Unfolding

- Unfolding is a transformation technique to change the program into another program such that one iteration in the new program describes more than one iteration in the original program.
- Unfolding, AKA loop unrolling in CSE4201.
- Unfolding factor of j means that one iteration in the new program describes j iterations in the old one.
Unfolding

- Also used to design bit parallel and word parallel architectures from bit serial and word serial architecture.

\[y(n) = ay(n-9) + x(n) \]
\[y(2k) = ay(2k-9) + x(2k) \]
\[y(2k+1) = ay(2k-8) + x(2k+1) \]

\[y(2k) = ay(2k-9) + x(2k) \]
\[= ay(2(k-5)+1) + x(2k) \]
\[y(2k+1) = ay(2k-8) + x(2k+1) \]
\[= ay(2(k-4)+0) + x(2k+1) \]
Unfolding

- In the unfolded system, each delay is J-slow.
- That means if the input to a delay element is the signal $x(kJ+m)$, the output is $x((k-1)J+m) = x(kJ-J+m)$

Algorithm for Unfolding

- For each node U in the original DFG, draw the J nodes $U_0, U_1, \ldots U_{J-1}$
- For each edge $U \rightarrow V$ with w delays in the original DFG, draw the J edges $U_i \rightarrow V_{(i+w)\%J}$ with $\left\lfloor \frac{i+w}{J} \right\rfloor$ delays for $i = 0, 1, \ldots, J-1$
- For the input nodes, A_i corresponds to input signal $x(jk+i)$
- For $J > w$, an edge with w delays will result in $J-w$ edges with zero delay and w edges with 1 delay
Examples

\[U \rightarrow V \]

Example

\[U \rightarrow V \]
\[X \rightarrow U \]
\[X \rightarrow V \]
Unfolding

- Prove that the unfolded graph preserves dependence of the DSP program

Properties

- Unfolding preserves the number of delays in a DFG

\[
\left\lfloor \frac{w}{J} \right\rfloor + \left\lfloor \frac{w+1}{J} \right\rfloor + \ldots + \left\lfloor \frac{w+J-1}{J} \right\rfloor = w
\]
Properties

• **J**-unfolding of a loop with \(w_l \) delays in the original DFG leads to
 - gcd\((w_l, J)\) loops in the unfolded DFG
 - each loop in \(J \)-unfolded DFG contains \(J / \text{gcd}(w_l, J) \)
 copies of each node that appears in loop \(l \)
 - each loop in \(J \)-unfolded DFG contains \(w_l / \text{gcd}(w_l, J) \)
 delays

Properties

• Unfolding a DFG with iteration bound \(T_\infty \)
 results in
 a \(J \)-unfolded DFG with iteration bound
 \(T'_\infty = JT_\infty \)
Properties

• Property 5.4.1
 – Consider a path with w delays in the original DFG. J-unfolding of this path leads to $(J-w)$ paths with no delays and w path with 1 delay each, when $w < J$

• Corollary 5.4.1
 – Any path in the original DFG containing J or more delays leads to J paths with 1 or more delays in each path.
 – A path in the original DFG with J or more delays cannot create a critical path in the J-unfolded DFG.

Properties

• Any feasible clock cycle period that can be obtained by retiming the J-unfolded DFG, G_J, can be achieved by retiming the original DFG, G, directly and then unfolding it by unfolding factor J. i.e. $(G_u)_r = (G_r)_u$

• Proof:
Applications

- Unfolding can be used in
 - Sample period reduction
 - Parallel processing

Sample Period Reduction

- Any implementation of a DSP program can never achieve an iteration period less than T_∞.
- Sometimes we cannot achieve that lower bound (2 reasons):
 - When one node has a computation time greater than T_∞ (can not be split)
 - T_∞ is a fraction
Example

iteration bound = 3

Example

iteration bound = 4/3
Word Level Parallel Processing

• We start with a DSP at the word level
• We can use unfolding to replicate the design J times (J unfolding).
• Example
Bit Level Parallel Processing

- Bit level parallel processing can increase the speed (reduce the sample time) by processing more than one bit at a time.
- Digit serial parallel processing is when we process W bits at a time where W is the word length.
- Usually involves switching (multiplexers)

Bit Serial Adder

- Consider the following adder, $W=4$
Edges with Switches

- **Assumptions**
 - The word-length \(W \) is a multiple of the unfolding factor \(J \), i.e., \(W=W'J \)
 - All edges into and out of the switches have no delays

- **Write the switching instance as**
 \[
 Wl + u = J(W'l + \left\lfloor \frac{u}{J} \right\rfloor) + (u \mod J)
 \]

- **Step2**: Draw an edge with no delays in the unfolded graph from the node \(U_{u \% J} \) to the node \(V_{u \% J} \), which is switched at time instance \(W'l + \left\lfloor \frac{u}{J} \right\rfloor \).

Example

- Nodes: \(U \) and \(V \) with labels \(12l+1, 7, 9, 11 \)
- Edges: \(U \) to \(V \)
- Nodes: \(U_0, U_1, U_2 \) and \(V_0, V_1, V_2 \) with labels \(4l+3, 4l+0.2, 4l+3 \)
Example Binary adder

[Diagram of a binary adder circuit with inputs a_3, a_2, a_1, a_0 and b_3, b_2, b_1, b_0, and outputs s_3, s_2, s_1, s_0.]