
1

4411

Database Management Systems

Acknowledgements and copyrights: these slides are a result
of combination of notes and slides with contributions from:

Michael Kiffer, Arthur Bernstein, Philip Lewis, Anestis
Toptsis, Addison Wesley, 4411 textbook.

They serve for teaching purposes only and only for the
students that are registered in CSE4411 and should not be
published as a book or in any form of commercial product,

unless written permission is obtained from each of the
above listed names and/or organizations.

2

RAID Levels (con’t)

• Level 3: Data is striped over n disks and an
(n+1)th disk is used to store the exclusive or
(XOR) of the corresponding bytes on the
other n disks
– The (n+1)th disk is called the parity disk
– Chunks are bytes

3

Level 3 (con’t)

• Redundancy increases reliability
– Setting a bit on the parity disk to be the XOR of the bits

on the other disks makes the corresponding bit on each
disk the XOR of the bits on all the other disks,
including the parity disk

1 0 1 0 1 1 (parity disk)
– If any disk fails, its information can be reconstructed as

the XOR of the information on all the other disks

4

Level 3 (con’t)

• Whenever a write is made to any disk, a write
must by made to the parity disk

New_Parity_Bit = Old_Parity_Bit XOR
(Old_Data_Bit XOR New_Data_Bit)

• Thus each write requires 4 disk accesses
• The parity disk can be a bottleneck since all writes

involve a read and a write to the parity disk

5

RAID Levels (con’t)

• Level 5: Data is striped and parity
information is stored as in level 3, but
– The chunks are disk blocks
– The parity information is itself striped and is

stored in turn on each disk
• Eliminates the bottleneck of the parity disk

– Level most often recommended for transaction
processing applications

6

Controller Cache

• To further increase the efficiency of RAID
systems, a controller cache can be used in memory
– When reading from the disk, a larger number of disk

blocks than have been requested can be read into
memory

– In write back cache, the RAID system reports that the
write is complete as soon as the data is in the cache
(before it is on the disk)

– If all the blocks in a stripe are to be updated, the new
value of the parity block can be computed in the cache
and all the writes done in parallel

7

Data is stored in files

• Data is stored in files.
• Files usually have certain structure in order

to facilitate efficient space use and fast
retrievals and updates.

• Main file structures are:
– Unsorted file (heap)
– Sorted file
– Indexed file (trees, hash tables).

8

Heap Files

• Rows appended to end of file as they are
inserted
– Hence the file is unordered

• Deleted rows create gaps in file
– File must be periodically compacted to recover

space

9

Transcript Stored as a Heap File
666666 MGT123 F1994 4.0
123456 CS305 S1996 4.0 page 0
987654 CS305 F1995 2.0

717171 CS315 S1997 4.0
666666 EE101 S1998 3.0 page 1
765432 MAT123 S1996 2.0
515151 EE101 F1995 3.0

234567 CS305 S1999 4.0
page 2

878787 MGT123 S1996 3.0

10

Heap File - Performance
• Assume file contains F pages
• Inserting a row:

– Scan the file until either find the row (do not insert), or
do not find it (and then insert at the end)

– Avg. F/2 page transfers if row already exists
– F+1 page transfers if row does not already exist

• Deleting a row:
– Scan the file until either find the row (and then delete

it), or not find it (nothing to be deleted).
– Avg. F/2+1 page transfers if row exists
– F page transfers if row does not exist

11

Heap File - Performance
• Query

– scan the file
– Organization efficient if query returns all rows and

order of access is not important. E.g.,
SELECT * FROM TranscriptTranscript

– Organization inefficient if a few rows are requested
• Average F/2 pages read to get get a single row. E.g.,

SELECT T.Grade
FROM TranscriptTranscript T
WHERE T.StudId=12345 AND T.CrsCode =‘CS305’

AND T.Semester = ‘S2000’

