CSE

CSE4210 Architecture and Hardware for DSP

Chapter 5
Unfolding

York University

CSE

Unfolding

- Unfolding is a transformation technique to change the program into another program such that one iteration in the new program describes more than one iteration in the original program.
- Unfolding, AKA loop unrolling in CSE4201.
- Unfolding factor of j means that one iteration in the new program describes j iterations in the old one.

CSE

Unfolding

 Also used to design bit parallel and word parallel architectures from bit serial and word serial architecture.

$$y(n) = ay(n-9) + x(n)$$

$$y(2k) = ay(2k-9) + x(2k)$$

$$y(2k+1) = ay(2k-8) + x(2k+1)$$

$$y(2k) = ay(2k-9) + x(2k)$$

$$= ay(2(k-5)+1) + x(2k)$$

$$y(2k+1) = ay(2k-8) + x(2k+1)$$

$$= ay(2(k-4)+0) + x(2k+1)$$

York University

CSE

unfolding

$$y(2k) = ay(2(k-5)+1) + x(2k)$$
$$y(2k+1) = ay(2(k-4)+0) + x(2k+1)$$

CSE

Unfolding

- In the unfolded system, each delay is Jslow.
- That means if the input to a delay element is the signal x(kJ+m), the output is x((k-1)J+m) = x(kJ-J+m)

York University

CSE

Algorithm for Unfolding

- For each node U in the original DFG, draw the J nodes U_0 , U_1 , ... U_{J-1}
- For each edge U \rightarrow V with **w** delays in the original DFG, draw the **J** edges U_i \rightarrow V_{(i+w)%J} with $\left|\frac{i+w}{J}\right|$ delays for i = 0,1,..,J-1
- For the input nodes, Ai corresponds to input signal x(jk+i)
- For J>w, an edge with w delays will result in J-w edges with zero delay and w edges with 1 delay

CSE

Unfolding

 Prove that the unfolded graph preserves dependence of the DSP program

York University

CSE

Properties

• Unfolding preserves the number of delays in a DFG $\left| \frac{w}{J} \right| + \left| \frac{w+1}{J} \right| + ... + \left| \frac{w+J-1}{J} \right| = w$

CSE

Properties

- **J**-unfolding of a loop with \mathbf{w}_{l} delays in the original DFG leads to
 - $-\gcd(\mathbf{w}_{l},\mathbf{J})$ loops in the unfolded DFG
 - each loop in J-unfolded DFG contains $J/gcd(w_1, J)$ copies of each node that appears in loop /
 - each loop in ${f J}$ -unfolded DFG contains w_i /gcd(w_i , ${f J}$) delays

York University

CSE

Properties

• Unfolding a DFG with iteration bound \textbf{T}_{∞} results in

a J-unfolded DFG with iteration bound T_{∞} ' = JT_{∞}

CSE

Properties

- Property 5.4.1
 - Consider a path with w delays in the original DFG.
 J-unfolding of this path leads to (J-w) paths with no delays
 and w path with 1 delay each, when w<J
- Corollary 5.4.1
 - Any path in the original DFG containing ${\bf J}$ or more delays leads to ${\bf J}$ paths with 1 or more delays in each path.
 - A path in the original DFG with J or more delays cannot create a critical path in the J-unfolded DFG.

York University

CSE

Properties

- Any feasible clock cycle period that can be obtained by retiming the **J**-unfolded DFG, G_J , can be achieved by retiming the original DFG, G, directly and then unfolding it by unfolding factor **J**. i.e. $(G_u)_r = (G_r)_u$
- Proof:

CSE

Applications

- Unfolding can be used in
 - Sample period reduction
 - Parallel processing

York University

CSE

Sample Period Reduction

- Any implementation of a DSP program can never achieve an iteration period less than T_{∞}
- Some times we can not achieve that lower bound (2 reasons)
 - When one node has a computation time greater than T_{∞} (can not be split)
 - T_{∞} is a fraction

CSE

Word Level Parallel Processing

- · We start with a DSP at the word level
- We can use unfolding to replicate the design J times (J unfolding).
- Example

CSE

Bit Level Parallel Processing

- Bit level parallel processing can increase the speed (reduce the sample time) be processing more than one bit at a time.
- Digit serial parallel processing is when we process W bits at a time where W is the word length.
- Usually involves switching (multiplexers)

York University

CSE

Bit Serial Adder

Consider the following adder, W=4

CSE

Edges with Switches

- Assumptions
 - The word-length ${\bf W}$ is a multiple of the unfolding factor ${\bf J}$, i.e., ${\bf W} = {\bf W}' {\bf J}$
 - All edges into and out of the switches have no delays
- Write the switching instance as

$$Wl + u = J(W'l + \left| \frac{u}{J} \right|) + (u\%J)$$

• Step2: Draw an edge with no delays in the unfolded graph from the node $U_{u\%J}$ to the node $V_{u\%J}$, which is switched at time instance $(W'l + \left| \frac{u}{I} \right|)$.

York University

CSE

$$\begin{array}{c} 12 l+1,7,9,11 \\ \hline U & & V \end{array}$$

Example

