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ABSTRACT
A method and a corresponding tool is described which assist design
recovery and program understanding by recognising instances of
design patterns semi-automatically. The approach taken is
specifically designed to overcome the existing scalability problems
caused by many design and implementation variants of design
pattern instances. Our approach is based on a new recognition
algorithm which works incrementally rather than trying to analyse
a possibly large software system in one pass without any human
intervention. The new algorithm exploits domain and context
knowledge given by a reverse engineer and by a special underlying
data structure, namely a special form of an annotated abstract
syntax graph. Finally, the paper gives some results and experiences
about the application of the approach to the Java AWT and JGL
libraries in comparison to other approaches.

Categories and Subject Descriptors
D.2 [SOFTWARE ENGINEERING]
I.5 [PATTERN RECOGNITION]

General Terms
Documentation, Design

Keywords
design pattern recovery, UML, graph grammars, semi automatic
process

1. INTRODUCTION
Past and current practice in many software producing companies
means that good software engineering principles such as
documentation, prior design and derived tests are less important
than to be the first on the market with a new system or to produce
quick solutions when problems with an existing system arise.
Maintenance of the resultant systems quickly becomes the most
difficult part of software development, particularly when the core
developers have left the company.

In such cases, reverse engineering techniques then have to
applied to the existing source code to get a comprehensib
abstract representation and overview of the system as the basis
further enhancement. Typically, however, this reverse engineer
is done partially and by hand, because the enhancements nee
affect only part of the system and a complete reverse engineer
task is too expensive. This approach leads eventually to
patchwork of code fragments and hot-fixes, and is more
aggravation than an improvement as far as the over
maintainability of the system is concerned.

To1help avoid this patchwork effect, several reverse engineeri
tools for different reverse engineering approaches have be
investigated. For example, tools exist for reverse engineeri
databases or applications written in various kinds of programmi
languages.

Design patterns are now seen as a logical basis for reve
engineering of (object-oriented) software systems - by recognis
occurrences of known design patterns in source code, the impl
design may be recovered. Design patterns as originally presen
by Gamma et al. [GHJV95] provide a collection of ‘good’ desig
principles together with a discussion of their advantages a
disadvantages as well as their relation to other patterns. In
following, we call those patternsGang-of-Four (GoF) patterns.

Most parts of a GoF-pattern description are deliberately inform
to make the implementation (instantiation) of a pattern in a
existing system as flexible as possible. The most formal part o
pattern description is the structure and sometimes the collabora

1. Jim Welsh was a Guest Professor at the University of Paderb
in July and August 2001.
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 Figure 1.  GoF composite pattern in UML
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part. Gamma et al. used the Object Modelling Technique (OMT) to
describe the structural part and interaction diagrams for sample
collaborations between objects. Figure 1 shows the structure part
of the Gof patternComposite using the Unified Modelling
Language (UML). In addition to OMT’s facilities, UML provides
the facility to annotate parts of an object-oriented design as a
pattern, shown as dotted lines from the annotated design parts to a
dotted oval containing the name of the pattern.

In forward engineering, design patterns are a useful way to
document certain parts of the design chosen, since they
encapsulate information about the classes, methods and attributes
used, and their relation to one another. The informality of their
description presents no particular problem in this role. In contrast,
reverse engineering tries to automatically generate such
documentation from the available code, cf. [SS00]. In this context,
design patterns are an equally logical way to express the
knowledge discovered, but the flexibility inherent in their informal
description becomes a problem for their automated recognition.

In practice, pattern-based approaches to design recovery have had
limited success to date, in that only a small proportion of known
design pattern instances are automatically recognised. This is
mainly due to the facts that design patterns themselves often have a
number of “slightly” different variants (cf. [SvG98]) and, more
importantly, that many different implementation variants can be
used for a chosen design pattern in the source code which are
almost impossible to capture and to define in total. For example,
Figure 2 shows three different implementations in Java that could
all be used for the same structural relation in instances of the
composite pattern defined in Figure 1.

This variants problem manifests itself in two ways. Many tools that
successfully detect design pattern instances in source code of
larger systems confine their analysis to a level of granularity, e.g.,
call graphs and naming conventions for methods, that avoids the
implementation variants problem. Typically, these tools produce
many false positives which the reengineer then has to eliminate by
performing more detailed analysis by hand, cf. [CFM93]. Other
tools, which try to identify the behaviour of certain program parts
by operating at a finer level of granularity, e.g., data flow and
control flow graphs, fail to detect design pattern instances in larger
systems because of the problems of scale that arise.

Our goal is to assist design recovery and code understanding by
recognising instances of design patterns semi-automatically in
source code and by annotating the code with the design parts that
contribute to the pattern, as in Figure 1. The approach taken is
specifically designed to overcome the problems of design and
implementation variants outlined above. Section 2 further
illustrates the problem of implementation variants by means of
sample code. Section 3 then introduces our approach to
formalizing patterns based on the abstract syntax graph of the
source code and composing higher level patterns out of subpatterns
to span the range of granularity required. Our execution algorithm
and how it addresses the performance problems of fine-grained
pattern recognition is presented in Section 4. Section 5 presents a
comparison of our analysis results to date with those reported for
alternative approaches. Section 6 summarises other related work
not covered by the evaluation. Finally, current and future work are
presented in Section 7.

