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Abstract

Experimental evaluation of clustering techniques for
component recovery is necessary in order to analyze their
strengths and weaknesses in comparison to other tech-
niques. For comparable evaluations of automatic cluster-
ing techniques, a common reference corpus of freely
available systems is needed for which the actual compo-
nents are known. The reference corpus is used to measure
recall and precision of automatic techniques. For this mea-
surement, a standard scheme for comparing the compo-
nents recovered by a clustering technique to components
in the reference corpus is required. This paper describes
both the process of setting up reference corpora and ways
of measuring recall and precision of automatic clustering
techniques.

For methods with human intervention, controlled exper-
iments should be conducted. This paper additionally pro-
poses a controlled experiment as a standard for evaluating
manual and semi-automatic component recovery methods
that can be conducted cost-effectively.

1. Introduction

Research in the field of component recovery has yielded
many techniques to detect modules and subsystems auto-
matically or semi-automatically and their number is still
growing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 21, 22, 23,
25, 28, 29, 30, 32, 34]; see [14] and [15] for an overview of
existing techniques. However, many of these published
techniques are only qualitatively evaluated based on a sin-
gle case study. Others that do provide quantitative results
cannot really be compared to other techniques because the
new technique is applied to a system different from those
used for the existing techniques and/or the way of evalua-
tion differs. Consequently, the effectiveness and the
strengths and weaknesses of the techniques in comparison
to other techniques are not clear.

In order to obtain comparable results, a standardized
way of evaluation is needed. Because there are basically
three different categories of component recovery methods,
namely, manual, semi-automatic, and fully automatic, of
which two categories involve human intervention, two dif-
ferent ways of evaluation are needed:

1. benchmark testing for fully automatic techniques

2. controlled experiments for manual and semi-automatic
methods
For benchmark testing of fully automatic component re-

covery techniques, a benchmark is needed that offers two
things:

• a set of expected results for diverse systems (reference
corpora); the techniques are applied to these systems
and propose their candidates

• a standard test by which the candidates proposed by the
automatic technique are compared to the components of
the reference corpora; the test measures recall and pre-
cision with respect to the reference corpus
This paper discusses both aspects and describes a quan-

titative comparison we have developed over three years
and successfully used to evaluate diverse techniques [14].

For the evaluation of methods that involve human inter-
vention, controlled experiments should be conducted. Con-
trolled experiments have the advantage over case studies to
yield more comparable results because the influence fac-
tors are controlled. On the other hand, controlled experi-
ments are usually more expensive and many computer
scientists are not familiar with experiments involving hu-
mans. This paper describes a scheme for experiments to
evaluate component recovery methods. The proposed ex-
periments require a low number of experimental subjects
and are, hence, cost-effective. Because of the smaller sam-
ples, the ANOVA (analysis of variance) tests commonly
used for experiments are not adequate in such situations
and therefore one has to use less known statistical tests, so-
called non-parameterized tests.

We have successfully used the experimental layout and
its statistical tests described in this paper to evaluate a
semi-automatic method [14].

1.1. Terminology

This section defines the terminology used throughout
this paper. A component is a set of related entities. There
are two different kinds of components: atomic compo-
nents that do not further contain other components (also
called logical modules) and subsystems that may be hier-
archical, i.e., may contain other components. An atomic
component consists of base entities. Base entities are rou-
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tines, global variables, and types.
A reference corpus is a set of components, called ref-

erence components or simply references, that are identi-
fied by a software engineer and part of the benchmark. A
candidate component, or simply candidate, is a compo-
nent that is proposed by an automatic technique.

The result of many component recovery techniques is a
set of flat candidates. A flat candidate is a set of base en-
tities without any further structure. Hierarchical clustering
techniques yield so-called dendrograms. A dendrogram is
a tree whose leaves are the entities to be grouped and whose
inner nodes represent a subset of closer related entities.
Each inner nodes is associated with a similarity value that
summarizes the similarity among the entities in the sub-
trees (see Figure 1).

1.2. Overview

The rest of this paper is organized as follows. Section 2
summarizes related research. Section 3 describes the met-
ric used to compare components. Section 4 handles issues
related to conducting controlled experiments to evaluate
manual and semi-automatic methods. Section 5 discusses
how to obtain a standard benchmark suite.

