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Systolic Architecture

• A number of usually 
similar processing 
elements connected 
together to 
implement a specific 
algorithm.

• Data move between 
PE’s in a rhythmic 
fashion.

PE PE PE

Processor

. . .
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Systolic Architecture
• Typically, fully pipelined (all communication 

between PE’s contain delay element (why?). 
Also communication between neighboring PE’s 
only.

• Some relaxation techniques can get rid of the 
delay. Also, there may be communication 
between close bet not neighboring PE’s

• Some processors (especially boundary ones 
may be different than the rest. 
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Design Methodology
• Using linear mapping techniques from the 

dependence space to the space-time
• Usually, algorithm is described by a 

dependence graph.
• Dependence graph is regular if the presence 

of any edge connected to a node, means the 
existence of a similar edge in every node.

• There is no concept of time in the 
dependence graph.
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Design Methodology

• We map the N-dimensional DG to a lower 
dimension systolic architecture (N-1) in this 
course

• Three vectors are introduced
• Projection vector d=[d1 d2]T
• Processor space vector PT = [p1 p2]
• Scheduling vector ST=[S1 S2]
• Hardware Utilization Efficiency =1/|STd| 
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Design Methodology
• Projection vector

– Two nodes are displaced by d or multiple of it, are 
mapped to the same processor

• Processor space vector
– Any node in the DG I is mapped to processor PTI

• Scheduling vector
– Any node in the DG I would be executed at time 
STI

• Subject to some constraints
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Design Methodology

• Steps
– Represent algorithm as a DG
– Apply mapping (projection and scheduling)
– Edge mapping

• If an edge e exists in the DG, then an edge PTe
is introduced in the systolic array with STe
delay

– Construct the systolic array
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Design Methodology

• Constraints
– Processor space vector and the projection 

vector must be orthogonal PTd=0
– If A and B are mapped to the same 

processor, they should not be executed at 
the same time STIA ≠ STIB i.e. STd≠0
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Example -- IIR
• Y(n)=ω0 x(n)+ ω1 x(n-1) + ω2 x(n-2)

y0 y1 y2 y3

x0 x1 x2 x3

ω2

ω1

ω0

Single assignment format 
with broadcasting data:

Do n=1,2, . . .
y1(n,-1)=0
Do k=0,K
y1(n,k)=y1(n,k-1)  

+w(k)*x(n-k)
enddo
y(n)=y1(n,K)

Enddo
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Design Ix0 x1 x2 x3
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Design II
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Design II
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Design III
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Design III
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Design IV
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Design IV

D
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Design V
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Design V
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Dual
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Dual of the previous design.

X and w are exchanged
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Dual
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Transformation
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Scheduling Vector

• Consider the dependence X Y
• Y can start after X has started and 

completed.
• We also have to take into consideration 

the time it will take the data to travel 
from X to Y

• Constraints on the scheduling vector.
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Scheduling Vector

• Capture all the fundamental edges 
(Reduced Dependence Graph RDG).

• Use the Regular Iterative Algorithm 
(RIA) to describe the problem.

• Construct the scheduling inequalities 
and solve them for a possible ST
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RIA Description

• The regular iterative algorithm has two 
standard forms

• Standard Input if the index of the 
inputs are all the same

• Standard Output if the index of the 
output are all the same
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RIA Description
• W(i+1,j) = W(i,j)
• X(i,j+1) = X(i,j)
• Y(i+1,j-1) = Y(i,j)+W(i+1,j-1)X(i+1,j-1)
x0 x1 x2 x3

ω2

ω1

ω0

Not RIA



15

York University CSE

RIA Description
• W(i,j) = W(i-1,j)
• X(i,j) = X(i,j-1)
• Y(i,j) = Y(i-1,j+1)+W(i,j)X(i,j)
x0 x1 x2 x3

ω2

ω1

ω0

RIA
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Fir

• Solving the set of equation assuming all 
γ’s to be zero.

• A possible solution is s=[9  1]
• A possible selection for d=[1,-1]   and p 

= [1  1]
• HUE = 8

eT PTe STe

(1,0) 1 9

(0,1) 1 1

Y 0 8
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Matrix Multiplication
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Matrix Multiplication
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Matrix Multiplication
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Matrix Multiplication

Taccu = 1 T com = 0
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Matrix Multiplication
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Solution 2

HUE = 1
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Solution 3
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Solution 5
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Solution 6
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Solution 7
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Solution 4