12

Heap File - Performance

– Organization inefficient when a subset of rows
is requested: F pages must be read

SELECT T.Course, T.Grade
FROM TranscriptTranscript T -- equality search
WHERE T.StudId = 123456

SELECT T.StudId, T.CrsCode
FROM TranscriptTranscript T -- range search
WHERE T.Grade BETWEEN 2.0 AND 4.0

13

Sorted File
• Rows are sorted based on some attribute(s)

– Typically use binary search to scan the file.
– Equality or range query based on that attribute has cost

log2F to retrieve page containing first row.
– Successive rows are in same (or successive) page(s) and

cache hits are likely.
– By storing all pages on the same track, seek time can be

minimized.
• Example – Transcript sorted on StudId :

SELECT T.Course, T.Grade
FROM TranscriptTranscript T
WHERE T.StudId = 123456

SELECT T.Course, T.Grade
FROM TranscriptTranscript T
WHERE T.StudId BETWEEN

111111 AND 199999

14

Transcript Stored as a Sorted File
111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
123456 CS305 F1995 2.0

123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

234567 CS305 S1999 4.0
page 2

313131 MGT123 S1996 3.0

15

Maintaining Sorted Order
• Problem: After the correct position for an insert has

been determined, inserting the row requires (on
average) F/2 reads and F/2 writes (because shifting is
necessary to make space)

• Partial Solution 1: Leave empty space in each page
(how much space is determined by a fillfactor).

• Partial Solution 2: Use overflow pages (chains).
– Disadvantages:

• Successive pages no longer stored contiguously
• Overflow chain not sorted, hence cost no longer log2 F

16

Overflow

Pointer to
overflow chain

Pointer to
next block
in chain

These pages are
Not overflown

3
111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
111111 ECO101 F2000 3.0
122222 REL211 F2000 2.0

-
123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

-
234567 CS305 S1999 4.0

page 2

313131 MGT123 S1996 3.0

7
111654 CS305 F1995 2.0
111233 PSY 220 S2001 3.0 page 3

17

Index

• Mechanism for efficiently locating row(s) without
having to scan entire table

• Based on a search key
• Don’t confuse candidate key with search key:

– Candidate key: set of attributes; guarantees uniqueness
– Search key: sequence of attributes; does not guarantee

uniqueness –just used for search
– For example, for a table STUDENT, the primary key

may be stNumber, and the search key may be stGPA.

18

Index Structure
• Contains:

– Index entries
• Can contain the data tuple itself (index and table are integrated in

this case); or
• Search key value and a pointer to a row having that value; table

stored separately in this case – non-integrated index
– Location mechanism

• Algorithm + data structure for locating an index entry with a given
search key value

– Index entries are stored in accordance with the search key
value

• Entries with the same search key value are stored together (hash, B-
tree)

• Entries may be sorted on search key value (B-tree)

19

Integrated Storage Structure
Contains table
and (main) index

20

Index File With Separate Storage
Structure

In this case, the storage
structure might be a heap or
sorted file, but often is an
integrated file with another
index (on a different search key
– typically the primary key)

Location mechanism

Index entriesIn
de

x
fil

e

Storage
structure
for table

21

Index Structure
S

Search key
value

Location Mechanism (e.g. how to navigate tree,
or what hash function to apply)

Location mechanism
facilitates finding
index entry for S

Index entriesS

S, …….
Once index entry is
found, the row can
be directly accessed

Actual data

22

Indices: The Down Side
• Additional I/O to access index pages (except if index is

small enough to fit in main memory)
• Index must be updated when table is modified.
• SQL-92 does not provide for creation or deletion of

indices
– Index on primary key generally created automatically
– Vendor specific statements:

• CREATE INDEX ind ON TranscriptTranscript (CrsCode)
• DROP INDEX ind

23

Clustered Index

•• Clustered indexClustered index: index entries and actual data
rows are ordered in the same way
– An integrated storage structure is always also clustered

(since rows and index entries are the same)
– The particular index structure (eg, hash, tree) dictates

how the rows are organized in the storage structure
• There can be at most one clustered index on a table, and it is

usually called the main index.
– CREATE TABLE generally creates an integrated,

clustered (main) index on primary key

24

Clustered and integrated Index

Storage structure
contains table
and (main) index;
rows are contained
in index entries.

