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ABSTRACT
Reverse engineering is the process of uncovering the design and
the design rationale from a functioning software system. Reverse
engineering is an integral part of any successful software system,
because changing requirements lead to implementations that drift
from their original design. In contrast to traditional reverse
engineering techniques —which analyse a single snapshot of a
system— we focus the reverse engineering effort by determining
where the implementation has changed. Since changes of object-
oriented software are often phrased in terms of refactorings, we
propose a set of heuristics for detecting refactorings by applying
lightweight, object-oriented metrics to successive versions of a
software system. We validate our approach with three separate
case studies of mature object-oriented software systems for which
multiple versions are available. The case studies suggest that the
heuristics support the reverse engineering process by focusing
attention on the relevant parts of a software system.

Keywords
Reverse engineering, metrics, refactoring, software evolution,
object-oriented frameworks.

1. INTRODUCTION
Reverse engineering is an ongoing process in the development of
any successful software system as it evolves in response to
changing requirements. Therefore, system developers may benefit
a lot from reverse engineering techniques that keep track of the
design as it drifts from that of earlier versions. Integrated
development environments and so-called ‘round-trip’ engineering
tools help to keep design views consistent with the actual
software. However, such tools (i) are applicable to small software
systems only; (ii) require an initial design model to be matched
against the source code; (iii) present classes in isolation rather
than interaction between classes. Consequently, these tools do not
really contribute to the understanding of how and why a software
system evolves.

We claim that to really understand evolving software, the
changes themselves are the critical factor. Certainly in object-
oriented development processes with their emphasis on iterative
development (see among others [Gold95a]) change is an essential
ingredient of system design. Consequently, a reverse engineering
technique should exploit whatever information is available
concerning the changes of a piece of code. Such change based
reverse engineering (i) would be more scaleable, because we focus
reverse engineering efforts on changing pieces of code instead of
the full code base; (ii) would not need an initial design model,
because the changes dictate what appears in the model; (iii) would
give insight into class collaborations, because redistribution of
functionality reveals how classes interact with each other.

In object-oriented development, changes are accomplished
by means of so-called refactorings [Opdy92b], [Fowl99a].
Refactoring operations —such as provided by the Refactoring
Browser [Robe97a]— reorganise a class hierarchy by shifting
responsibilities between classes, and redistributing instance
variables and methods. Thus, to reverse engineer object-oriented
software, we must identify which refactorings have been applied
and this will help us understand how and —to a certain extent
why— the system has evolved.

Clearly, discovering refactorings by textual comparisons of
versions of source code would be imaginable but extremely
tedious, since the nature of the refactorings would be revealed
only by manual examination. Instead, we measure each of the
available versions of a software system, and compare the results in
order to identify the presence and the nature of the refactorings.
That is, instead of an algorithmic approach for finding
refactorings, we adopt a set of heuristics.

In this paper we examine four heuristics for identifying
refactorings and investigate how this knowledge helps in program
understanding. Each heuristic is defined as a combination of
change metrics which reveals refactorings of a certain kind. One
heuristic may occasionally miss refactorings, or misclassify them,
but such mistakes are typically corrected by one of the other
heuristics. We experimentally validate the applicability of these
four heuristics by testing them on three case studies. Each case
study is representative, in the sense that each is a successful
software system which has undergone successive refactorings to
address changing requirements. Our results indicate that our
approach can be successfully applied to discover which parts of a
system have changed, how they have changed, and, to some
extent, why the designers chose to change them.

The paper is structured like an empirical study. It starts with
formulating the research hypothesis to guide the selection of
metrics and case studies (section 2), continues with a specification
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of the four heuristics (section 3) and proceeds with a discussion of
the experimental results (section 4). The latter includes both an
overview of the empirical data on the performance of the
heuristics, as well as anecdotal evidence on how these heuristics
support reverse engineering. After an overview of the future plans
(section 0), the paper compares our work with related work on
refactorings, metrics and other object-oriented reverse engineering
techniques (section 6), to finally summarise the contribution
(section 7).

2. EXPERIMENTAL SET-UP
This section introduces the experimental validation of the
heuristics for identifying refactorings. It starts with describing the
research assumptions that lead to the selection of the metrics (i.e.,
the GQM paradigm), follows with a brief description of the tools
we used to collect the necessary measurements and ends with an
overview of the three case studies.

2.1 The Goal-Question-Metric Paradigm
The decision which metrics to apply is made using the Goal-
Question-Metric paradigm [Fent97a]. The goal and question
underlying the experiment are defined in Table 1.

We are particularly interested in finding symptoms for three
categories of refactorings because they correspond —in our
experience— with generic design evolutions that occur frequently
in object-oriented software systems.
1. Creation of template methods. This category of refactorings

split methods into smaller chunks to separate the common
behaviour from the specialised parts so that subclasses can
override. Design intentions for such refactorings may be the
improvement of reusability and the removal of duplicated
functionality.

2. Incorporation of object composition relationships. These
kind of refactorings move functionality to (newly created)
sibling classes. They are usually applied to reduce coupling
and often mark migration towards black-box frameworks.

3. Optimisation of class hierarchies. A category of refactorings
that insert or remove classes within a class hierarchy and
redistribute the functionality accordingly. Such refactorings
are applied to increase cohesion, simplify interfaces and
remove duplicated functionality.