2. Related Research

The need for benchmark testing for component recovery
techniques was already stated in 1995 by Lakhotia and
Gravely [16], but even today, after five years, little has
been achieved toward the goal of an accepted benchmark.
Neither are reference corpora available nor do we have an
accepted standard test.

Lakhotia and Gravely proposed an evaluation metric to
compare a candidate to a reference based on dendrograms
[16]. The metric consists of two parts. One part measures
the difference, ∆, between the similarities of elements of
the candidate and the elements of the reference; Lakhotia
and Gravely list three different ways of measuring the dif-
ference based on the maximal difference, the average dif-
ference, or the standard deviation without laying down
which one should actually be used. The other part measures
the degree of overlap between the candidate, C, and the ref-
erence, R:

(1)

where elements(X) denotes the set of base entities of X.
The measure of congruence, µ, summarizes the difference
in similarities of the elements and the degree of overlap as
follows:

. (2)

Equation (2) can be used to measure the similarity be-
tween two components. However, Lakhotia and Gravely
do not specify how two sets of components should be com-
pared using this equation which is necessary if one wants
to compare all candidates of a technique to a reference cor-
pus. For obvious reasons, it would not make sense to use
the average congruence between all pairs of candidates and
references because then non-corresponding components
would be compared.

Another objection to the comparison is that a definition
of ∆ based on a simple difference between base entities is
not appropriate for at least two reasons:

• The similarity of base entities in the two dendrograms
to be compared may in fact differ as long as the struc-
ture is the same (see Figure 1) because one cannot nec-
essarily expect identical similarity values, in particular,
with respect to reference components that have been
manually identified by a human.

• Using differences between similarity values would only
be appropriate if similarity were on an interval scale.
However, when a human assigns similarity values to
base entities, the interval scale can hardly be justified. A
human may be able to state that one pair of elements is
more similar than another pair, but the exact difference
between the respective similarities is rather arbitrary.
Because the similarity assigned by a human is rather on

an ordinal scale, a comparison based on ranking the pairs
of similar elements would be more appropriate. However,
this would require a software engineer not only to group re-
lated elements together when setting up a reference corpus
but also to rank n(n-1)/2 pairs for each component with n
elements. Hence, though appealing in theory, comparing
components based on similarities even using only ranking
information is not feasible in practice.

We independently developed an evaluation metric (see
Section 3) that is only based on the degree of overlap of
corresponding components, i.e., using equation (1) and
variants, and applied this metric to compare nine clustering
techniques ([8, 14]).

Tzerpos and Holt define an alternative comparison met-
ric that ignores the similarity values, too [31]. Their metric
yields an aggregated overall similarity measure based on
the minimal number of modifications to transform one

Figure 1: Two example dendrograms.
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clustering into the other one. To establish this transforma-
tion, a heuristic is used to compute the result in a reason-
able time. Consequently, the metric value is only an
approximation whereas our metric can be computed effi-
ciently and exactly. Another disadvantage of their ap-
proach is the inability of identifying the nearly equal
candidates and references.

Contributions

This paper takes up again the goal of Lakhotia and
Gravely of establishing an accepted benchmark suite and a
standard evaluation method. The evaluation method identi-
fies corresponding components, including subcomponents,
false positives based on their degree of overlap, and mea-
sures different aspects of this correspondence that go be-
yond the data considered by Lakhotia and Gravely. The
metric presented here is a slight modification of the metric
we have used to compare nine different clustering tech-
niques.

The paper also describes a controlled experiment in
which the evaluation metric is used to measure and com-
pare the findings of software engineers who used either
manual or semi-automatic methods.