2. THE VARIANTS PROBLEM
Detecting instances of design patterns (such as GoF-patterns)
design recovery requires that design patterns be formally defin
since informally described parts of the patterns are not amenabl
(semi-)automatic recovery. The most formal part of design patte
is the structure part, which is typically expressed as a cla
diagram. Thus, Figure 1 shows the structure of the compos
pattern as an UML class diagram.

However, even class diagrams allow a developer to impleme
some aspects of the structure in many different ways. Assum
the system is implemented in an object-oriented language, it
reasonable to expect that UML classes are implemented as cla
and that attributes and methods of a UML class become attribu
and methods of the corresponding class in the source co
Likewise, inheritance relations in the UML class diagram shou
be directly mapped to the inheritance mechanism of the targ
language.

Besides others, more difficult parts are the structural relatio
between classes and their implementation in an object-orien
language. Typically, object-oriented languages do not have
explicit language construct to implement such relations, b
assume the use of reference attributes as in Java or pointers a
C++. Figure 2 shows three different implementations for a s

called ‘one to n’ (1toN) structural relation between classPaneland
Item in Java. Such an 1toN-relation is the basis for an aggregati
as required by the composite pattern. Usually structural relatio
are mapped to reference attributes with appropriate acc
methods, but the access control and the container library u
depend highly on the developer’s experience, and/or on resou

 Figure 2.  Different 1toN relation implementations in Java

1: // Variant 1 (arrays with access methods)
2: public class Panel
3: { private Item[] items;
4: ...
5: public void setItems (Item[] newValue)
6: { ...
7: this.items = newValue;
8: ...}
9: public Item[] getItems() { ... }

10: }
11: // Variant 2 (using container class library)
12: public class Panel
13: { public HashSet items;
14: }
15: // Variant 3 (std. vector with access methods)
16: public class Panel
17: { private Vector items = new Vector (100);
18: ...
19: public void addToItems (Item value)
20: { ... }
21: public void removeFromItems (Item value)
22: { ... }
23: public void draw()
24: { ...
25: Enumeration enum = items.elements();
26: while (enum.hasMoreElements())
27: { ((Item) enum.nextElement()).draw() }
28: ...}
29: }
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restrictions of the overall system. Variant 1 of the 1toN-relation
implementation in Figure 2, for example, uses an array of type
Item(line 3) to store all the item objects in a panel object and gives
the developer full access to the array via access methods (line 5
and 9). Thereby, the developer has to deal with all array handling
problems directly. Variant 2 is an implementation where the
reference attribute is a container taken from a locally made
container library with full access resulting from its public
visibility. In contrast, variant 3 encapsulates the reference attribute
(line 17) as a standard container (Vector) and provides appropriate
access methods (lines 19 and 21). In addition, Variant 3’s
implementation of thedraw method (line 23) indicates that the
1toN-relation is also an aggregation. This can be inferred from the
implementation of the draw method, where a draw method call on
a panel object is delegated to its contained item objects by the loop
at lines 26 and 27.

These three example implementations of the structural relation
between two classes are all consistent with the class diagram given
for the composite pattern in Figure 1, which is the most formal part
of a design pattern description. In addition, many more
implementation variants for an overall design pattern may arise,
either from its less formally defined aspects or from a more liberal
interpretation of the class diagram. For example, a developer may
use a bi-directional (qualified) association according to good
design principles, the inheritance relation may not exist or the Leaf

class in Figure 1 may be omitted1. Whether these are viewed as
implementation variants or ‘slightly different’ design variants
depends on the rigour with which the design pattern description is
interpreted. In either case, they contribute to the overall challenge
of achieving effective recognition of pattern instances.

It should also be noted that many of the GoF-patterns are
structurally identical and vary only in their behaviour, e.g., the
strategy patternand state pattern. To distinguish between their
instances it is obviously necessary to analyse behaviour, but this
also increases the potential for more implementation variants and
the need to deal with these effectively.

3. PATTERN DEFINITION
In our approach to pattern-based design recovery, patterns (and
subpatterns) are defined with respect to the abstract syntax graph
(ASG) representation of a program. Subpatterns define ASG
structures that are constituent parts of other patterns or subpatterns.

As an example we apply our technique to the reverse engineering
of Java programs. The approach presented is, however, not bound
to any particular program language or any particular programming
paradigm, such as the object-oriented paradigm, as will be
explained later in this section.

The actual ASG used in our system is that produced by the JavaCC
source code parser [JCC]. However, the ASG model presented in
this paper is simplified compared to that produced by JavaCC for

readability reasons. Figure 3 (without the oval-shaped nod
shows an ASG as an UML-like object diagram, and it
corresponding source code.

Using an ASG representation has several advantages over using
textual source code representation. It avoids whitespace a
formatting problems. It automatically normalizes the code fo
simple syntactic variants such as i=i+1 vs. i++. ASGs also provi
additional information, such as identifier application an
declaration links, that is useful in further analysis.