The question ‘How to find symptoms of refactorings when
comparing one version of a software system with a subsequent
version’ leads to the research assumptions listed in Table 2. Each
research assumption corresponds with a characteristic that may
serve as a symptom for a refactoring.
There are two criteria that must be taken into account when
selecting the actual metrics for each of the research assumptions.
First of all, the metrics should be derivable from object-oriented
source-code, because the source code is the most reliable source
of information when comparing different versions of the same
software system. Second, the metrics should be cheap to collect,

because with different versions of a software system there is quite
a lot of data to analyse.

The actual metrics selected for our experiment are listed in
Table 3 and are defined by Chidamber & Kemerer [Chid94a] and
by Lorenz & Kidd [Lore94a]. The table includes an abbreviation,
a reference to the definition and a short description of the metric.

2.2 Data Collection and Case Studies
To gather the necessary measurements on these case studies, we
have developed our own metrics tool named Moose/Metrics.
Moose is a re-engineering environment developed as part of the
FAMOOS project1; a project whose goal is to produce a set of
reengineering techniques and tools to support the development of
object-oriented frameworks. Metrics are examined as an important
part of framework reengineering, which explains the motivation
behind this work. The Moose/metrics tool extracts classes,
methods and attributes from VisualWorks/Smalltalk source code,
computes the necessary measurements and generates a few tab
separated ASCII files subsequently loaded in Microsoft/Access
and Microsoft/Excel for post processing.

We validate the applicability of the heuristics via an
experiment involving three case studies: the VisualWorks
framework ([Haun95a], [Howa95a]), the HotDraw framework
([Beck94a], [John92a]) and finally the Refactoring Browser
([Robe97a]). These case studies have been selected because they
satisfy the following criteria.
• Accessible. The source code for the different versions of

these frameworks are publicly accessible, thus other
researchers can reproduce or falsify our results.

• Representative. Each of the three case studies is a successful
software system which has undergone successive refactorings
to address changing requirements.

• Independent. All frameworks were developed independently
of our work, which implies that our experiment has not
influenced the development process.

• Documented. The features that changed between the different
versions are documented, making it possible to validate some
experimental findings.

All of these case studies are implemented in Smalltalk.
Nevertheless, each of these case studies represents a different kind
of software system.
• VisualWorks. Is the only industrial system in the experiment.

VisualWorks is a framework for visual composition of user-
interfaces independent of the ‘Look and feel’ of the
deployment platform. It is a typical black-box framework, in

                                                                
1 http://www.iam.unibe.ch/~famoos/

Table 2: Overview of the research assumptions.

Method Size A decrease in method size is a symptom of a
method split.

Class Size A change in class size is a symptom for a shift
of functionality to sibling classes (i.e.,
incorporate object composition). Also, it is part
of a symptom for the redistribution of instance
variables and methods within the hierarchy (i.e.,
optimisation of class hierarchy).

Inheritance A change in the class inheritance is a symptom
for the optimisation of a class hierarchy.

Table 1: The Goal and Question for the experiment.

Goal Identify where the design of an object-oriented
software system is evolving and deduce
corresponding design drifts.

Question When comparing one version of a software system
with another, what characteristics can be used as
symptoms of refactorings ?
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Table 3: Overview of the metrics selected.

Abbreviation Reference Description

Method Size (computed for each method)

Mthd-MSG [Lore94a] Number of message sends in method body. In [Lore94a] this metric was abbreviated NOM, but we
renamed it MSG to avoid name collision with the NOM metric (number of methods).

Mthd-NOS [Lore94a] Number of statements in method body.

Mthd-LOC [Lore94a] Lines of code in method body.

Class Size (computed for each class)

NOM [Chid94a] Number of methods in class. This is the Weighted Method Count (WMC) metric where the weight of
each method is 1.

NIV, NCV [Lore94a] Number of instance variables, number of class variables defined by class.

Inheritance (computed for each class)

HNL (DIT) [Lore94a],
[Chid94a]

Hierarchy nesting level [Lore94a] or the depth of inheritance tree [Chid94a]. Number of classes in
superclass chain of class; in case of multiple inheritance, number of classes in longest chain.

NOC [Chid94a] Number of immediate children of class.

NMI [Lore94a] Number of inherited methods, i.e. defined in a superclass and inherited unmodified.

NMO [Lore94a] Number of overridden methods, i.e. defined in a superclass but redefined in subclass. We do not
distinguish between plain overriding, overriding of abstract methods and extensions of super methods.

the sense that programmers using the framework are
supposed to customise its behaviour by (visually)
configuring objects. The framework has quite a large
customer base, so the framework designers must consider
backward compatibility issues when releasing new versions.
The versions we measured during the experiment are the
versions that have been released during the time span of
1992-1996.

• HotDraw. Is a framework for building 2-dimensional
graphical editors. HotDraw is one of the better known
framework experiments, among others because of its pattern
style documentation. It’s a typical white-box framework, as
users of the framework are supposed to subclass framework
classes in order to reuse the HotDraw design.
The HotDraw framework itself was implemented in

VisualWorks/Smalltalk. Therefore, we numbered the
versions according to their corresponding VisualWorks
release.