3. Comparison of Candidates and References

The comparison of candidates and references comprises
the following steps:

1. establishing the corresponding candidates and refer-
ences

2. classifying the match of corresponding components

3. measuring different aspects of the correspondence

3.1. Correspondence of Components

Candidate components and reference components are
compared using an approximate matching to accommodate
the fact that the distribution of functions, global variables,
and types into components is sometimes subjective and,
pragmatically, we have to cope with matches of candidates
and references that are incomplete, yet “good enough” to
be useful. “Good enough” means that candidate and refer-
ence overlap to a large extent and only few elements are
missing. More precisely, we treat one component S as a
match of another component T if S and T overlap to a large
degree (denoted by S ≈p T) according to the following def-

inition of an affinity relationship ≈p:

S ≈p T if and only if (3)

where overlap is defined by equation (1). In order to
identify corresponding subcomponents, i.e., components

that are only similar to a part of another component, the fol-
lowing partial subset relationship ⊆ p is useful:

S ⊆ p T if and only if (4)

where 0.5 ≤ p ≤ 1.0 is a tolerance parameter p that needs
to be specified for the comparison. If set to 1.0, S must be
completely contained in T. A more pragmatic adjustment is
p = 0.7, i.e., at least 70 percent of the elements of S must
also be in T. This number is motivated by the assumption
that at least three elements of a four-element component
must also be in the other component to be an acceptable
match.

This definition still considers a component with ele-
ments {a, b, c, d} at least a partial subset of a component
with elements {a, b, d, e, f} when p ≥ 0.7 though c is not
present in the latter set of elements.
Note that the partial subset relationship is not transitive for
p ≠ 1. For example, {a, b, c} ⊆ 0.6 {a, b, d} ⊆ 0.6 {b, d, e},

but {a, b, c} 0.6 {b, d, e}.

3.2. Classification of Matches

Based on the approximate matching criterion, the
matches of references and candidates are classified into the
following categories according to the kind of correspon-
dence:

• Good when the match between a candidate, C, and a
reference, R, is close, i.e., C ≈p R. This case is denoted
1~1. Matches of this type require a quick verification in
order to identify the few elements which should be
removed or added to the candidate component.

• Ok when the ⊆ p relationship holds for a candidate, C,
and a reference, R, i.e., C ⊆ p R or R ⊆ p C, but not

C ≈p R.
If C ⊆ p R, then the candidate is too detailed. This case
is denoted as n~1. If R ⊆ p C, then the candidate is too
large. This case is denoted as 1~n. OK matches require
more attention to combine or refine a component. The
denotation n~1 and 1~n reflects the fact that multiple
Ok matches may exist for a given R or C.
Altogether, we have three classes of matches: 1~1, 1~n,

and n~1 where the latter two are both considered Ok.

Difference to our previous version. In a previous version
of the classification (jointly developed with Jean-Francois
Girard and Georg Schied and used in [7, 8, 14]), we consid-
ered R and C a good match if R ⊆ p C ∧ C ⊆ p R. However,
for this premise, R and C could correspond more roughly
than one would intuitively expect. For example, if R and C
both have 100 elements and 70 elements of R are in C and

overlap S T,( ) p≥

elements S( ) elements T( )∩
elements S( )

---------------------------------------------------------------------- p≥

⊆
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70 elements of C are in R, then R ⊆ p C ∧ C ⊆ p R holds.

However, the overlap of R and C is only 70/130 ≈ 0.54 < p
= 0.7. For a good match, one would rather expect the over-
lap to be above 0.7. The newly proposed definition of ≈p is
stricter because

R ≈p C ⇒  R ⊆ p C ∧  C ⊆ p R

but not necessarily
R ⊆ p C ∧  C ⊆ p R ⇒ R ≈p C.

Example. Consider the example in Figure 2. C1 and R1 are
a good match. Because only partial matches are required,
there can be another reference R4 (with R4 ∩ R1 = ∅ ) that
is a partial subset of C1 (of C1 \ R1, more precisely). C2 is
an Ok match with R2, and so is C3. C2, C3, and R2 constitute
an n~1 match. That is, the technique has produced finer-
grained candidates than what was expected. Note that we
cannot conclude that C2 ∪ C3 and R2 are a good match be-
cause R2 could be much bigger than C2 ∪ C3. R3 and C4

constitute a 1~n match, where no other reference than R3

can be matched with C4. C5 and R5 do not match at all.

Figure 2: Example correspondences of candidates and
references.