Recognising an instance of a pattern or subpattern in the AS
under analysis results in the addition of a correspondin
annotation. The oval-shaped nodes shown in Figure 3 a
annotations which identify certain subgraphs of the ASG
matching the named subpatterns. In the examples shown, attrib
items is marked as a reference of the corresponding class, wh
methodsetItems is marked as a write operation for attributeitems.

1. The collaboration description says: “If the recipient is a Leaf,
then the request is handled directly.”. This does not require the
existence of an explicitLeaf class inheriting fromComponent.
For example, such a design is used in the Java Swing API
[ELW98].

 Figure 3.  Annotated abstract syntax graph instance

1: // Variant 1 (array with access method)
2: public class Panel
3: { private Item[] items;
4: ...
5: public void setItems (Item[] newValue)
6: { ...
7: this.items = newValue;
8: ...}
9: public Item[] getItems() { ... }

10: } :Attribute
name=”items”
vis=private

:Class
name=”Panel”
vis=public

:Class
name=”Item[]”
vis=public

:Operation
name=”setItems”
vis=public

:DataType
name=”void”

:Param
name=”newValue
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:PTClassAttrib :PTVariable
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Each pattern is formally defined by a graph transformation rule.
The corresponding graph transformation annotates the ASG with
additional nodes and edges (the oval-shaped nodes and
corresponding edges in Figure 3) to indicate which subgraphs of an
ASG correspond to the pattern. Such subgraphs can then be used
by rules defining other patterns that contain the defined pattern as a
constituent part.

As a first example of such a subpattern definition, Figure 4 shows
the transformation rule defining a subpattern which is an
association relationship between two classes that each have an
attribute annotated as a reference to the other class. In the notation

used, the subgraph to be matched in the host graph is defined by
the black nodes and edges. The subgraph to be added is defined by
the grey node(s) and edges annotated with the keyword “create“.
This simple notation can be used because the rules only add
information to the host graph and never delete any. (The formal
definition and theory underlying such graph transformation rules is
given in [SWZ95].)

The definition of a so-called1N_Delegationsubpattern is shown in
Figure 5. An 1N_Delegation requires the existence of a reference
between two classes which involves a container class, i.e. an
attribute definition in one class must be defined as a collection
which contains objects of the type of the other class. The existence

of that reference is given by the annotation:ContainerReference.
In addition, a method body of that class (thecaller class) must
contain a call of an operation provided by the interface of th
callee class. That call must appear within the body of a loo
statement in order to support the assumption that the call is ma
to a particular item in a collection of items. Finally, the names o
the called and provided operation must be the same. Each e
labelledPath in the definition indicates that an arbitrarily defined
path in the tree part of the ASG must exist between the source a
target node of that edge, i.e., the call can appear in an arbitra
deep nesting of statements within a method body. This is a typi
example of how many false positives can be avoided by check
method bodies in addition to type definitions in class heade
Furthermore, our definition of the1N_Delegationdoes not require
application and declaration links between classes and obje
because this leads to very complex rules. In practice it is usua
sufficient to identify a delegation only based on namin
conventions and their corresponding appearance within meth
bodies.

Figure 6 then shows one possible definition of theComposite
pattern. The definition requires that a generalisation and
association between the same two classes exist and tha
delegation pattern occurs between two operations of these clas
In effect, this definition describes theCompositevariant without
the existence of a leaf class (cf. Figure 1). Other variants requir
slightly different definition.

The notation used here for pattern definitions is supported by

FUJABA1 environment [FNTZ98, KNNZ99]. FUJABA supports
(among others) the definition of UML class and collaboratio
diagrams and the definition of method behaviours a
corresponding graph transformation rules which use the definitio
of the class and object diagrams. The environment genera
executable and complete Java code from these definitions. T
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 Figure 4.  Association pattern specification
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 Figure 5.  1N_Delegation pattern specification

callee:Operation

:PTNode

:PTLoopNode

:PTNodeId

name == caller.name

name == callee.name

methods

Path

«create»«create»

1. The Fujaba (From UML to Java And Back Again) environmen
is developed by the Software Engineering Group at the Unive
sity of Paderborn (www.fujaba.de).

 Figure 6.  Composite pattern specification
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graph transformation rules can be viewed as a subset of UML-like
collaboration diagrams. They are drawn somewhat differently but
can easily be translated into the UML syntax [KNNZ00].

In UML terms, the domain model for our pattern definitions is a
class diagram defining the types of nodes and edges of an
(annotated) ASG. The set of graph transformation rules are
collaboration diagrams that define the annotations created to
identify particular ASG patterns. As an example, Figure 7 gives an
excerpt of the domain model (i.e., the class diagram) for our
definition of patterns in Java source code. It identifies several
subpatterns commonly used when constructing patterns.
Associations in this diagram (not to be confused with the
subpatternAssociationwhich is shown as a corresponding node in
the diagram) are bidirectional, but with a defined read direction,
which indicates for example that theCompositepattern annotates
an AssociationandGeneralizationas well as twoClassnodes of
the abstract syntax graph (ASG). The default cardinality is exactly
‘1’ in the read direction and ‘n’ in the reverse direction.