• Refactoring Browser. This case study is the only software
system which is not a framework. Nevertheless, it is
interesting because it is a good example of an iterative
development process.
The refactoring Browser is released about once each month
with only small increments. Rather than measuring every
single increment, we compared a first stable version with the
latest version that was available at the time of our
experiment. Our first version corresponds to the 2.0 release
(April ‘97) while the second version is the 2.1 release
(March ‘98).

Table 4 provides an overview of the changes for each of the three

Table 4: The transitions between versions the case studies.
(Ini = # initial version; Rmv = # removed; Add = # added; Ret = #retained (same name); Fnl = # final version)

# classes # methods

Ini Rmv Add Ret Fnl Ini Rmv Add Ret Fnl

Visualworks

  1.0 -> 2.0 593 71 212 522 734 5282 1067 3569 4215 7784

  2.0 -> 2.5 734 38 63 696 759 7784 337 858 7447 8305

  2.5 -> 3.0 759 8 214 751 965 8305 207 1287 8098 9386

HotDraw

  1.0 -> 2.5 197 2 4 195 199 1425 153 72 1272 1344

  2.5 -> 3.0 199 151 67 48 115 1344 1221 707 123 830

Refactoring Browser

  2.0 -> 2.1 277 2 52 275 327 2121 273 786 1848 2634
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case studies involved in the experiment. The leftmost column lists
the different transitions between the versions at our disposal,
while the other columns give an impression of the size and impact
of the changes. We see that VisualWorks is the largest software
system (starting with 593 classes and 5282 methods in version 1.0
and ending with 965 classes and 9386 methods in version 3.0).
We also see that the transition from VisualWorks 1.0 to 2.0
entailed most of the changes (71 classes and 1067 methods were
removed; 212 classes and 3569 methods were added), with the
one from VisualWorks 2.5 to 3.0 and from HotDraw 2.5 to 3.0
following as second and third. Here it is important to note that we
compare versions via names, thus that we cannot detect renaming
and instead count a ‘remove’ and an ‘add’. Due to the large
number of removals and additions, we assumed that the large
number of changes between HotDraw 2.5 and 3.0 actually
corresponds with renaming of classes and by checking the source
code we have confirmed this assumption. Finally, note the small
decrease in number of methods between HotDraw 1.0 and 2.5 and
the large decrease in number of classes and methods between
HotDraw 2.5 and 3.0. This confirms with what is reported in the
documentation, because HotDraw is a system where the design
has been expanded a little while moving from 1.0 to 2.5, while it
has been reworked drastically during the transition from 2.5 to
3.0.

3. HEURISTICS FOR FINDING
REFACTORINGS

Given the research assumptions in Table 2 and the list of metrics
Table 3, we are now in the position to specify which heuristics we
use to find refactorings. In the following subsections we define a
heuristic as a combination of change metrics that identify a
category of refactorings and name the heuristic according to its
category. With each heuristic we specify a recipe that explains
how to assess whether the result does correspond with a
refactoring and a description of the false negatives and false
positives. A false positive for a heuristic is a case where the
heuristic answered ‘yes’ while it should have been ‘no’; thus
where it erroneously reported the presence of a refactoring.
Conversely, a false negative is a case where the heuristic
answered ‘no’ while it should have been ‘yes’, thus where it failed
to identify the refactoring.

Note that with the expression ‘compute the change in metric-
X on component-Y’ we mean ‘subtract the metric-X measurement
of component-Y in one version from metric-X measurement of
component-Y in the subsequent version’. Since it occurs so often,
we denote it with a shorthand ‘δ X’. As an example, ‘compute the
change in HNL on class View’ corresponds to the following
function:

δ HNL(View) =  HNL(View, version n + 1)
- HNL(View, version n)

3.1 Split into Superclass / Merge with
Superclass

This heuristic searches for refactorings that optimise the class
hierarchy by splitting functionality from a class into a newly
created superclass, or that merge a superclass into one or more of
its subclasses. That is, we look for the creation or removal of a
superclass, together with a number of pull-ups or push-downs of
methods and attributes.

The following recipe is summarised in Figure 12.
1. By inspecting changes in the inheritance hierarchy (via a

change in HNL), we identify those classes where a superclass
has been added or removed.

2. Next, we combine this information with changes in number
of methods (NOM) and number of instance- and class
variables (NIV, NCV) to see whether functionality has been
pulled up or pushed down.

3. We also include the number of inherited and overridden
methods (NMI and NMO) in this analysis to see the effect of
the added or removed class on the overall protocol of the
subclass.

4. Finally, we browse the source code of the corresponding
classes to check whether the new class hierarchy corresponds
with a split/merge and to see which pull-ups and push-downs
actually occurred.

• False negatives. The heuristic may fail to detect a split or a
merge, when the change in HNL is countered by an inverse
change higher up in the hierarchy, or when the pull-up/push-
down is countered by an equal addition or removal of new
functionality. The former of these cases will show up as false
positives of ‘Move to Other Class’ (section 3.3).

• False positives. The heuristic may discover situations that do
not correspond to a split or a merge, if part of the class
functionality has been rearranged, superimposed by an
unrelated addition or removal of a superclass. It is
worthwhile to further analyse such situation, as the
rearrangement of class functionality may denote a false
negative of ‘Move to Other Class’ (section 3.3). Moreover,
the change in the superclass may represent an interesting
optimisation of the class hierarchy anyway. Therefore, we
include the number of inherited and overidden methods
(NMI, NMO) in the heuristic, because they let us assess
whether the operation optimises the class hierarchy.

