CSE

CSE4210 Architecture and Hardware for DSP

Floating Point Numbers

York University

CSE

FP Numbers

- Fixed point representation has a small Dynamic Range (ratio of max to min, non-zero, numbers reprehensible)
- FPN +/- 0.M $\times \beta^{+/-e}$
- 6 attributes define a FPN (some might be implicit)

CSE

FP Numbers

 Consider 4 digits, compare between fixed and floating point number. Also consider only positive numbers

1-to-9999

0.01 to 0.99*10⁹⁹

Dynamic range $\approx 10^4$

Dynamic range 10¹⁰¹

York University

CSE

FPN

- The fraction is an unsigned number called mantissa, also called significand if not a fraction.
- The exponent is represented by a characteristic (excess representation).
- The number is *normalized* if the MSD of the mantissa is not a zero.

CSE

FPN

- Bias is added to the exponent to get the characteristic
- Biased is $0.5^* \beta^s$, where s is the number of bits in the exponent.
- Although there is no unique representation of zero, it is usually represented as all 0's

FPN sign Characteristic mantissa (excess 50)

CSE

FPN

Unnormalized

· Consider all decimal

Digits 0 51 78
$$\rightarrow$$
0.78 * 10¹ = +7.8

Digits 0 52 07
$$\rightarrow$$
0.07 * 10² = +7.0

Digits 0 47 12
$$\rightarrow$$
0.78 * 10⁻³ = 0.00012

Digits 1 51
$$78 \rightarrow -0.78 \times 10^1 = -7.8$$

Digits 0 52 00
$$\rightarrow$$
0.00 * 10² = zero*

Digits 0 00 00
$$\rightarrow$$
0.00 * 10⁰ = zero

York University

CSE

 $\beta = 16$

IBM System 370 (short)

24-bit mantissa

Characteristic (excess 64)

What is the max (min) representable number in this format?

CSE

IBM System 370 (long)

 $\beta = 16$

56-bit mantissa

Characteristic (excess 64)

What is the max (min) representable number in this format?

York University

CSE

FP Addition

- · The two exponent must be equal.
- Shift the mantissa of the smallest operand to the right, and decrease exponent by one until the 2 exponents are equal.
- After alignment, the 2 mantissas are added (subtracted).
- The resulting number with its exponent is normalized (postnormalization).

CSE

FP Multiplication

- Mantissas are multiplied and exponent added,
- If $0.5 <= |m_1 * m_2| < =1$ do nothing
- IF 0.25 <= $|m_1*m_2|$ < 0.5 shift to the left one place and decrease exponent by one
- If euther is zero, set normalized zero
- · If overflow, set to max or min number

York University

CSE

FP Division

- Divide mantissa and subtract exponent.
- Normalize if necessary
- If the dividend is zero, set to infinite
- If both are zero, NaN
- If overflow, set appropriately

CSE

Problems in FP Computations

```
A = 0.1000000 \times 16^{1}
B = 0.FFFFFF \times 16^{0}
A = 0.10000000000 \times 16^{1}
A = 0.1000000 \times 16^{1}
A = 0.1000000 \times 16^{1}
B = 0.0FFFFF \times 16^{1}
B = 0.0FFFFFF \times 16^{1}
```

 $= 0.0000001 \times 16^{1}$

 $= 0.000001 \times 16^{1} = 0.1 \times 16^{-4}$

EROR = $0.1 \times 16^{-4} - 0.1 \times 16^{-5} = 0.F \times 16^{-5}$

York University

CSE

Problems in FP Computations

 $= 0.0000001 \text{ x } 16^{1}$

 $= 0.100000 \times 16^{1}$

EROR = A+B = A and B is not zero?

CSE

Problems in FP Computations

- An easy solution for this problem is guard digits
- Guard digits are extra digits appended to the right of the mantissa to hold intermediate results.

ork University			
I	EEE 754	FP _{Double}	
Word length	32 bits	64 bits	
Sign	1-bit	1-bit	
Biased exp	8 bits	11 bits	
Significand	(1)+23 bits	(1)+52 bits	
Bias	127	1023	
Precision	2 ⁻³² =10 ⁻⁷	2 ⁻⁵² = 10 ⁻¹⁶	

CSE

IEEE 754 FP

E	S	E	Significand	Interpretation
0	0	0	0	+zero
1	1	0	0	-Zero
2	0/1	0	Not 0	±Denormalized number
127	0	0	0	+infinite
128	1	255	0	- infinite
129	X	255	Not 0	NaN

York University

CSE

IEEE 754 FP

- The standard recommends but does not require the use of an extended format for temporary results.
- In this case, the leading hidden bit appears in the format

CSE

IEEE 754 FP

- Rounding
 - RN: Unbiased rounding to nearest (tie? Round to even)
 - RZ: Rounding towards zero
 - RM: Rounding towards minus infinity
 - RP: Rounding towards plus infinite

York University

CSE

IEEE 754 FP

• Examples:

CSE

Exceptions in IEEE 754

- Invalid operation
- Overflow
- Division by zero
- · Underflow
- · Inexact result.

York University

CSE