As the example indicates, it is not enough just to count
the matches in order to judge the detection quality of a tech-
nique. For example, R3 is a partial subset of C4 and, there-
fore, considered at least an Ok match. However, C4 could
be huge and the match just be coincidence. The next section
proposes a measurement for detection quality based on
multiple aspects that accommodates this imprecision.

3.3. Detection Quality

There are several aspects in a comparison of a set of can-
didates with a set of references to consider when the match-
es have been established as described in the last section:

• Number of false positives: The number of candidates
that neither match a reference nor are matched by any
reference, i.e., candidates that cannot be associated with
any reference. Technically speaking, these are candi-
dates that are neither involved in a 1~1, 1~n, nor n~1
match. This number should be 0. For the false positives,
the average number of elements of false positive candi-

dates should additionally be ascertained because this
number correlates with the time it takes to sieve false
positives during human validation.

• Number of true negatives: The number of references
that neither match a candidate nor are matched by any
candidate, i.e., references that are not even partially
detected. Technically speaking, these are references that
are neither involved in a 1~1, 1~n, nor n~1 match. This
number should be 0.

• Granularity of matches: Are the candidates at the
right level of granularity? Technically speaking, there
should only be good matches and no Ok matches.

• Precision of matches: The degree of correspondence
between candidates and reference matches. This is dis-
cussed in the following in more detail. The precision
should approach 1.0.
The number of false positives determines the precision

in terms of information retrieval whereas the other aspects
measure recall.

Since the partial subset relationship is used to establish
a match, the matching candidates and references need not
be equal. That is, there may be elements of the candidate
not in the reference and vice versa: C\R ≠ ∅ and R\C ≠ ∅.
In other words, there may be a flaw in a good match; even
more so for Ok matches because of (let R be a reference and
Ci be candidates for which Ci ⊆ p R holds):

Accuracy for two matching components. In order to in-
dicate the quality of imperfect matches of candidate and
reference components, an accuracy factor is associated
with each match. The similarity between two components,
and thus the accuracy of a candidate vis-a-vis a reference
component, is computed using the following formula:

(5)

In 1~n and n~1 matches  and sometimes even in 1~1
matches  several components may match with one other
component. The accuracy as defined above, however, in-
volves only two single components. Therefore, the defini-
tion is extended for sets of components as follows.

Accuracy for two sets of components. The overlap for
two matching components can be used to ascertain the ac-
curacy of sets of components:

(6)

Accuracy for classes of matches. The accuracy for two
sets of components is used to establish the accuracy for a

candidates references

⊆ p ≈p

C2

C3

C4
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C1
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i
∪ p

R⊆ ⇒ R
p

Ci
i
∪⊆

accuracy A B,( ) overlap A B,( )=

accuracy A1 … Aa, ,{ } B1 … Bb, ,{ },( ) =

overlap elements Ai( )
i 1…a=
∪ elements Bi( )

i 1…b=
∪,( )
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whole class of matches where the two sets {A1,…,Aa} and
{B1,…,Ba} are corresponding components in a match with-
in a given class of matches.

More precisely, let the matching components of a candi-
date or reference, X, be defined as follows:

(7)

Using the matching components, we can specify the de-
gree of agreement for the diverse classes of matches:

• 1~1 match:

• n~1 match:

• 1~n match:
To put it in words: The accuracy is ascertained based on

the united matching components. The way of handling 1~1
matches may first be astonishing, but is motivated by the
fact that a 1~1 match does not necessarily mean that there
is no other component that is a partial subset of one of the
components in the 1~1 match. This was already touched in
the example of Figure 2 where C1 and R1 are a 1~1 match
and R4 is still a partial subset of C1. If there is no such ad-
ditional 1~n or n~1 match, then:

That is, we subsume an additional 1~n or n~1 match in
a 1~1 match. This is justified because there is a clear 1~1
relationship in the first place and the additional 1~n or n~1
match can only be comparatively small.

Such overlapping matches can also exist for pure 1~n
and n~1 matches as the example in Figure 3 illustrates.
However, the overlap of 1~n and n~1 matches is ignored
since there is no dominating correspondence as in the case
of overlaps with 1~1 matches. That is, the two overlapping
matches in Figure 3 are handled as two distinct matches (p
= 0.7).