                                                                
2 In all figures we use the following conventions. The same

components in different versions are distinguished via a quote
character (') which does not necessarily imply any change.
Components that change in the refactoring are coloured in light-
grey, while new or removed components are coloured in dark-
grey.

A

B

A’

B’

X

(a) Split B into X and B’
(δ HNL(B’) > 0) and

( (δ NOM(B’) < 0)
or (δ NIV(B’) < 0)
or (δ NCV(B’)  < 0))

(b) Merge X and B’ into B
(δ HNL(B) < 0) and

( (δ NOM(B) > 0)
or (δ NIV(B) > 0)
or (δ NCV(B)  > 0))

Figure 1: Heuristic for ‘Split into Superclass / Merge with
Superclass’.
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3.2 Split into Subclass / Merge with Subclass
This heuristic —like the one in 3.1— searches for refactorings
that optimise the class hierarchy. However, it takes the viewpoint
of the superclass (using changes in the number of children as the
main symptom), while the other provides the perspective of the
subclass (triggering on changes in the length of the inheritance
chain). Thus the refactorings we are looking for here split
functionality from a class into a newly created subclass, or merge
a subclass with one or more of its subclasses. That is, we look for
the creation or removal of a subclass, together with a number of
pull-ups or push-downs of methods and attributes.
The following recipe is summarised in Figure 2.
1. By inspecting changes in the inheritance hierarchy (via a

change in NOC), we identify those classes where a subclass
has been added or removed.

2. Next, we combine this information with changes in number
of methods (NOM) and number of instance and class
variables (NIV, NCV) to see whether functionality has been
pulled up or pushed down.

3. Finally, we browse the source code of the corresponding
classes to check whether the new class hierarchy corresponds
with a split/merge and to see which pull-ups and push-downs
actually occurred.

• False negatives. The heuristic may fail to detect a split or a
merge, when the refactoring did not involve a change in
NOC, or when the pull-up/push-down is countered by an
equal addition or removal of new functionality. Sometimes,
these cases will show up as false positives of ‘Move to Other
Class’ (section 3.3).

• False positives. The heuristic may discover classes that are
not split or merged. Most often this is because some class

functionality has been added, moved or removed together
with an unrelated addition or removal of subclasses. Thus,
sometimes the false positive does correspond with a false
negative of ‘Move to Other Class’ (section 3.3). Also, the
false positive may denote some other rearrangement of the
class hierarchy which is worthwhile to analyse further as it
represents another class hierarchy refactoring.

3.3 Move to Other Class (Superclass, Subclass
or Sibling Class)

This heuristic searches for refactorings that move functionality
from one class to another. This other class may either be a
subclass, a superclass, or a sibling class  (i.e., a class which does
not participate in an inheritance relationship with the target class,
although it usually has a common ancestor). That is, we look for
removal of methods, instance variables or class variables and use
browsing to identify where this functionality is moved to. Note
that ‘Split into superclass’ (section 3.1) and ‘Split into subclass’
(section 3.2) are special cases of the more general move of
functionality.
The following recipe is summarised in Figure 3.
1. By inspecting decreases in the number of instance variables

(NIV), class variables (NCV) or methods of a class (NOM),
we identify those classes where functionality has been
removed.

2. We combine this with HNL and NOC measurements, to rule
out those cases that correspond with splitting of classes (see
sections 3.1-3.2).

3. Next, we browse the source and check for each method
removed those methods that used to invoke it to see where
the functionality has been moved to, or to assess whether the
functionality has been removed.

A

B C

A’

B’ C’

X

A’

C’ X

(a) Split A into X and A’
(δ NOC(A’) ≠ 0) and

( (δ NOM(A’) < 0)
or (δ NIV(A’) < 0)
or (δ NCV(A’)  < 0))

B’
(b) Merge A’ and X into A
(δ NOC(A) ≠ 0) and

( (δ NOM(A) > 0)
or (δ NIV(A) > 0)
or (δ NCV(A)  > 0))

Figure 2: Heuristic for ‘Split into Subclass / Merge with Subclass’.

B

C

D

A

B'

C'

D'

A'Move from B to A’, C’ or D’
( (δ NOM(B’) < 0)
or (δ NIV(B’) < 0)
or (δ NCV(B’) < 0))

and (δ HNL(B’) = 0)
and (δ NOC(B’) = 0)

Figure 3: Heuristic for ‘Move to Superclass, Subclass or Sibling Class’.
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4. Similarly, for each attribute removed, we check the methods
that used to access it to see where the attribute has been
moved to, or to assess whether it has been removed.

• False negatives. The heuristic may fail to detect a move,
when it was countered by an equal addition or removal of
functionality. The case when the move is accompanied by an
addition or removal of a superclass or an immediate subclass,
is detected anyway, as it is a false positive of either ‘Split
into Superclass / Merge with Superclass’ (section 3.1) or
‘Split into Subclass / Merge with Subclass’ (section 3.2).

• False positives. The heuristic may discover cases that do not
correspond to a move of functionality but then it detects
symptoms of other refactorings. The functionality may be
removed instead of moved, or the functionality may be
replaced by code that requires less methods or attributes, thus
a refactoring in either case. Especially in the case where
attributes are factored into sibling classes it is rarely an
ordinary move, but almost always partly a movement and
partly a replacement of functionality.

