

Systolic Architecture

- Typically, fully pipelined (all communication between PE's contain delay element (why?). Also communication between neighboring PE's only.
- Some relaxation techniques can get rid of the delay. Also, there may be communication between close bet not neighboring PE's
- Some processors (especially boundary ones may be different than the rest.

Design Methodology

- We map the *N-dimensional* DG to a lower dimension systolic architecture (N-1) in this course
- Three vectors are introduced
- Projection vector $\mathbf{d} = [\mathbf{d}_1 \ \mathbf{d}_2]^T$
- Processor space vector $\mathbf{P}^{\mathsf{T}} = [\mathbf{p}_1 \mathbf{p}_2]$
- Scheduling vector S^T=[S₁ S₂]
- Hardware Utilization Efficiency =1/|S^Td|

CSE

Design Methodology

Steps

- Represent algorithm as a DG
- Apply mapping (projection and scheduling)
- Edge mapping
 - If an edge e exists in the DG, then an edge P^Te is introduced in the systolic array with S^Te delay
- Construct the systolic array

York University		CSE		
Dual				
$d = \begin{bmatrix} 1 \\ -1 \end{bmatrix} P^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$	$S^T = \begin{bmatrix} 1 & 2 \end{bmatrix}$		· _ 1	
	Edge e	P [⊤] e	S [⊤] e	
Dual of the previous design.	W(1 0)	1	1	
X and w are exchanged	X(0 1)	1	2	
	V(1, 1)	0	1	
	y(1 -1)	0	1	

Scheduling Vector

- Consider the dependence $X \rightarrow Y$
- Y can start after X has started and completed.
- We also have to take into consideration the time it will take the data to travel from X to Y
- Constraints on the scheduling vector.

Assume that $e_{x \rightarrow y} = I_x - I_y$

Using affine scheduling,

 $S^T I_y + \gamma_y \ge S^T I_x + \gamma_x + T_x$

The scheduling inequality for an edge

$$S^T e_{x \to y} + \gamma_y - \gamma_x \ge T_x$$

CSE

Matrix Multiplication

CSE

Solution 3

$$S^{T} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \quad d = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad P^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

CSE

Solution 7

$$S^{T} = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}, \quad d = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}, \quad P^{T} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

York UniversityCSESolution 4• Solution 3: $\mathbf{s}^T = (1,1,1), \ \mathbf{d} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{P}^T = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ This solution leads to the Schreiher-Rao 2D systolic array.• Solution 4: $\mathbf{s}^T = (1,1,1), \ \mathbf{d} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{P}^T = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$ This solution leads to the Kung-Leiserson systolic array.