Figure 3: Overlapping 1~n and n~1 matches.

Now that we have the means to establish the accuracy of
a single match with respect to its class (1~1, 1~n, n~1), we
can extend the accuracy to the whole class of matches. The
classes of matches are defined as follows:

(8)

Then, the accuracy for a whole class of matches is de-
fined as the average in accuracy of the members of the class
(let M be a class of 1~1, 1~n, or n~1 matches):

(9)

Overall recall rate. The detection quality of a technique is
described by a vector of the number of false positives and
true negatives and the average accuracies of 1~1, 1~n, and
n~1 matches according to (9) along with their respective
absolute number and average size to indicate the level of
granularity. These figures provide a detailed picture for the
comparison of the techniques. However, an additional
summarizing value is useful for a quick comparison. The
following equation characterizes the overall recall rate
(GOOD and OK are defined above):

(10)

To illustrate the definition of the recall rate, consider the
example in Figure 4, in which the matching components of
each candidate and reference component of Figure 2 have
been merged for the comparison. There are two OK match-
es and one good match. R5 is not matched at all and, there-
fore, considered a true negative; likewise, C5 is a false
positive because it does not correspond to any reference.
The example also illustrates that the denominator of (10)
cannot simply be the number of the original references be-
cause not only candidates but also references can be united
for the comparison, which reduces the number of referenc-
es actually used for the comparison.

Figure 4: Example merged correspondences of candidates
and references.

The recall rate (10) abstracts from the level of granular-
ity – since good and OK matches are treated equally by this
definition – and ignores false positives. The number of

matchings X( ) Y Y p X⊆{ }=

accuracy matchings C( ) matchings R( ),( )

accuracy matchings R( ) R{ },( )
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a, b, c, d
a
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false positives is a different aspect and is not captured by
this definition because – depending on the task at hand – a
higher number of false positives in favor of a higher recall
rate may be acceptable.

3.4. Hierarchical Clustering Techniques

The comparison of components as described above is
suitable for comparing flat components. When a hierarchi-
cal clustering technique is used, flat components need to be
derived from the result dendrogram. The components can
be derived using different thresholds to cut subtrees of
closely related elements from the dendrogram. Only then,
equation (2) and likewise the metrics of Lakhotia and
Gravely [16] and Tzerpos and Holt [31] can be used to
compare flat components. However, the number and qual-
ity of the components derived from the dendrogram may
vary with the chosen threshold. In this case, one has to de-
cide upon a suitable threshold. One alternative is to use dif-
ferent thresholds and accept the one that yields the best
results. This would measure the best result one could get
with the technique. In practice, one could have worse re-
sults if the appropriate threshold is not known in advance.

Another alternative is to let the user select subtrees man-
ually that are to be considered candidates, hence, using dif-
ferent thresholds for different subtrees. However, then the
technique would no longer be fully automatic and would
have an advantage over the other techniques.

For re-modularization techniques, we do not expect ref-
erences to be hierarchical. An analyst will rarely make an
effort to establish the similarities within a module. Hence,
the candidates will generally be compared to non-hierar-
chical references. However, if subsystems are to be com-
pared, a hierarchical correspondence should be established.
We have recently extended our definition of correspon-
dence to hierarchical components [14] and are currently
working on defining congruence based on this hierarchical
correspondence.

4. Controlled Experiments

For evaluating component recovery methods that in-
volve human intervention, controlled experiments should
be used. The goal of an experiment is to show that the new
technique indeed supports a maintainer or to show that the
new technique is superior to other techniques. In order to
get meaningful results, one would like to have as many ex-
perimental subjects as possible. On the other hand, to con-
duct the experiment in a cost-effective way, one would
prefer smaller samples, and in practice, it is also difficult to
find enough participants in the first place. Many research-
ers will, therefore, use smaller samples. Descriptions on
how to conduct and evaluate experiments can be found in

standard textbooks (see for example, [33], [12]). However,
most of these textbooks only describe ANOVA tests – but
these tests presume larger samples; they are not valid for
experiments with, say, 10 participants. For experiments
with small samples, non-parameterized tests are the only
appropriate tests.