3.4 Split Method / Factor Out Common
Functionality

This heuristic searches for refactorings that split methods into one
or more methods defined on the same class. That is, we look for
decreases in method size and try to identify where that code has
been moved to.
The following recipe is summarised in Figure 4.
1. By looking for decreases in the number of message sends

(Mthd_MSG) within a method, we identify those methods
where functionality has been removed. We include a
threshold in the heuristic, because the large amounts of
methods returned by the heuristic required to fine-tune the
amount of functionality decrease we are interested in. In our
experiment, we applied a threshold of 2, but reverse
engineers are free to adapt this number according to their
purpose.

2. A combination with decreases in number of statements
(Mthd_NOS) and lines of code (Mthd_LOC) provides
insight into the kind of removals that actually took place.

3. Sort the resulting list according to class name to identify
other methods defined on the same class and presenting a

similar decrease, because that’s a symptom of common
functionality that has been factored out.

4. Finally, browsing the source code is necessary to see where
the functionality has been moved to. That is, each removed
message-send must be checked to see whether (new) methods
defined on the same class perform that same message-send.

• False negatives. The heuristic may fail to detect a split, when
it was countered by an equal addition of new functionality, or
when the decrease in functionality was smaller than the
threshold value.

• False positives. The heuristic may discover methods where
functionality simply has been removed instead of split into
another method. Also, sometimes the functionality that has
been split off may be moved to another class which is
difficult to recover by mere browsing. In either case it is
worthwhile to further analyse the situation as both cases
correspond to other interesting refactorings.

4. RESULTS
This section reports on the results obtained from applying the four
heuristics defined in section 3 to the three case studies specified in
section 2. We start with a summary of the empirical data collected
from the experiment and an analysis of the advantages and
potential drawbacks of the heuristics, and end with some
anecdotal evidence of interesting design shifts we have identified
using the heuristics.

4.1 Advantages and Potential Drawbacks
Table 5 provides a summary of the empirical data we gathered
from the case studies. For each of the different transitions
(leftmost column) and for each of the heuristics we show:
• Focus. The number of classes/methods returned by the

heuristic. Since the heuristics are supposed to be
complemented by manual browsing, this number should be
small.

• Focus %. The focus in percentage. Is equal to the focus
divided by the total number of classes/methods retained
(columns ‘Ret’ in Table 4). This number allows us to
compare the focus of the heuristic independent of the case
study.

A.a ()
{...
...
...
...} A.b ()

{...
...
...
...}

A.a’ ()
{...
x(this)
...}

A.b’ ()
{...
x(this)
...}

A.x ()
{
...
...
}

Split from A.a to A.x
δ Mthd_MSG(A.a) < threshold

Check changes in other method size
measurements as well

δ Mthd_NOS(A.a)
δ Mthd_LOC(A.a)

Check decreases of other methods
defined on the same class

δ Mthd_MSG(A.b) < threshold

Figure 4: Heuristic for ‘Split Method / Factor Out Common Functionality’.
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• # FP (false positives). The number of false positives
(refactorings that are misclassified) as assessed by manual
browsing of the source code.3 The lower this number, the
less noise contained in the results and the more reliable the
heuristic is.

• # IFP (interesting false positive). The number of
misclassified refactorings that corresponded to another
category of refactorings. This number calibrates the number
of false positives, in the sense that reverse engineering can
afford misclassifications but should not miss too many
refactorings. Ideally, this number should be equal to the
number of false positives.

The empirical data and our experience with the case studies gave
us some insight into the advantages and potential disadvantages of
using the heuristics for identifying design shifts.

                                                                
3 Note that we could not count the number of false negatives, as

we did not have any list of refactorings as they have actually
been applied. However, we used the documentation for each of
the systems to check whether we covered all the documented
design changes.

Advantages

• Good Focus. The heuristics focus on a small part of the
software system. That is, the amount of classes and methods
returned is always small enough to allow for further manual
examination. For instance, the split method heuristic selects
between 5 and 105 of the methods (threshold = -2). The
number of classes selected lies between 5 and 43.

• Reliable. The heuristics are quite good at identifying which
refactorings occurred during the process. That is, the number
of false positives is low and a considerable amount of false
positives is interesting anyway. This is largely due to the
partial overlap between the heuristics: some of the false
negatives of one heuristic are covered by false positives of
another one.
Due to the lack of empirical data on false negatives, it is too
early to make any definite statements on the reliability.
However, our experience with the case studies showed that
we identified symptoms for all of the documented design
shifts and even some undocumented ones. Therefore, we can
safely assert that the heuristics may have missed some of the

Table 5: Overview of the results
(The maximum Focus and Focus % values are marked with double underlining)

Split or merge / superclass Split or merge / subclass

Focus % Focus #FP #IFP Focus % Focus #FP #IFP

Visualworks

  1.0 -> 2.0 3.64% 19 3 1 8.24% 43 41 3

  2.0 -> 2.5 0.00% 0 1.58% 11 11 0

  2.5 -> 3.0 0.15% 1 1 0 3.65% 24 24 2

HotDraw

  1.0 -> 2.5 0.00% 0 0.00% 0

  2.5 -> 3.0 10.42% 5 3 3 35.42% 17 16 10

Ref. Brwsr.