As an example, the definition of aCompositeas in Figure 6 can
now be seen with respect to the domain model given in Figure 7.
Following the UML syntax and style of definition, each object in
this diagram must be an instance of a certain class in the domain
model and each link between two objects must be an instance of an
association in the domain model. In addition to the UML syntax,
we require that the type names of the objects and the link names in
the collaboration diagram must be the same as the corresponding
class and association names. All these constraints are
automatically checked by the FUJABA environment.

As is usual in UML-like definitions, the class diagram itself plays a

constructive (as well as a consistency-checking) role in the over
definition of patterns. Inheritance relationships between patter
as illustrated by the patternsReference, SingleReferenceand
ContainerReferencein Figure 7, are defined solely by their
representation in the class diagram.

In the domain model definition, classes representing patterns
subpatterns in the diagram are distinguished with stereoty
‘Pattern’ represented as an icon. Those without this icon repres
ASG structures created directly by the parser from the Java sou
code. For these, there is obviously no need to create an annota
to express exactly the same information. This convenience refle
the fact that we are recovering an object-oriented model from
object-oriented language. To recover an object-oriented mo
from other languages, identifying a class may require a comp
graph transformation rule as proposed e.g. in Rigi [MOTU93].
principle, however, our approach is applicable to recovery of a
kind of design model from any kind of programming language.

Using this approach, we have specified the GoF-patterns in a s
similar to that shown for theCompositepattern. Doing so has
shown first of all that GoF-patterns can have a precise definitio
albeit with a judicious use of alternative variant definitions t
accommodate the design flexibility intended. The definition
utilise a set of subpatterns similar to those shown in Figure 7 a
illustrated by theAssociationand1N_Delegationpatterns given in
Figures 4 and 5. The problem of implementation variants impa
mainly on the definition of these subpatterns.

More significantly, our approach enables a reverse engineer
specify new design patterns or design variants in a flexible wa
using a familiar UML-like notation. If he or she uses only
subpatterns which have already been given a direct corresponde
to code (such asReference, Association, Generalisation, etc.), the
engineer does not even need to worry about source co
representations, but thinks only in terms of UML-like class, obje
and collaboration diagrams. Implementation varian
accommodated by the existing subpatterns are automatica
shared by each new pattern created. In effect, our construction
patterns from subpatterns exploits inheritance and us
relationships as in typical object-oriented specification languag
In general, using FUJABA, a reverse engineer can either adap
extend an existing set of patterns such as those illustrated here
build a complete new domain model for a programming langua
other than Java and for a target domain other than GoF patterns
the latter case, of course, he or she has to start from scratch
defining implementation variants and corresponding annotations
well as new design patterns.

Despite these benefits, our approach does yet not overcome
problem that each design or implementation variant, howev
slight, has to be defined explicitly at some level, if it is to b
recognised. We revisit that problem in the final section of th
paper to describe some current work designed to address it.

4. THE REVERSE ENGINEERING TOOL
Section 3 has described an effective formalism for defining
catalogue of patterns as the basis for design recovery from sou
code. The design recovery process for unknown systems
inevitably an iterative one. Typically, the reverse engineer fir
applies an initial set of patterns, then repeatedly examines

 Figure 7.  Domain model (excerpt)
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results, adjusts the patterns to address perceived deficiencies and
reapplies them until a satisfactory outcome is achieved. To support
this process the engineer needs a tool that applies the patterns to
the source code involved and displays the results obtained.

To devise a tool that meets this requirement we adopt a threefold
strategy. Firstly, we minimise the scalability problems mentioned
in Section 1 by adopting the best available analysis algorithm.
Secondly, we adapt this algorithm to deliver useful results
incrementally rather than on completion. Thirdly, we involve the
reverse engineer in the analysis process, to avoid unnecessary
computation of unwanted analysis results.

4.1 The basic analysis algorithm
Pattern-based design recovery is a deductive analysis problem
where patterns, or rules, are repeatedly applied to a representation
of the source code to arrive at the most complete characterisation
of the code permitted by the rules. Pure deductive analysis
algorithms typically apply the rules involved level by level,

bottom-up1, according to their natural hierarchy, and produce
useful results only when analysis is complete. Results from other
researchers, such as [Wil96] and [Qui94], suggest that a reverse
engineering tool providing fully automatic analysis based on this
approach cannot scale for larger software systems.

Where patterns are defined as graph transformation rules, as in our
case, graph transformation systems are the natural choice for
implementing the tool. However, the scalability problem also
applies to graph transformation systems such as Progres [Zün96]
or AGG [AGG], which apply the rules in an arbitrary sequence
usually determined by the internal data structures used.

FUJABA, in contrast to other graph transformation systems, only
applies rules given a context, normally one object in the graph.
While this is a restriction to the original theory of graph grammars,
it has been shown not to be a problem in practical application. Its
advantage is that it reduces the runtime complexity of the rule
matching algorithm to polynomial size, whereas the original sub-
graph matching problem is NP-complete [Meh84]. For more
details we refer to [Zün96] and [FNTZ98].

By adopting FUJABA as the platform for our tool, we therefore
reduce the problem of scalability compared to systems using
standard approaches to deductive analysis. For the reverse
engineer, however, this does not necessarily solve the performance
problems involved.