This section briefly describes the layout and evaluation
of a small-scale experiment for comparing component re-
covery methods. The design of the experiment has been
successfully used to evaluate our incremental semi-auto-
matic method for component recovery [14].

4.1. Validity

If the experimental subjects are students, the number of
experimental subjects is low, and/or only few systems are
analyzed in the experiment, one should refrain from gener-
alizing the results too far. The general objective of small-
scale experiments is not to yield a definite empirical proof
for the usefulness of a method for all kinds of systems and
settings but to learn about the strengths and weaknesses of
a method and to investigate where further research should
be directed.

4.2. Hypotheses

The general hypothesis of an experiment to evaluate a
new semi-automatic method M is that M yields more com-
ponents than other methods in the same amount of time.
The other methods can be purely manual or semi-automat-
ic, too. By manual search, we mean that only common
cross-reference and textual pattern matching tools, such as
grep, are used, whereas for the semi-automatic methods,
more advanced automatic support is available.

The independent variable is therefore the selection of
available methods and the dependent variable is the
achieved detection quality.

The null hypothesis and the two-sided and single-sided
alternative hypotheses are as follows:

• Null hypothesis H0: There is no difference in the
detection quality among the methods.

• Alternative hypothesis H1: The detection qualities dif-
fer (for two-sided tests).

• Alternative hypothesis H2: The detection quality of
method M is greater than of all other methods (single-
sided tests).

4.3. Experimental Materials

The task of the experimental subjects is to recover the
components for the same system or set of systems. If the
component detection is repeated for a set of systems, ap-
propriate statistical tests must be applied that take learning
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effects due to repetition into account (see [19]). If only one
system is analyzed, the statistics outlined in Section 4.6 can
be used.

For large systems, a researcher may reduced the possible
search space for components to a size that can be handled
within the given time frame in order to obtain comparable
results, i.e., all experimental subjects should be able to look
at all source files within the available time. The degree of
familiarity with the subject system should be the same for
all experimental subjects. If this is not the case, a block de-
sign can be used (see [12]).

4.4. Experimental Design

In a simple design, the experimental subjects are ran-
domly assigned to groups that differ in the tools available
to the search for components, i.e., members of group Gi

may use method Mi. Other designs can be found in [12].

In order to avoid too much variance in the set of experi-
mental subjects, all experimental subjects should be jointly
trained.

If the number of components for a system is not known
in advance, a termination criterion for the search for com-
ponents does not exist. In that case, a time limit can be set.
Limiting the available time makes the experiment even
more realistic since in an industrial setting, one can gener-
ally not afford to spend unrestricted time on a problem.

4.5. Measurement of the Dependent Variable

Two distinct ways of measuring the dependent variable
should be chosen:

1. using the absolute number of clustered elements for
each subject (individual absolute recall, short IAR)

2. comparing the components of each individual to the
joint set of components of all individuals (reference
corpus recall, short RCR)
The first alternative does not require agreement among

the experimental subjects, hence measures only how many
elements were clustered in a given time by each individual.

For the second alternative, the individual results are to
be joined and the result of each individual is judged with re-
spect to the joined result. The joined list of components
should be individually reviewed by the experimental sub-
jects. The review work should be distributed among the
subjects so that each component is at least reviewed by two
persons. In order to reduce the effort for the experimental
subjects to review the reference corpus, each subject need
only review a part of the reference corpus. The reviewing
subjects can accept components as a whole or in parts as
well as add elements to the components, but should discuss
their changes with the original analyst. The set of accepted
components form the reference corpus to which the pro-

posed components of each subject are compared by the
method presented in Section 3. Hence, the dependent vari-
able can be measured as the recall rate defined in equation
(10) with respect to the joined reference corpus.

Because IAR does not require validation of the individ-
ual results, false positives cannot be measured for IAR.
Furthermore, IAR also relies more heavily on the will of
the experimental subjects to co-operate. An experimental
subject who simply compiles a high number of larger com-
ponents without really looking at these components more
closely, will distort the results. On the other hand, if not ev-
ery participant reviews the whole reference corpus, it may
happen that people would not agree to certain parts. That is
why both RCR as well as IAR should be evaluated.