  1.0->2.0 1.82% 5 0 0 2.18% 6 4 4

Move to other class Split method

Focus % Focus #FP #IFP Focus % Focus #FP #IFP

Visualworks

  1.0 -> 2.0 6.32% 33 19 6 2.49% 105 70 13

  2.0 -> 2.5 1.72% 12 9 2 1.03% 77 63 9

  2.5 -> 3.0 4.57% 30 26 3 0.44% 36 12

HotDraw

  1.0 -> 2.5 14.36% 28 27 3 1.26% 16 9 4

  2.5 -> 3.0 8.33% 4 2 0 14.63% 18 11 3

Ref. Brwsr.

  2.0 -> 2.1 4.00% 11 8 1 1.30% 24 18 6
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refactorings, but they usually have identified the important
design changes.

• Road map. The focus (both in absolute number as well as
percentage) varies considerably between the heuristics. This
may seem a negative effect, but we have experienced that it
actually helps the reverse engineering process because it is a
guidance for determining which places to browse first. That
is, by first applying all the heuristics, and then manually
browsing the results in ‘best focus first’ order, we could rely
on the better focus of the prior heuristic to better assess items
in the larger lists.

• Class Interaction. Since the heuristics select those places
where the system design is changing, there is a good chance
to focus on those parts of the design that are expanding or
consolidating, which is a key factor in understanding why a
design is adapted. Moreover, the heuristics filter out clusters
of classes and methods, highlighting the way they interact
with each other. Again, this helps to understand a design,
because it is precisely the interaction between the various
methods in different classes that determines how to reuse an
object-oriented design.

• Unbiased. The heuristics do not require human knowledge to
select the interesting pieces of code. Rather, it is the system
itself that dictates what is worthwhile to investigate.
Consequently, our heuristics may be used prior to reverse
engineering techniques that require a reverse engineer to
formulate a model of what is expected, like with reflexion
models [Murp97a], concept assignment [Bigg94a], or round-
trip engineering tools.

Potential Drawbacks

• Vulnerable to renaming. Measuring changes on a piece of
code requires that one is capable of identifying the same
piece of code in a different version. The most obvious
approach —the one also used in our experiment— is using
names to anchor pieces of code. However, with name
anchors, rename operations dissolve to reappear as removals
and additions. This phenomenon partly explains the large
focus and large number of false positives in the transition
from VisualWorks 2.5 to 3.0.
Nevertheless, any reverse engineering technique that relies
on source code must be conscious about names as they
usually bear a lot of the domain semantics. Our heuristics are
not an exception to that rule.

• Imprecise for many changes. Both focus and reliability
depend a lot on the amount of changes. When too many
changes have been applied on the same piece of code, the
picture gets blurred and the technique becomes imprecise.
However, this imprecision is only with respect to the
identification of the refactorings, because the heuristics still
identify important design changes. It only becomes more
difficult to deduce the intentions behind these changes.

• Requires human experience. Once the interesting pieces of
code have been identified, a reverse engineer must check the
two versions of the source code to deduce which refactorings
actually have been applied. This requires experience with
refactorings and with the implementation language, in the
sense that the reverse engineer must be well aware of how
the refactorings interact with the coding idioms in the
particular implementation language.

Consequently, the heuristics should be applied in a semi-
automatic setting, where a tool signals potential refactorings
but where a human expert takes the actual decision. Semi-
automatic tools represent a reasonable trade-off, as reverse
engineering is typically a human centric activity [Bigg94a].

• Considerable resources. The metrics underlying our
heuristics are selected to require ‘cheap’ parsing technology.
For instance, we have been able to collect the measurements
from the Smalltalk system via a straightforward use of the
meta-object protocol and some rudimentary text processing
to count the number of lines. Similar technology could be
used to collect the measurements for Java systems, while for
C++ we can do with incomplete parsers that only collect the
class definitions and method signatures.
Nevertheless, reverse engineering based on our heuristics
requires quite a lot of resources: full access to different
versions of the source code, plus a metrics tool that is able to
measure changes (or at least feed measurements into another
tool performing additional computations) plus a browsing
tool that is able to navigate from a method invocation to the
corresponding method definition. Yet, the amount of
resources is comparable to other reverse engineering
techniques. For instance, round-trip engineering tools require
full parsing, program visualisation tools require complex
layout algorithms, query languages require databases.

4.2 From Refactorings to Understanding
Design Drift

While the empirical data in section 4.1 shows that the heuristics
are effective in identifying which refactorings have been applied
when going from one version to another, this by itself does not
imply that we can actually deduce how and why the
implementation has drifted from its original design. It is beyond
the scope of this paper to analyse the intentions for the hundreds
of refactorings we have identified in the experiment. Therefore,
this section makes a selection by describing some of the more
interesting refactorings including our interpretation of its design
intention.
• Reduce Code Duplication (Split into Superclass). Some of

the new operations added to the Refactoring Browser were
refactorings to add or remove a parameter on a method.
Looking at the implementation, the 2.0 release included a
very flat hierarchy with an abstract root class ‘Refactoring’
and below a list of subclasses for each refactoring operation.
When adding the subclasses for manipulating parameters, the
developers noticed that this introduced duplicated behaviour
with the former ‘RenameMethod’ refactoring and
consequently they inserted a new abstract superclass
‘MethodRefactoring’ with subclasses for all refactorings
concerning methods. Inspecting the methods that have been
redistributed between the former ‘RenameMethod’ class and
the new ‘MethodRefactoring’ class we could easily infer the
obligations for new subclasses of ‘MethodRefactoring’.