4.2 Adapting the analysis algorithm
Although FUJABA reduces the computational complexity of
analysis, a fully-automatic tool based on FUJABA is still
undesirable, as the results are made available only when analysis is
complete. Given that reverse engineering is an iterative process,
such tool behaviour does not lead to an efficient overall process.
Suppose, for example, our1N_Delegationpattern does not include

the method body check shown in Figure 5. The resulting fal
positives manifest themselves early in the analysis, but the reve
engineer has to wait until analysis is complete to recognise the
For reverse engineering, therefore, a semi-automatic proces
likely to be more effective, in which useful intermediate results a
produced and the engineer is allowed to interact with them, eith
to add information and request that analysis continues or to rev
the rule definitions and restart analysis.

To support such a process, the analysis algorithm itself m
produce intermediate results useful to the engineer as early
possible, and be amenable to interruption and resumption with
loss of results to date. Since the results most useful to the engin
are those produced by rules at the highest levels in the r
hierarchy, we adopt an analysis algorithm which combines
bottom-up strategy and a top-down strategy. Note that t
algorithm affects only the execution sequence of patterns and d
not violate their formalization as graph transformation rules.

To define the algorithm, the dependency hierarchy of the rules
levelled, such that each rule has a level number. A rule depend
only on objects in the initial ASG gets number 1. A rule dependin
on other rules, i.e., whose definition includes annotations crea
by other rules, gets a higher number consistent with the natu
topological order of the rules. Rules included in cycles concerni
their dependencies get the same level number and are marke
recursive.

Figure 8 shows a snapshot of our analysis algorithm. The gr
rectangle at the bottom represents all objects in the ASG. T
black oval identifies an annotation already created by bottom-
analysis (with links to the objects annotated) while grey ova
represent a top-down analysis in progress. Directed arcs indic
the scheduling sequence of the rules. Variables at the arcs repre
objects passed to the scheduled rule as context.

Bottom-up strategy
After parsing the source code to create the ASG, the analysis st
in bottom-up mode. Initially, all ASG objects schedule level
rules, i.e., those depending on ASG objects only. Scheduling o
level 1 rules initially is sufficient to ensure that all necessary ru
applications are eventually considered. It avoids many top-do
failures that would otherwise occur, because the informati

1. In comparison, pure top-down approaches starting with top-lev-
el rules in the topology hierarchy are only of theoretical interest,
because of the search-space implied. Even when a specific rule
is identified for application, without an adequate starting context
its top-down application is impractical.

Composite

1N_Delegation Association

Reference

c1, c2 c1, c2

ASG

c1.attrs, c2

i:Inheritance

 Figure 8.  Sample analysis execution

g

i

c2.attrs, c1

g:Generalization
Reference

Strategy

:...:...

c1:Class c2:Class :...

super

super

sub

sub
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available is not enough to establish a high level rule. Consider, for
example, aCompositerule scheduled by a single class. The
inherent search space is too large to justify its top-down
investigation.

An object o scheduling a ruleR creates a rule/context pairR(o)
which is added to abottom-up priority queueheld in descending
order of rule level number. The use of rule level numbers to order
the rule/context pairs in the bottom-up queue is not critical. Any
ordering that promotes higher-level rules will do. This fact can be
exploited to further tune the algorithm, as discussed in Section 7.

The algorithm continues in bottom-up mode by dequeueing the
first rule/context pair, in our exampleGeneralization(i), cf.
Figure 8. This rule is immediately applicable, so a generalization
annotationg is created, annotating the superclass and subclassc1
and c2, which are accessible via the inheritance object i, cf. the
domain model in Figure 7. In contrast to ASG objects, which
schedule level 1 rules only, creation ofg schedules all rules
depending on theGeneralizationrule, e.g., the top-levelComposite
rule.

SinceCompositeis a top-level rule, the pairComposite(g)is taken
next from the bottom-up queue. At this point, however,
Composite(g) cannot be applied successfully, since annotations
have yet to be created by the other rules on whichComposite
depends (1N_Delegation andAssociation).

Top-down strategy
When a rule that depends on other rules cannot be applied in
bottom-up mode, the algorithm switches to top-down mode, which
uses a separatetop-down priority queue. The top-down strategy
tries to make the other rules create the missing annotations based
on currently available information. In this case, the search space is
quite strictly delimited by the information available, e.g., that
inherent in the generalizationg.

Consideration ofComposite(g)in top-down mode thus schedules
the 1N_Delegationand theAssociationrules, cf. Figure 6. Where
such rules depend on other rules, rule scheduling continues
recursively. In our case, for example, theAssociationrule now
schedules theReference rule twice, as Figure 8 implies.

To establish aCompositeconsistent withg, the unique relevant
context for both the1N_Delegationrule and theAssociationrule is
the superclassc1 and subclassc2 obtained fromg. In general,
however, we note that alternative contexts may be implied for
some rules, all of which have to be considered.