4.6. Statistical Analysis

The common way to evaluate statistical data of con-
trolled experiments is to apply analysis of variance (ANO-
VA). The F statistic, for example, may be used to test the
hypothesis that the population means for the two groups are
equal [33]. However, the F statistics and other statistical
tests of ANOVA assume a certain distribution of the popu-
lation or themselves approach a normal distribution only
for large samples. However, normal distribution cannot be
assumed for experiment in component recovery methods
because too little is known about the programmer popula-
tion. Furthermore, if the size of the sample is small, one
cannot evaluate it with the F statistics.

There are other statistics, so-called non-parameterized
statistics, that do not assume any distribution and are appli-
cable to small samples. The power of these tests is general-
ly better than the power of parameterized tests. According
to Lienert [19], there are basically two kinds of statistics
appropriate for a simple completely randomized design
with non-repeated measurement (there are variants of these
tests for more complex designs) and small samples:

• The exact U-test by Mann and Whitney [20] and

• the exact Fisher-Pitman randomization test for two
independent samples [26].
These two methods differ in the leveraged scaling infor-

mation of the data. The exact U-test assumes data at an or-
dinal scale, i.e., the data can only be compared in terms of
a greater/lesser relationship, whereas the exact Fisher-Pit-
man test is based on interval information. Since the recall
rate is actually at an interval scale, Fisher-Pitman test
seems to be the appropriate test. However, it assumes that
the samples are an exact image of the whole population
which cannot really be justified when only students partic-
ipate.
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5. Setting up a Benchmark

In order to establish a comparison point for the detection
quality of the automatic recovery techniques, software en-
gineers have to manually compile a list of reference com-
ponents for diverse systems. These reference components
cannot only be used for evaluating automatic and semi-au-
tomatic recovery techniques but also for other purposes,
like statistical analyses or for calibrating parameters of di-
verse metrics.

This section summarizes briefly how our reference cor-
pora were obtained and validated and how this may be done
to add new reference corpora to the benchmark suite.

There are several aspects that have to be considered for
obtaining references:

• Partial vs. exhaustive search. An exhaustive search
strives to find all references of the whole system
whereas a partial search tries to identify references
within a given subset of a system.

• People. How many people analyzed the system? What
characteristics do these people have (age, experience,
training)? Are they authors of the system? If there were
several people, did they analyze separately or jointly?

• Validity. Were measures for quality assurance in place,
i.e., were the results reviewed by others?

• Available time. How much time was available?

• System characteristics. What is the size, programming
language, age, and application domain of the system?
What is the number of user defined types, global vari-
ables, and routines?
In order to get the most reliable reference corpora, teams

should exhaustively investigate a realistic system in suffi-
cient time and the results should be reviewed. However,
this can often not be achieved in practice. Hence, the exact
characteristics of any new reference corpus have to be
gathered as a quality attribute of the corpus.

This section describes our experiences with setting up a
reference corpus. We briefly show how the references were
established and why they provide a reasonable basis for a
comparison, and conclude with a general framework for
jointly setting up a larger benchmark suite.

5.1. Obtaining the Reference Components

The software engineers have to be provided with the
source code of each system, a summary of connections be-
tween global variables, types, and functions, and standard
guidelines on the task to be done. Standard guidelines are
important in order to get comparable results. It goes with-
out saying that the guidelines should not be biased toward
a specific approach.

To obtain a common basis of comparison, the compo-

nents separately detected by each individual (if people
worked separately) have to be merged and then validated
by at least two participants. Only those components should
be accepted for which a consensus can be reached.Validat-
ing the Reference Components

The fact that the references used as comparison point are
produced by people raises the question whether others
would identify the same components. In order to answer
this question, Girard conducted two studies whose scheme
can be used to investigate new reference corpora as well
[8].