• Optimize for platform independence (Merge With
Superclass). The VisualWorks framework provides a
platform independent ‘look and feel’. Therefore, the
frameworks has abstract superclasses for each Widget with
concrete subclasses for the different UI platforms supported
by the framework (Motif, Macintosh, Windows, ...). In the
transition from 1.0 to 2.0 they have reorganised this widget
hierarchy, as is depicted in Figure 5. As such, they diminish
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the work when a new look-and feel is included because less
concrete subclasses must be implemented. Moreover, the
way the existing methods where redistributed over the class
hierarchy, gave us insight into the protocol between the
abstract and the concrete classes.

• Introducing Layers (Move to Sibling). The Refactoring
Browser provides multiple windows depending on the
selected view on the software system, each window
consisting of various panes. It is the ‘RefactoringBrowser’
class that implements the aggregation of panes, one of these
panes being the ‘BrowserNavigator’. In the 2.0 release, there
was a complicated interaction between these two classes
depending on various state changes. With the 2.1 release, this
has been simplified, in such a way that the BrowserNavigator
(= the component) ceases to invoke methods directly on the
RefactoringBrowser (= the aggregation). This way, the
designers have been able to introduce a layer into their
system design (see Figure 6).

To summarise, we conclude that these four heuristics reliably and
cost effectively identify which refactorings have been applied in
going from one version to another. From there it is feasible to
deduce how and why an implementation drifts from its original
design. Although the heuristics have some disadvantages, most of
them are inherent to reverse engineering techniques.
Consequently, we claim that the proposed heuristics form the
basis for a reliable reverse engineering technique, given that it is
used by experts, on iterative projects with small increments.

5. OPEN QUESTIONS AND FUTURE
WORK

Given the empirical results in section 4, the obvious question is
whether they generalise. Especially because all case studies are
successful Smalltalk systems it is interesting to ask (i) how these
heuristics will behave on other implementation languages and (ii)
how they will behave on systems that are ‘in trouble’. Also, since
there are other metrics that could have been used to measure
changes between different versions than the ones listed in Table 3,
another relevant question is (iii) how much these results depend

on the particular metrics applied in the experiment. Finally, given
the fact that the number of documented refactorings is large and
keeps growing, another important question is (iv) whether the
same technique can be applied to identify other refactorings.

As far as other implementation languages are concerned, we
are quite confident that the heuristics will prove valuable. To
confirm this feeling, we plan further experiments with C++ and
Java systems obtainable from publicly available code and from the
industrial partners in the FAMOOS project.

As far as troublesome systems concerns, the expected
behaviour depends largely on what is implied by ‘in trouble’. One
thing we suspect, is that change metrics may be used to identify
places where the design keeps on changing without actually
improving. Here as well we plan more experiments to verify this
assumption.

As far as other metrics concerns, the answer depends on the
kind of metrics. For the method size and class size metrics we
think that it is best to stick to these simple metrics, as it is often
reported that code size metrics correlate with each other
[Fent97a]. For the inheritance metrics we are less certain: the
simple metrics were sufficient for our purpose, but it is possible
that other metrics are better discriminators for distinguishing
interesting refactorings. Finally, there is a category of metrics  that
we deliberately did not include in our experiment.
Coupling/cohesion metrics are typically more expensive to collect
and on top of that there is a strong disagreement in the literature
about what constitutes good object-oriented coupling/cohesion
metrics. Nevertheless, we assume that they may serve as good
indicators for refactorings that introduce object composition and
consequently might be used to mark transition from white-box to
black-box reuse. In the future, we plan to define our own set of
cheap coupling/cohesion metrics to see whether they offer any
help.

As far as other refactorings concerns, the answer depends on
the granularity of what you want to reverse engineer and the
purpose why you are doing it. The refactorings selected in our
experiment are coarse grained compared to the elementary
refactorings provided by the refactoring browser, because we
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needed to deal with the issue of scale — recovering every single
change would have provided too much noise to suit our reverse
engineering purposes. On the other hand we do not cover the
composite refactorings listed in Fowler's catalogue [Fowl99a],
mainly because these also include the motivation for applying a
refactoring — the motivation part of such refactorings must be
recovered by humans. Based on our experience, we suppose that it
is feasible to define heuristics for all possible refactorings (even if
it entails defining special purpose metrics), although this is
probably not worth the effort. Hence, to devise a catalogue of
heuristics for identifying the most important refactorings,
empirical studies are needed to investigate which refactorings are
commonly used during reengineering.

Future Work
Besides continuing the validation of the heuristics against other
software systems and experimenting with other metrics (in
particular coupling and cohesion) we want to integrate these
heuristics with other reverse engineering techniques. This is
necessary because we agree with the viewpoint that a reverse
engineer is much like a detective that solves a mystery from the
scarce clues that are available [Will96b]. The heuristics proposed
here are not an exception to that rule so should not be used in
isolation but rather complement other reverse engineering
techniques.