The rule/context pair at the front of the top-down mode queue is
not dequeued if the rule involved schedules other lower-level rules.
Instead, pairs added to the top-down queue are queued in
ascendingorder of their level number. This means that the higher-
level rule will be reconsidered after the lower-level rules on which
it depends (if these succeed). Using a priority queue rather than a
stack means that the top-down algorithm goes as far down the ASG
as quickly as possible. This encourages earliest possible failure in
top-down mode, while maintaining an appropriate sequence of rule
applications for top-down success. If a rule marked as recursive is
added to the top-down queue, however, stack behaviour is adopted
until all rules so marked have been removed from the stack/queue.

When the rule at the front of the top-down queue can be applied
corresponding annotation is created, all dependent rules
scheduled for bottom-up consideration, the front entry of the to
down queue is dequeued and the next element of the top-do
queue is considered. The newly scheduled rules join the bottom
queue since they represent analysis results that would have b
created later in bottom-up mode anyway and need furth
investigation.

The algorithm runs in top-down mode until the top-down queue
empty or a rule in the queue fails with no alternative contexts le
to explore. The first case means that the rule that started this t
down phase has been successfully applied, in our example
Compositerule. In the second case the starting rule cannot
applied in the given context. In either case the algorithm switch
back to bottom-up mode.

Intermediate results
With the algorithm as described, each annotation once crea
represents an intermediate result that is not affected by subseq
analysis. In principle, therefore, the execution can be interrupt
for inspection of results by the engineer at any stage. In practi
however, it is illogical to allow interruption during a top-down
interlude, when some but not all of a closely related set
annotations may have been created.

Since the algorithm tries to establish high level rules using the to
down strategy, the intermediate results are likely to be use
information for the reverse engineer, e.g. GoF patterns. T
engineer can look at such patterns to determine if the analy
should continue on the current basis. The algorithm is also rob
to certain changes by the engineer prior to resumption. Addition
annotations by the engineer is valid at this stage, provided th
add all corresponding rule/context pair for dependent rules to t
bottom-up queue. Marking a rule as ‘to-be-deleted’ is als
acceptable, as the consequences of deletion can be systemati
propagated to both the results to date and the resumed analy
Such actions may be useful to the engineer as ‘proofing actio
prior to permanent change to the rules themselves. Any addition
modification to the rules, however, invalidates the analysis to da
and requires restart of the overall analysis.

The overall analysis finishes when the bottom-up queue is emp
In this case the algorithm has analysed all ASG objects and crea
annotations on the objects for all rules that could be applied.

4.3 Integration of the reverse engineer
Integrating the analysis algorithm described in section 4.2 into
semi-automatic reverse engineering process is easy because
interruptible. Figure 9 shows our reverse engineering process a
statechart. The process starts by parsing the source code to cr
the ASG representation, followed by loading a particular patte
catalogue. The engineer can then make initial modifications bef
starting the analysis algorithm by sending astart event.

The complex state on the left-hand side with its two internal stat
‘bottom-up strategy’ and ‘top-down strategy’ represents the
analysis algorithm described above. The algorithm halts, and
reverse engineer can look at the results, if the algorithm h
finished or the reverse engineer interrupts the execution by send
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a stop event. As mentioned above, it is logical to confine such
interruptions to bottom-up mode purely for pragmatic reasons.

The reverse engineer then has the opportunity to look at the results
to see if the patterns selected still seem appropriate. By sending an
adapt event, he/she can mark patterns for deletion or create
annotations that will steer the algorithm to a part of the source code
that he/she wants to have analysed. Resuming rather than restarting
the algorithm systematically propagates the consequences of such
changes to both the prior and subsequent analysis. If the analysis to
date fails to meet the engineer’s needs in other ways, the patterns
can be modified, but in this case the whole analysis must restart
from the beginning.

5. EVALUATION
The tool outlined in section 4 has been implemented within
FUJABA. To date, it has been evaluated on two major Java
libraries, the Abstract Window Toolkit (AWT) [AWT] and the Java
Generic Library (JGL) [JGL].

The AWT library is used to develop graphical user interfaces and
provides graphical components such as buttons or text entry fields.
Each graphical component is represented by a class in the library
plus additional auxiliary classes. Overall, the library consists of
429 classes contained in 313 files totalling 114.431 lines of code.
The AWT library is a good test-bed for pattern-based design
recovery, because the developers have utilised GoF patterns at
many points in the source code. While this makes the analysis
easier than a software system grown over several years of
development, it makes the identification of false positives and the
influence of the method body analysis easier to show. In addition,
the results are comparable to those of other researchers who have
used the same library, e.g. [SvG98].

As suggested earlier, a reverse engineer may start the analysis of an
unknown system with a complete analysis using an existing pattern
catalogue. For our first run we used a GoF pattern catalogue that
did not include any analysis of method bodies but only structural
information. (In C++ terms, this equates to considering only

header files.) This means for example that our 1N_Delegati
pattern (cf. Figure 5) finds a delegation between two metho
whenever two methods in two different classes have the sa
name. This is our first Java pattern catalogue JPC1.

Figure 10 shows a screenshot of our reverse engineering tool a
running this first complete analysis on the part of the AWT librar
(considered also by Seeman and von Gudenberg). The part is
central part of the library consisting of theComponentand
Containerclass and its connecting classes, comprising about 87
lines of code. The annotations corresponding to the 14 G
patterns found are highlighted. Checking the source code manu
shows, that 4 patterns found are real design pattern instances
the other 10 are false positives.

