wilhelm,�maroc,�lowende]@uni-paderborn.de
	Jim Welsh1
	Software Verification Research Centre The University of Queensland Australia 4072

	jim@svrc.uq.edu.au
	ABSTRACT
	1.�� Introduction
	Figure 1.� GoF composite pattern in UML

	2.�� THE VARIANTS PROBLEM
	1: // Variant 1 (arrays with access methods)
	2: public class Panel
	3: { private Item[] items;
	4: ...
	5: public void setItems (Item[] newValue)
	6: { ...
	7: this.items = newValue;
	8: ...}
	9: public Item[] getItems() { ... }
	10: }
	11: // Variant 2 (using container class library)
	12: public class Panel
	13: { public HashSet items;
	14: }
	15: // Variant 3 (std. vector with access methods)
	16: public class Panel
	17: { private Vector items = new Vector (100);
	18: ...
	19: public void addToItems (Item value)
	20: { ... }
	21: public void removeFromItems (Item value)
	22: { ... }
	23: public void draw()
	24: { ...
	25: Enumeration enum = items.elements();
	26: while (enum.hasMoreElements())
	27: { ((Item) enum.nextElement()).draw() }
	28: ...}
	29: }
	Figure 2.� Different 1toN relation implementations in Java

	3.�� pattern Definition
	Figure 3.� Annotated abstract syntax graph instance
	Figure 4.� Association pattern specification
	Figure 5.� 1N_Delegation pattern specification
	Figure 6.� Composite pattern specification
	Figure 7.� Domain model (excerpt)

	4.�� THE Reverse engineering TOOL
	4.1�� The basic analysis algorithm
	4.2�� Adapting the analysis algorithm
	Figure 8.� Sample analysis execution

	4.3�� Integration of the reverse engineer
	Figure 9.� Reengineering process statechart


	5.�� Evaluation
	Figure 10.� Results with JPC1 patterns
	Figure 11.� Results with JPC2 patterns

	AWT (part)
	8,7
	JPC1
	41 sec.
	0,5 sec.
	AWT (part)
	8,7
	JPC2
	100 sec.
	56 sec.
	AWT (all)
	114,4
	JPC2
	1307 sec.
	13 sec.
	JGL (all)
	36,5
	JPC1
	43 sec.
	3,5 sec.
	JGL (all)
	36,5
	JPC2
	73 sec.
	24 sec.
	Table 1: Analysis timing data1
	6.�� Related Work
	7.�� current and future work
	references