In order to investigate whether multiple software engi-
neers would identify the same atomic components, Girard
performed an experiment on a subset of a system. The
source files of this subset were distributed along with a
cross-reference table indicating the relation among types,
global variables, and functions. Four software engineers
were given the task of identifying the components present.
Then a description of the procedure they followed along
with their results were collected. In cases where they
seemed to have broken their own procedures, the software
engineers were asked to refine either their procedure or
their results. Girard also revisited with them those compo-
nents where a comment indicated that they were unsure or
something was unclear and corrected their results accord-
ing to their conclusions. Finally, the separate results of the
analysts were quantitatively compared. For these software
engineers, the average agreement was 0.75 (the exact de-
tails of this comparison can be found in [8]). These agree-
ments lead us to believe that the reference components are
a suitable comparison point.

In order to assess if these experiment results from a sys-
tem subset can be generalized to a complete system, one
software engineer identified components in the whole sys-
tem. The components he identified were compared to those
of the reference components gained by a different group
(those obtained by consensus). A quantitative evaluation of
the degree of agreement showed that the agreement gained
on a smaller subset could indeed be generalized to the rest
of the system [8].

The above schemes can be used for new reference cor-
pora as well in order to validate that the references are a
suitable oracle.

5.2. Gathering Candidates for the Benchmark

The systems to be selected for the benchmark suite
should satisfy the three requirements for a reference corpus
stated by Lakhotia and Gravely [16]:

• The programs should be representative real-world pro-
grams.

• They should be available for researchers.
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• The set of references need to be known in order to con-
stitute an oracle for a comparison with candidate com-
ponents.
We have reference corpora for four C systems, namely,

Aero, Bash, CVS, and Mosaic (excluding the user interface
of Mosaic), with altogether 120 KLOC. We want to make
these reference corpora available on the web as part of the
Reverse Engineering Infrastructure Initiative [27]. A pre-
requisite for obtaining our benchmark will be to give feed-
back on the quality of our references and/or to submit new
reference corpora. For each new reference corpus, the fig-
ures described in the beginning of this section need to be
gathered. We also plan to make the tools for the automatic
comparison available. In order to exchange references, a
simple ASCII-based exchange format will be specified as
part of the initiative for a common exchange format for the
reverse engineering community. Information on the refer-
ence corpora and the evaluation tools is available at

http://www.informatik.uni-stuttgart.de/ifi/ps/clustering

6. Conclusion

Little has been achieved toward a widely accepted quan-
titative comparison of existing clustering techniques since
Lakhotia and Gravely have stated the need for a benchmark
with an accepted evaluation method in 1995 [16]. The need
for such a comparison is even more urgent than 5 years
ago: we know of more than 25 different clustering tech-
niques and the list is still growing [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 17, 18, 21, 22, 23, 25, 28, 29, 30, 32, 34].

For a quantitative comparison, we need:

• an accepted evaluation method

• a set of reference components that serve as an oracle

• an organizational framework that creates momentum,
gathers reference corpora, and makes these available
along with tools to exchange and evaluate reference
corpora
In this paper, we presented a way of quantitatively com-

paring candidate and reference components that establishes
corresponding components, handles subcomponents, toler-
ates smaller divergences, and determines recall and preci-
sion appropriately. This metric is used to ascertain the
congruence of candidates of an automatic technique and an
oracle but can also be used in controlled experiment to
compare results of different analysts and methods.

The metric of congruence of candidates and references
we have proposed does not leverage hierarchical informa-
tion as produced by hierarchical clustering techniques. For
re-modularization techniques, we do not expect this as a
practical drawback because the references will likely be
non-hierarchical. However, if subsystems are to be com-
pared, a hierarchical correspondence should be established.

We have recently extended our definition of correspon-
dence to hierarchical components [14] and are currently
working on defining congruence based on this hierarchical
correspondence.

Moreover, we discussed issues to be considered in con-
trolled experiments to evaluate manual and semi-automatic
methods that involve human intervention. In particular,
non-parameterized tests are the only appropriate tests for
small-scale experiments. We described how a benchmark
can be obtained, what information should be gathered, and
how quality of the benchmark can be assured. The bench-
mark may also be useful for other purposes, like statistic
analyses, metric evaluation, or calibration of clustering pa-
rameters.

It is our hope in proposing our evaluation method and in
offering evaluation tools and reference corpora to get feed-
back from the clustering community that will finally lead to
a standard test for all new re-modularization techniques.
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