Seeman and von Gudenberg [SvG98] found 3 out of our 4 fou
design patterns namely, a composite pattern consisting of
Componentand Containerclass, a strategy pattern consisting o
the Container and LayoutManagerclass and a bridge pattern
consisting of theComponentandComponentPeerclass but do not
provide any information about false positives or performanc
issues they encountered neither an additional Strategy patt
betweenComponent andComponentPeer.

The last design pattern we found is not part of the results
Seeman and von Gudenberg because their precise notion of G
patterns does not identify a strategy pattern as a part of a brid
pattern as we do in our object-oriented precise pattern definiti
taken from the informal description given by Gamma et al.

In addition to the false positive GoF patterns, many false positi
instances of subpatterns were also found. These are shown o
partly in the screenshot, because of the lack of space. (Hid
selected annotations is a basic functionality of the tool whic
offers the reverse engineer the opportunity to browse through
whole annotation structure more easily. For example, the engin
may initially be interested only in top-level patterns like GoF
patterns, but later wants to see subpatterns as well.)

 Figure 9.  Reengineering process statechart
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 Figure 10.  Results with JPC1 patterns
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Similar results are presented from Krämer and Prechelt [KP96].
They only analyse the structural parts of a program, i.e. the header
files in C++, which results in many false positives.

To improve on our initial analysis, we modify those patterns that
could exploit analysis of method bodies. For example, we use the
1N_Delegation pattern definition as shown in Figure 5 and add or
modify three other patterns that also analyse method bodies. This
is our second Java pattern catalogue JPC2.

Figure 11 shows the analysis results of a complete run of the
analysis algorithm using JPC2, focusing on the same constellation
of classes as Figure 10. The false positive GoF patterns have now
disappeared and only real pattern instances are left, as in the results
of Seeman and von Gudenberg. This result shows clearly that
analysis of method bodies has a key role to play in reducing false
positives.

In that sense our approach is similar to the approach of Seemann
and von Gutenberg, i.e. they also analyse method bodies. Their
approach, however, does not involve the reverse engineer and also
does not support the object-oriented construction and evolution by
using a UML-like language as we do. In addition, no report exists
about false positives and scalability analysis as we explain in the
following.

In order to investigate residual scalability problems with our
approach we then ran a complete analysis of the entire AWT
library using the JPC2 catalogue. The complete analysis took
approximately 22 minutes.

To verify the adequacy of our approach in other coding contexts,
we also applied both catalogues JPC1 and JPC2 to a completely
different source, the JGL. Because the JGL is more a collection of
algorithms than a class library, the runtimes are faster than for
AWT. Nevertheless, we obtained similar results than for the AWT,
i.e., many false positives if we do not analyse method bodies.

As noted in Section 4, it is desirable that the reverse engineer can

interrupt analysis at certain times to look at the annotatio
produced so far. Our tool also allows the engineer to requ
automatic interruption when certain patterns have been found, e
a composite pattern. Using this facility, the time taken to find th
first GoF pattern was easily measured for each of the analy
described. As results in Table 1 show, the time to obtain the fi
GoF pattern was often a small fraction of the overall analysis tim
in each case. This suggests that our top-down/bottom-up appro
is well suited to supporting an iterative reverse engineerin
process.

The particularly early delivery of GoF patterns with JPC1 reflec
the detection of false positives, but is valuable, for example,
upgrading JPC1 to JPC2. It is such false positives that show up
inadequacy of JPC1’s structure-only approach.

In1Section 1 we identified scalability and false positives as the k
problems to be overcome. On the evidence above, our adoption
FUJABA’s graph transformation scheme has significant
addressed the scalability problem. Where previous research
have been unable to analyse much more than a few thousand l
of code, our system deals comfortably with 100.000 lines of cod
In addition, overall analysis times become less significant with t
interactive analysis process that is enabled by early delivery
high-level annotations through our top-down matching algorithm
This combination of fast and interactive analysis appears
provide the basis for an efficient iterative reverse engineeri
process from the engineer’s viewpoint.

Our system’s capacity to analyse method bodies significan
reduces the false positives problem observed by other researc
who used only structural analysis. There is of course an additio
analysis cost, since some pattern definitions are more complex
additional method-specific patterns are needed. As Table 1 sho
analysis of the central part of the AWT library takes 150% long
with JPC2 (which analyses method bodies) than with JPC1 (wh
does structural analysis only). The corresponding increase for
analysis of the JGL is 70%, but our experiences show that t
effort of taking method bodies into account is more than doubl
in comparison to a structural analysis only.

 Figure 11.  Results with JPC2 patterns

Source
code

KLOC Patterns
Complete
analysis

First GoF
pattern

AWT (part) 8,7 JPC1 41 sec. 0,5 sec.

AWT (part) 8,7 JPC2 100 sec. 56 sec.

AWT (all) 114,4 JPC2 1307 sec. 13 sec.

JGL (all) 36,5 JPC1 43 sec. 3,5 sec.

JGL (all) 36,5 JPC2 73 sec. 24 sec.