Consequently, we will work on better integration with other
tools in the Smalltalk programming environment. A first path to
explore is better integration with the Refactoring Browser —since
this tool maintains a log file of the refactorings that have been
applied it is one way of verifying the number of false negatives.
Second on our list is integration with a Smalltalk configuration
management tool (such as Envy) to exploit the version
management features provided there. We also plan integration
with Duploc and CodeCrawler, which are two visualisation tools
under development in our lab. Duploc provides a visual
representation of duplicated source code which is also well suited
for detecting portions of source code that have changed
[Duca99b]. CodeCrawler visualises predefined metrics
combinations with simple graph layouts [Deme99c]. A promising
research direction might be to include run-time information to
analyse the effect of refactorings at the object-level [Rich99a]. In
the longer run, we want to investigate tool integration for object-
oriented languages besides Smalltalk; our work on an information
exchange model for reengineering tools is a first step in that
direction [Deme99d].

6. RELATED WORK
Refactoring as a technique to reorganise object-oriented
constructs has been investigated for quite some years now. The
Ph.D. work of Opdyke resulted in a number of papers describing
incremental redesign performed by humans supported by
refactoring tools [Opdy92b], [Opdy93a], [John93b]. This line of
work resulted in the Refactoring Browser, a tool that represents
the state of the art in the field [Robe97a]. In contrast, both Casais
and Moore report on tools that optimise class hierarchies without
human intervention [Casa92a], [Moor96a]. More recently, Schulz
et al. report on refactoring to introduce design patterns in C++
systems [Schu98a], while [Toku99a] show that a typical system
evolution can be reproduced significantly faster and cheaper via
refactoring. Finally, [Fowl99a] summarises his experience with
refactorings in industrial projects. In the refactoring literature we
did not find any reference to techniques for reconstructing the

refactorings that have been applied, although [Toku99a] shows
that a manual approach is feasible on a small scale.

Quality metrics are often used as a problem detection
technique and in that sense closely related to our work. An
overview of the work in Object-Oriented Metrics —including
references to quality metrics— is presented in [Hend96a]. To
detect problems with quality metrics, one combines the metrics
with thresholds and whenever a particular measurement exceeds a
certain threshold value, the corresponding item needs further
examination. Both [Chid94a] and [Lore94a] mention the use of
thresholds to identify design anomalies, while [Mari98a] and
[Kohl98a] report on the practical application thereof. Other uses
of metrics as problem detection tools exist as well: for instance,
both [Kont97a] and [Lagu97a] use metrics for detecting patterns
of duplicated code. With these problem detection tools, we share
the idea of using metrics to focus in large amounts of data, but
differ in the elements we are interested in (design anomalies vs.
refactorings).

The reverse and reengineering of object-oriented systems has
gained considerable interest now that the object-oriented
paradigm has reached industrial maturity [Casa97a]. Especially
with the advent of UML, there are lots of CASE tool vendors
working on so-called round-trip engineering as a way to iterate
between modelling, generating code, changing that code and
mapping this code back to the original model. Note however that
reverse and reengineering is studied intensively in other branches
of the software engineering community [Arno92a], [Wate94a],
[Will96a]. Note as well that other researchers already exploited
program changes in the context of reverse engineering: for
instance, Thomas Ball et. al. annotate code views with colours
showing code age [Ball96a], while Mehdi Jazayeri et. al use a
three-dimensional visual representation for examining a system’s
software release history [Jaza99a]. Restricting ourselves to the
object-oriented literature, we see that reverse engineering research
concentrates on combinations of program visualisation, run-time
analysis, (logic) query languages and design (pattern) extraction.
For instance, De Pauw et al. report on design extraction based on
visual representations of run-time information [Pauw93a]. Lange
and Nakamura describe how a Prolog fact base (containing static
and dynamic information) linked to visual representations can
help to capture the design of a framework [Lang95a]. Brown
shows that it is possible to detect some structural patterns in
Smalltalk source code [Brow96c], while Keller et. al. did larger
scale experiments for C++ [Kell99a]. Florijn reports on tool
support for patterns in reverse and forward engineering [Flor97a].
Wuyts advocates the use of a logic meta-language to express and
extract structural relationships in object-oriented systems
[Wuyt98a]. De Hondt reports on advanced browsing technology
as a way to incrementally capture framework design in the form of
reuse contracts [Hond98a]. Except for [Hond98a], we did not find
any references to the exploitation of the iterative nature of object-
oriented development for reverse engineering purposes.

7. CONCLUSIONS
We have presented an approach to understand how object-
oriented systems have evolved by discovering which refactoring
operations have been applied from one version of the software to
the next. The main features of our approach are:
• It concentrates on the relevant parts, because the refactorings

point us to those places where the design is expanding or
consolidating.
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• It provides an unbiased view of the system, as the reverse
engineer does not have to formulate models of what is
expected in the software.

• It gives an insight in the way classes interact, because the
refactorings reveal how functionality is redistributed among
classes.

These features are extremely useful in a reverse engineering
process because it reveals where, how —and sometimes even
why— an implementation has drifted from its original design.

We have demonstrated through three case studies that the
technique is applicable in practice, and can effectively focus
attention on interesting aspects of a software system. Our results
are preliminary, in the sense that three case studies are by no
means statistically significant. Nevertheless, it is clear that the
approach warrants further study and experimentation.
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