Each entry contains both
search key and data.

25

Clustered (and non-integrated) Index

26

Unclustered Index
• Unclustered (secondary) index: index entries and

actual data rows are not ordered in the same way
• A secondary index might be clustered or

unclustered with respect to the storage structure it
references
– It is generally unclustered (since the organization of rows

in the storage structure depends on main index)
– There can be many secondary indices on a table
– Index created by CREATE INDEX is generally an

unclustered, secondary index

27

Unclustered Secondary Index
Index entry is last in

index table. The
corresponding data
entry is first in data

table. ==> unclustered.

28

Clustered Index

• Good for range searches when a range of search
key values is requested
– Use location mechanism to locate index entry at start of

range
• This locates first row.

– Subsequent rows are stored in successive locations if
index is clustered (not so, if unclustered)

– Minimizes page transfers and maximizes likelihood of
cache hits

29

Example – Cost of Range Search

• Assume, data file has 10,000 pages, 100 rows in search
range

• Page transfers for table rows (assume 20 rows/page):
– Heap: 10,000 page transfers (entire file must be scanned)

– File sorted on search key: log2 10000 + (5 or 6) ≈ 19 (log cost to
locate first entry in index, and then 5 or 6 I/Os to transfer the 100 table
rows that follow the first row).

– Unclustered index: ≤ 100 (100 transfers in the worst case, assuming
that each row incurs a separate page transfer).

– Clustered index: 5 or 6 (assuming that index file is in memory)

30

Sparse vs. Dense Index

•• Dense indexDense index: has index entry for each data
record
– Unclustered index must be dense
– Clustered index need not be dense
– Sparse index must be clustered.

•• Sparse indexSparse index: has index entry for each page
of data file

31

Sparse Vs. Dense Index

Sparse,
clustered
index sorted
on Id

Id Name Dept

Data file sorted on Id Dense,
unclustered
index sorted
on Name

32

Sparse Index

Searching for ‘20’ causes a problem
if search key is not unique.

Search key should
be candidate key (and
therefore, unique)
of data file (else additional
measures required)

33

Tree indices

• Tree indices can be inspired from binary search …
• Binary search: equivalent to a BST (binary search

tree) search.
• BSTs have nodes, with each node holding one key

(or one record).
• How about if have a ‘MST’ (Multiway Search

Tree) instead of a BST?
• Such trees actually have been thought of before

and they are called m-way trees.

34

M-way trees

• Idea: pack records into blocks, say 7 records
per block.

• Possible gain:
– Instead of one I/O per record, we do one I/O

per block (which contains 7 records).
– … transparencies …

	4411
	RAID Levels (con’t)
	Level 3 (con’t)
	Level 3 (con’t)
	RAID Levels (con’t)
	Controller Cache
	Data is stored in files
	Heap Files
	Transcript Stored as a Heap File
	Heap File - Performance
	Heap File - Performance
	Heap File - Performance
	Sorted File
	Transcript Stored as a Sorted File
	Maintaining Sorted Order
	Overflow
	Index
	Index Structure
	Integrated Storage Structure
	Index File With Separate Storage Structure
	Index Structure
	Indices: The Down Side
	Clustered Index
	Clustered and integrated Index
	Clustered (and non-integrated) Index
	Unclustered Index
	Unclustered Secondary Index
	Clustered Index
	Example – Cost of Range Search
	Sparse vs. Dense Index
	Sparse Vs. Dense Index
	Sparse Index
	Tree indices
	M-way trees