Table 1: Analysis timing data1

1. The times were taken while running on a Pentium III 933 MH
processor with 1 Gbyte of memory (with JDK 1.3 on Linux
2.4.5). All times include the runtime of the analysis algorithm
only. Parsing times are not considered.
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6. RELATED WORK
Comparable work on reverse engineering of source code has been
reported over the past decade. In [HN90] Harandi and Ning present
program analysis based on an Event Base and a Plan Base.
Rudimentary events are constructed from source code. Plans are
used to define the correlation between one or more (incoming)
events and they fire a new event which corresponds to the intention
of the plan. Plans using events fired from other events is similar to
defining patterns in terms of sub-patterns as presented in this
paper. Each plan definition corresponds to exactly one
implementation variant, which leads to a high number of
definitions. This applies also to the approach of Paul and Prakash
[PP94], where a matching algorithm for syntactic patterns based
on a non-deterministic finite automaton is introduced.

An approach to recognize clichés, i.e., commonly used
computational structures, is presented in [Wil96], within the
GRASPR system. Legacy code to be examined is represented as
flow graphs by GRASPR, clichés are encoded as an attributed
graph grammar. The recognition of clichés is formulated as the
sub-graph parsing problem which is NP-complete [Meh84].

Radermacher [Rad99] uses the graph rewrite system Progres
[Zün96] to match patterns on the program. Patterns are defined as
graph transformation rules and thus similar to ours. Radermacher
uses the execution mechanism of the Progres environment,
whereas the execution is not incremental.

Analysing behaviour as well as structure using patterns is
presented by Keller et al. in [KSRP99]. They use a common
abstract syntax graph model for UML to represent the source code
as well as the patterns. Matching the pattern’s syntax graph on the
program’s syntax graph is done by scripts. These scripts are not
generated automatically out of the patterns but have to be
implemented by the reverse engineer manually. Very quickly,
descriptions in such a script language become large, awkward to
read and difficult to maintain and reuse.

Besides no support for the user-friendly object-oriented
construction of patterns, none of these approaches integrates
human reverse engineers and employ their domain context
knowledge. This causes the approaches not to sale. [Wil96] for
example reports that her approach is only able to analyse a few
thousand lines of code.

Tonella and Antoniol [TA99] present an approach to recover
‘coherent structures’. Their pattern definitions contain only
quantitative statements, e.g. the number of classes, the number of
inheritances, or the number of references. Hence, only structural
information from the source code is used to identify patterns which
are enriched with method call links afterwards. The approach does
deliver metrics that indicate code quality. For the recovery of
design patterns, however, it results in many false positives because
of the quantitative definition of patterns.

7. CURRENT AND FUTURE WORK
Although the evaluation section has shown that our approach and
the corresponding tool allows us to analyse large software systems
and produces reasonable results, the algorithm offers several points

for tuning and improving the tool.

One idea is to enable the engineer to introduce a priority definiti
for the bottom-up queue. For example the priority could be th
reverse order of the current one, which means that the jump from
low level rule to a higher level rule is bigger but the conseque
top-down analysis might fail more often. A second idea is that t
engineer can tune the algorithm by renumeration of rules. Th
allows the engineer to emphasis on certain patterns, which res
in an earlier analysis of the patterns. Those adoptions should
changeable during runtime, because the interests of the engin
changes during the analysis phase. For example he/she wan
focus on certain patterns or to find out why a certain rule produc
many false positives before continuing. Consequently, we a
currently integrating a kind of analyse profiles, which contain
bundle of configuration parameters for the algorithm and can
switched during the analysis phase by the reengineer.

As mentioned above, the reengineering tool comprises a set
basic subpatterns and patterns. We state that we have define
whole bunch of subpatterns to recover (nearly) every instance o
GoF pattern in our analysed software. However, the problem
implementation variants remains because we can not ensure
we have defined all variants of subpatterns. To solve this
exploiting inheritance and use-relationships is not really a soluti
because the different variants still have to be defined explicitly.

To overcome the problem of numerous definitions of slight
different variants of subpatterns we are currently working on a
approach where we replace several slightly different subpatte
rules by one (more) general rule. Such a general rule, in princip
consists of the common parts of the different subpattern rules.
order to express the resulting impreciseness, we assign a fu
value to the resulting general rule.

The use of many general rules reduces their overall number
comparison with defining each implementation variant by
separate rule. This reduces analysis time, but usually increases
number of false positives found during the analysis process. T
results from the fact that general rules cover more instances th
all individual original subpattern rules together. Therefore
balance between the number of general rules and the numbe
detected false positives has to be determined by the reve
engineer.

Our approach supports the reverse engineer in finding a balance
using fuzzy weights in a rule’s definition as thresholds in order
take only those subpatterns into account which have a cert
preciseness. Consequently, finding a balance between the num
of rules and false positives mostly depends on tuning the fuz
values and thresholds. This can be done manually which is par
our current work or could be automatically done supported by
learning component which is future work.

Future work is also to recover the architecture and not only des
(fragments). Such, we can transfer the composition aspect
recover GoF patterns presented in this paper, to pattern langu
based architectural recovery. Furthermore, a resulting patt
algebra would also provide structural and behavioural inheritan
of patterns.
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